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Abstract. We consider the following clustering problem: we have a complete graph on n vertices (items), where
each edge (u, v) is labeled either + or − depending on whether u and v have been deemed to be similar or different.
The goal is to produce a partition of the vertices (a clustering) that agrees as much as possible with the edge labels.
That is, we want a clustering that maximizes the number of + edges within clusters, plus the number of − edges
between clusters (equivalently, minimizes the number of disagreements: the number of − edges inside clusters
plus the number of + edges between clusters). This formulation is motivated from a document clustering problem
in which one has a pairwise similarity function f learned from past data, and the goal is to partition the current
set of documents in a way that correlates with f as much as possible; it can also be viewed as a kind of “agnostic
learning” problem.

An interesting feature of this clustering formulation is that one does not need to specify the number of clusters
k as a separate parameter, as in measures such as k-median or min-sum or min-max clustering. Instead, in our
formulation, the optimal number of clusters could be any value between 1 and n, depending on the edge labels.
We look at approximation algorithms for both minimizing disagreements and for maximizing agreements. For
minimizing disagreements, we give a constant factor approximation. For maximizing agreements we give a PTAS,
building on ideas of Goldreich, Goldwasser, and Ron (1998) and de la Vega (1996). We also show how to extend
some of these results to graphs with edge labels in [−1, +1], and give some results for the case of random noise.
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1. Introduction

Suppose that you are given a set of n documents to cluster into topics. Unfortunately, you
have no idea what a “topic” is. However, you have at your disposal a classifier f (A, B) that
given two documents A and B, outputs whether or not it believes A and B are similar to
each other. For example, perhaps f was learned from some past training data. In this case,
a natural approach to clustering is to apply f to every pair of documents in your set, and
then to find the clustering that agrees as much as possible with the results.

Specifically, we consider the following problem. Given a fully-connected graph G with
edges labeled “+” (similar) or “−” (different), find a partition of the vertices into clusters
that agrees as much as possible with the edge labels. In particular, we can look at this in
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terms of maximizing agreements (the number of + edges inside clusters plus the number
of − edges between clusters) or in terms of minimizing disagreements (the number of −
edges inside clusters plus the number of + edges between clusters). These two are equivalent
at optimality but, as usual, differ from the point of view of approximation. In this paper
we give a constant factor approximation to the problem of minimizing disagreements, and
a PTAS1 for maximizing agreements. We also extend some of our results to the case of
real-valued edge weights.

This problem formulation is motivated in part by a set of clustering problems at Whizbang
Labs (Cohen & McCallum, 2001; Cohen & Richman, 2001, 2002) in which learning algo-
rithms were trained to help with various clustering tasks. An example of one such problem,
studied by Cohen and Richman (2001, 2002) is clustering entity names. In this prob-
lem, items are entries taken from multiple databases (e.g., think of names/affiliations of
researchers), and the goal is to do a “robust uniq”—collecting together the entries that cor-
respond to the same entity (person). E.g., in the case of researchers, the same person might
appear multiple times with different affiliations, or might appear once with a middle name
and once without, etc. In practice, the classifier f typically would output a probability, in
which case the natural edge label is log(Pr(same)/Pr(different)). This is 0 if the classifier
is unsure, positive if the classifier believes the items are more likely in the same cluster,
and negative if the classifier believes they are more likely in different clusters. The case of
{+, −} labels corresponds to the setting in which the classifier has equal confidence about
each of its decisions.

What is interesting about the clustering problem defined here is that unlike most clustering
formulations, we do not need to specify the number of clusters k as a separate parameter.
For example, in min-sum clustering (Schulman, 2000) or min-max clustering (Hochbaum
& Shmoys, 1986) or k-median (Charikar & Guha, 1999; Jain & Vazirani, 2001), one can
always get a perfect score by putting each node into its own cluster—the question is how
well one can do with only k clusters. In our clustering formulation, there is just a single
objective, and the optimal clustering might have few or many clusters: it all depends on the
edge labels.

To get a feel for this problem, notice that if there exists a perfect clustering, i.e., one
that gets all the edges correct, then the optimal clustering is easy to find: just delete all
“−” edges and output the connected components of the graph remaining. In Cohen and
Richman (2002) this is called the “naive algorithm”. Thus, the interesting case is when no
clustering is perfect. Also, notice that for any graph G, it is trivial to produce a clustering
that agrees with at least half of the edge labels: if there are more + edges than − edges, then
simply put all vertices into one big cluster; otherwise, put each vertex into its own cluster.
This observation means that for maximizing agreements, getting a 2-approximation is easy
(note: we will show a PTAS). In general, finding the optimal clustering is NP-hard (shown
in Section 3).

Another simple fact to notice is that if the graph contains a triangle in which two edges
are labeled + and one is labeled −, then no clustering can be perfect. More generally, the
number of edge-disjoint triangles of this form gives a lower bound on the number of dis-
agreements of the optimal clustering. This fact is used in our constant-factor approximation
algorithm.
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For maximizing agreements, our PTAS is quite similar to the PTAS developed by de la
Vega (1996) for MAXCUT on dense graphs, and related to PTASs of Arora, Karger, and
Karpinski (1999) and Arora, Frieze, and Kaplan (2002). Notice that since there must exist
a clustering with at least n(n − 1)/4 agreements, this means it suffices to approximate
agreements to within an additive factor of εn2. This problem is also closely related to work
on testing graph properties of Goldreich, Goldwasser, and Ron (1998), Parnas and Ron
(2002), and Alon et al. (2000). In fact, we show how we can use the General Partition
Property Tester of Goldreich, Goldwasser, and Ron (1998) as a subroutine to get a PTAS
with running time O(neO(( 1

ε
)

1
ε )). Unfortunately, this is doubly exponential in 1

ε
, so we also

present an alternative direct algorithm (based more closely on the approach of de la Vega
(1996)) that takes only O(n2eO( 1

ε
)) time.

Relation to agnostic learning. One way to view this clustering problem is that edges
are “examples” (labeled as positive or negative) and we are trying to represent the target
function f using a hypothesis class of vertex clusters. This hypothesis class has limited
representational power: if we want to say (u, v) and (v, w) are positive in this language,
then we have to say (u, w) is positive too. So, we might not be able to represent f perfectly.
This sort of problem—trying to find the (nearly) best representation of some arbitrary target
f in a given limited hypothesis language—is sometimes called agnostic learning (Kearns,
Schapire, & Sellie, 1994; Ben-David, Long, & Mansour, 2001). The observation that one
can trivially agree with at least half the edge labels is equivalent to the standard machine
learning fact that one can always achieve error at most 1/2 using either the all positive or
all negative hypothesis.

Our PTAS for approximating the number of agreements means that if the optimal clus-
tering has error rate ν, then we can find one of error rate at most ν + ε. Our running time is
exponential in 1/ε, but this means that we can achieve any constant error gap in polynomial
time. What makes this interesting from the point of view of agnostic learning is that there
are very few problems where agnostic learning can be done in polynomial time.2 Even for
simple classes such as conjunctions and disjunctions, no polynomial-time algorithms are
known that give even an error gap of 1/2 − ε.

Organization of this paper. We begin by describing notation in Section 2. In Section 3 we
prove that the clustering problem defined here is NP complete. Then we describe a constant
factor approximation algorithm for minimizing disagreements in Section 4. In Section 5,
we describe a PTAS for maximizing agreements. In Section 6, we present simple algorithms
and motivation for the random noise model. Section 7 extends some of our results to the
case of real-valued edge labels. Finally, subsequent work by others is briefly described in
Section 8.

2. Notation and definitions

Let G = (V, E) be a complete graph on n vertices, and let e(u, v) denote the label (+ or −)
of the edge (u, v). Let N+(u) = {u} ∪ {v : e(u, v) = +} and N−(u) = {v : e(u, v) = −}
denote the positive and negative neighbors of u respectively.
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We let OPT denote an optimal clustering on this graph. In general, for a clustering C, let
C(v) be the set of vertices in the same cluster as v. We will use A to denote the clustering
produced by our algorithms.

In a clustering C, we call an edge (u, v) a mistake if either e(u, v) = + and yet u �∈ C(v),
or e(u, v) = − and u ∈ C(v). When e(u, v) = +, we call the mistake a positive mistake,
otherwise it is called a negative mistake. We denote the total number of mistakes made by
a clustering C by mC , and use mOPT to denote the number of mistakes made by OPT.

For positive real numbers x , y and z, we use x ∈ y ± z to denote x ∈ [y − z, y + z].
Finally, let X̄ for X ⊆ V denote the complement (V \ X ).

3. NP-completeness

In this section, we will prove that the problem of minimizing disagreements, or equivalently,
maximizing agreements, is NP-complete. It is easy to see that the decision version of this
problem (viz. is there a clustering with at most z disagreements?) is in NP since we can easily
check the number of disagreements given a clustering. Also, if we allow arbitrary weights
on edges with the goal of minimizing weighted disagreements, then a simple reduction from
the Multiway Cut problem proves NP-hardness—simply put a −∞-weight edge between
every pair of terminals, then the value of the multiway cut is equal to the value of weighted
disagreements. We use this reduction to give a hardness of approximation result for the
weighted case in Section 7.

We give a proof of NP hardness for the unweighted case by reducing the problem of
Partition into Triangles GT11 in Garey and Johnson (2000) to the problem of minimizing
disagreements. The reader who is not especially interested in NP-completeness proofs
should feel free to skip this section.

The Partition into Triangles problem is described as follows: Given a graph G with n = 3k
vertices, does there exist a partition of the vertices into k sets V1, . . . , Vk , such that for all
i , |Vi | = 3 and the vertices in Vi form a triangle.

Given a graph G = (V, E), we first transform it into a complete graph G ′ on the same
vertex set V . An edge in G ′ is weighted +1 if it is an edge in G and −1 otherwise.

Let A be an algorithm that given a graph outputs a clustering that minimizes the number of
mistakes. First notice that if we impose the additional constraint that all clusters produced by
A should be of size at most 3, then given the graph G ′, the algorithm will produce a partition
into triangles if the graph admits one. This is because if the graph admits a partition into
triangles, then the clustering corresponding to this triangulation has no negative mistakes,
and any other clustering with clusters of size at most 3 has more positive mistakes than
this clustering. Thus we could use such an algorithm to solve the Partition into Triangles
problem.

We will now design a gadget that forces the optimal clustering to contain at most 3
vertices in each cluster. In particular, we will augment the graph G ′ to a larger complete
graph H , such that in the optimal clustering on H , each cluster contains at most 3 vertices
from G ′.

The construction of H is as follows: In addition to the vertices and edges of G ′, for every
3-tuple {u, v, w} ⊂ G ′, H contains a clique Cu,v,w containing n6 vertices. All edges inside
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these cliques have weight +1. Edges between vertices belonging to two different cliques
have weight −1. Furthermore, for all u, v, w ∈ G ′ each vertex in Cu,v,w has a positive edge
to u, v and w, and a negative edge to all other vertices in G ′.

Now assume that G admits a triangulation and let us examine the behavior of algorithm
A on graph H . Let N = n6( n

3 ).

Lemma 1. Given H as input, in any clustering that A outputs, every cluster contains at
most three vertices of G ′.

Proof: First consider a clustering C of the following form:

1. There are ( n
3 ) clusters.

2. Each cluster contains exactly one clique Cu,v,w and some vertices of G ′.
3. Every vertex u ∈ G ′ is in the same cluster as Cu,v,w for some v and w.

In any such clustering, there are no mistakes among edges between cliques. The only
mistakes are between vertices of G ′ and the cliques, and those between the vertices of G ′.
The number of mistakes of this clustering is at most n7(( n

2 ) − 1) + ( n
2 ) because each vertex

in G ′ has n6 positive edges to ( n
2 ) cliques and is clustered with only one of them.

Now consider a clustering in which some cluster has four vertices in G ′, say, u, v, w and
y. We show that this clustering has at least n7(( n

2 ) − 1) + n6

2 mistakes. Call this clustering
X . Firstly, without loss of generality we can assume that each cluster in X has size at most
n6 + n4, otherwise there are at least �(n10) negative mistakes within a cluster. This implies
that each vertex in G ′ makes at least ( n

2 )n6 − (n6 + n4) positive mistakes. Hence the total
number of positive mistakes is at least n7(( n

2 ) − 1) − n5. Let Xu be the cluster containing
vertices u, v, w, y ∈ G ′. Since Xu has at most n6 + n4 vertices, at least one of u, v, w, y
will have at most n4 positive edges inside Xu and hence will contribute at least an additional
n6 − n4 negative mistakes to the clustering. Thus the total number of mistakes is at least
(( n

2 ) − 1)n7 − n5 + n6 − n4 ≥ n7(( n
2 ) − 1) + n6/2. Thus the result follows.

The above lemma shows that the clustering produced by A will have at most 3 vertices
of G in each cluster. Thus we can use the algorithm A to solve the Partition into Triangles
problem and the reduction is complete.

4. A constant factor approximation for minimizing disagreements

As a warm-up to the general case, we begin by giving a very simple 3-approximation to the
best clustering containing two clusters. That is, if the best two-cluster partition of the graph
has x mistakes, then the following algorithm will produce one with at most 3x mistakes.

Let OPT(2) be the best clustering containing two clusters, and let the corresponding clus-
ters be C1 and C2. Our algorithm simply considers all clusters of the form {N+(v), N−(v)}
for v ∈ V . Of these, it outputs the one that minimizes the number of mistakes.

Theorem 2. The number of mistakes of the clustering output by the algorithm stated above
is at most m A ≤ 3mOPT(2).
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Proof: Let’s say an edge is “bad” if OPT(2) disagrees with it, and define the “bad degree”
of a vertex to be the number of bad edges incident to it. Clearly, if there is a vertex that has
no bad edges incident to it, the clustering produced by that vertex would be the same as
{C1, C2}, and we are done with as many mistakes as mOPT(2).

Otherwise, let v be a vertex with minimum bad degree d, and without loss of generality,
let v ∈ C1. Consider the partition {N+(v), N−(v)}. Let X be the set of bad neighbors of
v—the d vertices that are in the wrong set of the partition with respect to {C1, C2}. The total
number of extra mistakes due to this set X (other than the mistakes already made by OPT) is
at most dn. However, since all vertices have bad degree at least d, mOPT(2) ≥ nd/2. So, the
number of extra mistakes made by taking the partition {N+(v), N−(v)} is at most 2mOPT(2).
This proves the theorem.

We now describe our main algorithm: a constant-factor approximation for minimizing
the number of disagreements.

The high-level idea of the algorithm is as follows. First, we show (Lemma 3 and 4) that
if we can cluster a portion of the graph using clusters that each look sufficiently “clean”
(Definition 1), then we can charge off the mistakes made within that portion to “erroneous
triangles”: triangles with two + edges and one − edge. Furthermore, we can do this in
such a way that the triangles we charge are nearly edge-disjoint, allowing us to bound the
number of these mistakes by a constant factor of OPT. Second, we show (Lemma 6) that
there must exist a nearly optimal clustering OPT′ in which all non-singleton clusters are
“clean”. Finally, we show (Theorem 7 and Lemma 11) that we can algorithmically produce
a clustering of the entire graph containing only clean clusters and singleton clusters, such
that mistakes that have an endpoint in singleton clusters are bounded by OPT′, and mistakes
with both endpoints in clean clusters are bounded using Lemma 4.

We begin by showing a lower bound for OPT. We call a triangle “erroneous” if it contains
two positive edges and one negative edge. A fractional packing of erroneous triangles is a
set of erroneous triangles {T1, . . . , Tm} and positive real numbers ri associated with each
triangle Ti , such that for any edge e ∈ E ,

∑
e∈Ti

ri ≤ 1.

Lemma 3. Given any fractional packing of erroneous triangles {r1, . . . , rm}, we have∑
i ri ≤ OPT.

Proof: Let M be the set of mistakes made by OPT. Then, mOPT = ∑
e∈M 1 ≥ ∑

e∈M∑
e∈Ti

ri , by the definition of a fractional packing. So we have mOPT ≥ ∑
i |M ∩ Ti |ri . Now,

for each Ti , we must have |M ∩ Ti | ≥ 1, because OPT must make at least one mistake on
each erroneous triangle. This gives us the result.

Next we give a definition of a “clean” cluster and a “good” vertex.

Definition 1. A vertex v is called δ-good with respect to C , where C ⊆ V , if it satisfies
the following:

– |N+(v) ∩ C | ≥ (1 − δ)|C |
– |N+(v) ∩ (V \ C)| ≤ δ|C |
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If a vertex v is not δ-good with respect to (w.r.t.) C , then it is called δ-bad w.r.t. C . Finally,
a set C is δ-clean if all v ∈ C are δ-good w.r.t. C .

We now present two key lemmas.

Lemma 4. Given a clustering of V in which all clusters are δ-clean for some δ ≤ 1/4,

there exists a fractional packing {ri , Ti }m
i=1 such that the number of mistakes made by this

clustering is at most 4
∑

i ri .

Proof: Let the clustering on V be (C1, . . . , Ck). First consider the case where the number
of negative mistakes (m−

C ) is at least half the total number of mistakes mC . We will construct
a fractional packing of erroneous triangles with

∑
i ri ≥ 1

2 m−
C ≥ 1

4 mC .
Pick a negative edge (u, v) ∈ Ci × Ci that has not been considered so far. We will pick

a vertex w ∈ Ci such that both (u, w) and (v, w) are positive, and associate (u, v) with the
erroneous triangle (u, v, w) (see figure 1). We now show that for all (u, v), such a w can
always be picked such that no other negative edges (u′, v) or (u, v′) (i.e. the ones sharing u
or v) also pick w.

Since Ci is δ-clean, neither u nor v has more than δ|Ci | negative neighbors inside Ci .
Thus (u, v) has at least (1 − 2δ)|Ci | vertices w such that both (u, w) and (v, w) are positive.
Moreover, at most 2δ|Ci | − 2 of these could have already been chosen by other negative
edges (u, v′) or (u′, v). Thus (u, v) has at least (1 − 4δ)|Ci | + 2 choices of w that satisfy the
required condition. Since δ ≤ 1/4, (u, v) will always be able to pick such a w. Let Tuvw

denote the erroneous triangle u, v, w.
Note that any positive edge (v, w) can be chosen at most 2 times by the above scheme, once

for negative mistakes on v and possibly again for negative mistakes on w. Thus we can give a
value of ruvw = 1/2 to each erroneous triangle picked, ensuring that

∑
Ti contains (v,w) ri ≤ 1.

Now, since we pick a triangle for each negative mistake, we get that
∑

Ti
ri = 1

2

∑
Ti

1 ≥
1
2 m−

C .

Figure 1. Construction of a triangle packing for Lemma 4.
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Next, consider the case when at least half the mistakes are positive mistakes. Just as
above, we will associate mistakes with erroneous triangles. We will start afresh, without
taking into account the labelings from the previous part.

Consider a positive edge between u ∈ Ci and v ∈ C j . Let |Ci | ≥ |C j |. Pick a w ∈ Ci

such that (u, w) is positive and (v, w) is negative (see figure 1). There will be at least
|Ci |−δ(|Ci |+ |C j |) such vertices as before and at most δ(|Ci |+ |C j |) of them will be already
taken. Thus, there are at least |Ci | − 2δ(|Ci | + |C j |) ≥ |Ci |(1 − 4δ) > 0 choices for w.
Moreover only the positive edge (u, w) can be chosen twice (once as (u, w) and once as
(w, u)). Thus, as before, to obtain a packing, we can give a fractional value of ruvw = 1

2 to
the triangle Tuvw. We get that

∑
Ti

ri = 1
2

∑
Ti

1 ≥ 1
2 m+

C .
Now depending on whether there are more negative mistakes or more positive mistakes,

we can choose the triangles appropriately, and hence account for at least a quarter of the
total mistakes in the clustering.

Lemma 4 along with Lemma 3 gives us the following corollary.

Corollary 5. Any clustering in which all clusters are δ-clean for some δ ≤ 1
4 has at most

4mOPT mistakes.

Lemma 6. There exists a clustering OPT′ in which each non-singleton cluster is δ-clean,

and mOPT′ ≤ ( 9
δ2 + 1)mOPT.

Proof: Consider the following procedure applied to the clustering of OPT and call the
resulting clustering OPT′.

Procedure δ-Clean-Up. Let COPT
1 , COPT

2 , . . . , COPT
k be the clusters in OPT.

1. Let S = ∅.
2. For i = 1, . . . , k do:

(a) If the number of δ
3 -bad vertices in COPT

i is more than δ
3 |COPT

i |, then, S = S ∪ COPT
i ,

C ′
i = ∅. We call this “dissolving” the cluster.

(b) Else, let Bi denote the δ
3 -bad vertices in COPT

i . Then S = S ∪ Bi and C ′
i = COPT

i \ Bi .

3. Output the clustering OPT′: C ′
1, C ′

2, . . . , C ′
k, {x}x∈S .

We will prove that mOPT and mOPT′ are closely related.
We first show that each C ′

i is δ clean. Clearly, this holds if C ′
i = ∅. Now if C ′

i is non-empty,
we know that |COPT

i | ≥ |C ′
i | ≥ |COPT

i |(1 − δ/3). For each point v ∈ C ′
i , we have:

|N+(v) ∩ C ′
i | ≥

(
1 − δ

3

)∣∣COPT
i

∣∣ −
(

δ

3

)∣∣COPT
i

∣∣
=

(
1 − 2

δ

3

)∣∣COPT
i

∣∣
> (1 − δ)|C ′

i |
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Similarly, counting positive neighbors of v in COPT
i ∩ C ′

i and outside COPT
i , we get,

|N+(v) ∩ C ′
i | ≤ δ

3

∣∣COPT
i

∣∣ + δ

3

∣∣COPT
i

∣∣
≤ 2δ

3

|C ′
i |

(1 − δ/3)
< δ|C ′

i | (as δ < 1)

Thus each C ′
i is δ-clean.

We now account for the number of mistakes. If we dissolve some COPT
i , then clearly

the number of mistakes associated with vertices in the original cluster COPT
i is at least

(δ/3)2|COPT
i |2/2. The mistakes added due to dissolving clusters is at most |COPT

i |2/2.
If COPT

i was not dissolved, then, the original mistakes in COPT
i were at least δ/3|COPT

i |
|Bi |/2. The mistakes added by the procedure is at most |Bi ||COPT

i |. Noting that 6/δ < 9/δ2,
the lemma follows.

For the clustering OPT′ given by the above lemma, we use C ′
i to denote the non-singleton

clusters and S to denote the set of singleton clusters. We will now describe Algorithm
Cautious that tries to find clusters similar to OPT′. Throughout the rest of this section, we
assume that δ = 1

44 .

Algorithm Cautious

1. Pick an arbitrary vertex v and do the following:

(a) Let A(v) = N+(v).
(b) (Vertex Removal Step): While ∃x ∈ A(v) such that x is 3δ-bad w.r.t. A(v), A(v) =

A(v) \ {x}.
(c) (Vertex Addition Step): Let Y = {y|y ∈ V, y is 7δ-good w.r.t. A(v)}. Let A(v) =

A(v) ∪ Y .3

2. Delete A(v) from the set of vertices and repeat until no vertices are left or until all
the produced sets A(v) are empty. In the latter case, output the remaining vertices as
singleton nodes.

Call the clusters output by algorithm Cautious A1, A2, . . . . Let Z be the set of singleton
vertices created in the final step. Our main goal will be to show that the clusters output by
our algorithm satisfy the property stated below.

Theorem 7. ∀ j, ∃i such that C ′
j ⊆ Ai . Moreover, each Ai is 11δ-clean.

In order to prove this theorem, we need the following two lemmas.

Lemma 8. If v ∈ C ′
i , where C ′

i is a δ-clean cluster in OPT′, then, any vertex w ∈ C ′
i is

3δ-good w.r.t. N+(v).
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Proof: As v ∈ Ci , |N+(v) ∩ C ′
i | ≥ (1 − δ)|C ′

i | and |N+(v) ∩ C ′
i | ≤ δ|C ′

i |. So, (1 − δ)|C ′
i | ≤

|N+(v)| ≤ (1 + δ)|C ′
i |. The same holds for w. Thus, we get the following two conditions.

|N+(w) ∩ N+(v)| ≥ (1 − 2δ)|C ′
i | ≥ (1 − 3δ)|N+(v)|

|N+(w) ∩ N+(v)| ≤ |N+(w) ∩ N+(v) ∩ C ′
i | + |N+(w) ∩ N+(v) ∩ C ′

i |
≤ 2δ|C ′

i | ≤ 2δ

1 − δ
|N+(v)| ≤ 3δ|N+(v)|

Thus, w is 3δ-good w.r.t. N+(v).

Lemma 9. Given an arbitrary set X, if v1 ∈ C ′
i and v2 ∈ C ′

j , i �= j, then v1 and v2 cannot
both be 3δ-good w.r.t. X.

Proof: Suppose that v1 and v2 are both 3δ-good with respect to X . Then, |N+(v1) ∩ X | ≥
(1−3δ)|X | and |N+(v2)∩ X | ≥ (1−3δ)|X |, hence |N+(v1)∩ N+(v2)∩ X | ≥ (1−6δ)|X |,
which implies that

|N+(v1) ∩ N+(v2)| ≥ (1 − 6δ)|X | (1)

Also, since v1 and v2 lie in δ-clean clusters C ′
i and C ′

j in OPT′ respectively, |N+(v1)\C ′
i | ≤

δ|C ′
i |, |N+(v2) \ C ′

j | ≤ δ|C ′
j | and C ′

i ∩ C ′
j = ∅. It follows that

|N+(v1) ∩ N+(v2)| ≤ δ(|C ′
i | + |C ′

j |) (2)

Now notice that |C ′
i | ≤ |N+(v1) ∩ C ′

i | + δ|C ′
i | ≤ |N+(v1) ∩ X ∩ C ′

i | + |N+(v1) ∩ X̄
∩C ′

i |+δ|C ′
i | ≤ |N+(v1)∩ X ∩C ′

i |+3δ|X |+δ|C ′
i | ≤ (1+3δ)|X |+δ|C ′

i |. So, |C ′
i | ≤ 1+3δ

1−δ
|X |.

The same holds for C ′
j . Using Eq. (2), |N+(v1) ∩ N+(v2)| ≤ 2δ 1+3δ

1−δ
|X |.

However, since δ < 1/9, we have 2δ(1+3δ) < (1−6δ)(1− δ). Thus the above equation
along with Eq. (1) gives a contradiction and the result follows.

This gives us the following important corollary.

Corollary 10. After every application of the removal step 1b of the algorithm, no two
vertices from distinct C ′

i and C ′
j can be present in A(v).

Now we go on to prove Theorem 7.

Proof of Theorem 7: We will first show that each Ai is either a subset of S or contains
exactly one of the clusters C ′

j . The first part of the theorem will follow.
We proceed by induction on i . Consider the inductive step. For a cluster Ai , let A′

i be
the set produced after the vertex removal phase such the cluster Ai is obtained by applying
the vertex addition phase to A′

i . We have two cases. First, we consider the case when
A′

i ⊆ S. Now during the vertex addition step, no vertex u ∈ C ′
j can enter A′

i for any j .
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This follows because, since C ′
j is δ-clean and disjoint from A′

i , for u to enter we need that
δ|C ′

j | ≥ (1 − 7δ)|A′
i | and (1 − δ)|C ′

j | ≤ 7δ|A′
i |, and these two conditions cannot be satisfied

simultaneously. Thus Ai ⊆ S.
In the second case, some u ∈ C ′

j is present in A′
i . However, in this case observe that from

Corollary 10, no vertices from C ′
k can be present in A′

i for any k �= j . Also, by the same
reasoning as for the case A′

i ⊆ S, no vertex from C ′
k will enter A′

i in the vertex addition
phase. Now it only remains to show that C ′

j ⊆ Ai . Note that all vertices of C ′
j are still present

in the remaining graph G \ (
⋃

�<i A�).
Since u was not removed from A′

i it follows that many vertices from C ′
j are present in A′

i .
In particular, |N+(u) ∩ A′

i | ≥ (1 − 3δ)|A′
i | and |N+(u) ∩ A′

i | ≤ 3δ|A′
i |. Now (1 − δ)|C ′

j | ≤
|N+(u)| implies that |C ′

j | ≤ 1+3δ
1−δ

|A′
i | < 2|A′

i |. Also, |A′
i ∩ C ′

j | ≥ |A′
i ∩ N+(u)| − |N+(u) ∩

C ′
j | ≥ |A′

i ∩ N+(u)| − δ|C ′
j |. So we have |A′

i ∩ C ′
j | ≥ (1 − 5δ)|A′

i |.
We now show that all remaining vertices from C ′

j will enter Ai during the vertex addition
phase. For w ∈ C ′

j such that w /∈ A′
i , |A′

i ∩ C ′
j | ≤ 5δ|A′

i | and |N+(w) ∩ C ′
j | ≤ δ|C ′

j | together

imply that |A′
i ∩ N+(w)| ≤ 5δ|A′

i | + δ|C ′
j | ≤ 7δ|A′

i |. The same holds for |A′
i ∩ N+(w)|. So

w is 7δ-good w.r.t. A′
i and will be added in the Vertex Addition step. Thus we have shown

that A(v) can contain C ′
j for at most one j and in fact will contain this set entirely.

Next, we will show that for every j , ∃i s.t. C ′
j ⊆ Ai . Let v chosen in Step 1 of the

algorithm be such that v ∈ C ′
j . We show that during the vertex removal step, no vertex from

N+(v) ∩ C ′
j is removed. The proof follows by an easy induction on the number of vertices

removed so far (r ) in the vertex removal step. The base case (r = 0) follows from Lemma 8
since every vertex in C ′

j is 3δ-good with respect to N+(v). For the induction step observe
that since no vertex from N+(v) ∩C ′

j is removed thus far, every vertex in C ′
j is still 3δ-good

w.r.t. to the intermediate A(v) (by mimicking the proof of Lemma 8 with N+(v) replaced
by A(v)). Thus A′

i contains at least (1−δ)|C ′
j | vertices of C ′

j at the end of the vertex removal
phase, and hence by the second case above, C ′

j ⊆ Ai after the vertex addition phase.
Finally we show that every non-singleton cluster Ai is 11δ-clean. We know that at the end

of the vertex removal phase, ∀x ∈ A′
i , x is 3δ-good w.r.t. A′

i . Thus, |N+(x) ∩ A′
i | ≤ 3δ|A′

i |.
So the total number of positive edges leaving A′

i is at most 3δ|A′
i |2. Since, in the vertex

addition step, we add vertices that are 7δ-good w.r.t. A′
i , the number of these vertices can

be at most 3δ|A′
i |2/(1 − 7δ)|A′

i | < 4δ|A′
i |. Thus |Ai | < (1 + 4δ)|A′

i |.
Since all vertices v in Ai are at least 7δ-good w.r.t. A′

i , N+(v) ∩ Ai ≥ (1 − 7δ)|A′
i | ≥

1−7δ
1+4δ

|Ai | ≥ (1 − 11δ)|Ai |. Similarly, N+(v) ∩ Ai ≤ 7δ|A′
i | ≤ 11δ|Ai |. This gives us the

result.

Now we are ready to bound the mistakes of A in terms of OPT and OPT′. Call mistakes
that have both end points in some clusters Ai and A j as internal mistakes and those that
have an end point in Z as external mistakes. Similarly in OPT′, we call mistakes among
the sets C ′

i as internal mistakes and mistakes having one end point in S as external mis-
takes. We bound mistakes of Cautious in two steps: the following lemma bounds external
mistakes.

Lemma 11. The total number of external mistakes made by Cautious is less than the
external mistakes made by OPT′.
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Proof: From Theorem 7, it follows that Z cannot contain any vertex v in some C ′
i . Thus,

Z ⊆ S. Now, any external mistakes made by Cautious are positive edges adjacent to vertices
in Z . These edges are also mistakes in OPT′ since they are incident on singleton vertices in
S. Hence the lemma follows.

Now consider the internal mistakes of A. Notice that these could be many more than
the internal mistakes of OPT′. However, we can at this point apply Lemma 5 on the graph
induced by V ′ = ⋃

i Ai . In particular, the bound on internal mistakes follows easily by
observing that 11δ ≤ 1/4, and that the mistakes of the optimal clustering on the graph
induced by V ′ is no more than mOPT. Thus,

Lemma 12. The total number of internal mistakes of Cautious is ≤ 4mOPT.

Summing up results from the Lemmas 11 and 12, and using Lemma 6, we get the following
theorem:

Theorem 13. mCautious ≤ ( 9
δ2 + 5)mOPT, with δ = 1

44 .

5. A PTAS for maximizing agreements

In this section, we give a PTAS for maximizing agreements: the total number of positive
edges inside clusters and negative edges between clusters.

As before, let OPT denote an optimal clustering and A denote our clustering. We will
abuse notation and also use OPT to denote the number of agreements in the optimal solution.
As noted in the introduction, OPT ≥ n(n − 1)/4. So it suffices to produce a clustering that
has at least OPT − εn2 agreements, which will be the goal of our algorithm. Let δ+(V1, V2)
denote the number of positive edges between sets V1, V2 ⊆ V . Similarly, let δ−(V1, V2)
denote the number of negative edges between the two. Let OPT(ε) denote the optimal
clustering that has all non-singleton clusters of size greater than εn.

Lemma 14. OPT(ε) ≥ OPT − εn2/2.

Proof: Consider the clusters of OPT of size less than or equal to εn and break them
apart into clusters of size 1. Breaking up a cluster of size s reduces our objective function
by at most ( s

2 ), which can be viewed as s/2 per node in the cluster. Since there are at
most n nodes in these clusters, and these clusters have size at most εn, the total loss is at
most ε n2

2 .

The above lemma means that it suffices to produce a good approximation to OPT(ε). Note
that the number of non-singleton clusters in OPT(ε) is less than 1

ε
. Let COPT

1 , . . . , COPT
k

denote the non-singleton clusters of OPT(ε) and let COPT
k+1 denote the set of points which

correspond to singleton clusters.
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5.1. A PTAS doubly-exponential in 1/ε

If we are willing to have a run time that is doubly-exponential in 1/ε, we can do this by
reducing our problem to the General Partitioning problem of Goldreich, Goldwasser, and
Ron (1998). The idea is as follows.

Let G+ denote the graph of only the + edges in G. Then, notice that we can express
the quality of OPT(ε) in terms of just the sizes of the clusters, and the number of edges
in G+ between and inside each of COPT

1 , . . . , COPT
k+1 . In particular, if si = |COPT

i | and ei, j =
δ+(COPT

i , COPT
j ), then the number of agreements in OPT(ε) is:

[
k∑

i=1

ei,i

]
+

[(
sk+1

2

)
− ek+1,k+1

]
+

[ ∑
i �= j

(si s j − ei, j )

]
.

The General Partitioning property tester of Goldreich, Goldwasser, and Ron (1998) allows
us to specify values for the si and ei j , and if a partition of G+ exists satisfying these
constraints, will produce a partition that satisfies these constraints approximately. We obtain
a partition that has at least OPT(ε) − εn2 agreements. The property tester runs in time
exponential in ( 1

ε
)k+1 and polynomial in n.

Thus if we can guess the values of these sizes and number of edges accurately, we would
be done. It suffices, in fact, to only guess the values up to an additive ±ε2n for the si , and
up to an additive ±ε3n2 for the ei, j , because this introduces an additional error of at most
O(ε). So, at most O((1/ε3)1/ε2

) calls to the property tester need to be made. Our algorithm
proceeds by finding a partition for each possible value of si and ei, j and returns the partition
with the maximum number of agreements. We get the following result:

Theorem 15. The General Partitioning algorithm returns a clustering of graph G which
has more than OPT − εn2 agreements with probability at least 1 − δ. It runs in time
eO(( 1

ε
)1/ε) × poly(n, 1

δ
).

5.2. A singly-exponential PTAS

We will now describe an algorithm that is based on the same basic idea of random sampling
used by the General Partitioning algorithm. The idea behind our algorithm is as follows:
Let {Oi } be the clusters in OPT. We select a small random subset W of vertices and cluster
them correctly into {Wi } with Wi ⊂ Oi ∀i , by enumerating all possible clusterings of W .
Since this subset is picked randomly, with a high probability, for all vertices v, the density of
positive edges between v and Wi will be approximately equal to the density of positive edges
between v and Oi . So we can decide which cluster to put v into, based on this information.
However this is not sufficient to account for edges between two vertices v1 and v2, both of
which do not belong to W . So, we consider a partition of the rest of the graph into subsets
Ui of size m and try out all possible clusterings {Ui j } of each subset, picking the one that
maximizes agreements with respect to {Wi }. This gives us the PTAS.

Firstly note that if |COPT
k+1 | < εn, then if we only consider the agreements in the graph

G \ COPT
k+1 , it affects the solution by at most εn2. For now, we will assume that |COPT

k+1 | < εn
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and will present the algorithm and analysis based on this assumption. Later we will discuss
the changes required to deal with the other case.

In the following algorithm ε is a performance parameter to be specified later. Let m =
883×40

ε10 (log 1
ε
+ 2), k = 1

ε
and ε′ = ε3

88 . Let pi denote the density of positive edges inside the
cluster COPT

i and ni j the density of negative edges between clusters COPT
i and COPT

j . That is,
pi = δ+(COPT

i , COPT
i )/( |COPT

i |
2 ) and ni j = δ−(COPT

i , COPT
j )/(|COPT

i ||COPT
j |). Let W ⊂ V be a

random subset of size m.
We begin by defining a measure of goodness of a clustering {Ui j } of some set Ui with

respect to a fixed partition {Wi }, that will enable us to pick the right clustering of the set Ui .
Let p̂i and n̂i j be estimates of pi and ni j respectively, based on {Wi }, to be defined later in
the algorithm.

Definition 2. Ui1, . . . , Ui(k+1) is ε′-good w.r.t. W1, . . . , Wk+1 if it satisfies the following
for all 1 ≤ j, � ≤ k:

(1) δ+(Ui j , W j ) ≥ p̂ j (
W j

2
) − 18ε′m2

(2) δ−(Ui j , W�) ≥ n̂ j�|W j ||W�| − 6ε′m2

and, for at least (1 − ε′)n of the vertices x and ∀ j ,
(3) δ+(Ui j , x) ∈ δ+(W j , x) ± 2ε′m.

Our algorithm is as follows:

Algorithm Divide&Choose:

1. Pick a random subset W ⊂ V of size m.
2. For all partitions W1, . . . , Wk+1 of W do

(a) Let p̂i = δ+(Wi , Wi )/( |Wi |
2 ), and n̂i j = δ−(Wi , W j )/|Wi ||W j |.

(b) Let q = n
m − 1. Consider a random partition of V \ W into U1, . . . , Uq , such that

∀i , |Ui | = m.
(c) For all i do:

Consider all (k + 1)-partitions of Ui and let Ui1, . . . , Ui(k+1) be a partition that is
ε′-good w.r.t. W1, . . . , Wk+1 (by Definition 2 above). If there is no such partition,
choose Ui1, . . . , Ui(k+1) arbitrarily.

(d) Let A j = ⋃
i Ui j for all i . Let a({Wi }) be the number of agreements of this clustering.

3. Let {Wi } be the partition of W that maximizes a({Wi }). Return the clusters {Ai }, {x}x∈Ak+1

corresponding to this partition of W .

We will concentrate on the “right” partition of W given by Wi = W ∩ COPT
i , ∀i . We will

show that the number of agreements of the clustering A1, . . . , Ak+1 corresponding to this
partition {Wi } is at least OPT(ε) − 2εn2 with a high probability. Since we pick the best
clustering, this gives us a PTAS.

We will begin by showing that with a high probability, for most values of i , the partition of
Ui s corresponding to the optimal partition is good with respect to {Wi }. Thus the algorithm
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will find at least one such partition. Next we will show that if the algorithm finds good
partitions for most Ui , then it achieves at least OPT − O(ε)n2 agreements.

We will need the following results from probability theory. Please refer to Alon and
Spencer (1992) for a proof.

Fact 1. Let H (n, m, l) be the hypergeometric distribution with parameters n, m and l
(choosing l samples from n points without replacement with the random variable taking a
value of 1 on exactly m out of the n points). Let 0 ≤ ε ≤ 1. Then

Pr

[∣∣∣∣H (n, m, l) − lm

n

∣∣∣∣ ≥ εlm

n

]
≤ 2e− ε2lm

2n

Fact 2. Let X1, X2, . . . , Xn be mutually independent random variables such that |Xi −
E[Xi ]| < m for all i . Let S = ∑n

i=1 Xi , then

Pr [|S − E[S]| ≥ a] ≤ 2e− a2

2nm2

We will also need the following lemma:

Lemma 16. Let Y and S be arbitrary disjoint sets and Z be a set picked from S at random.
Then we have the following:

Pr

[∣∣∣∣δ+(Y, Z ) − |Z |
|S| δ

+(Y, S)

∣∣∣∣ > ε′|Y ||Z |
]

≤ 2e
−ε′2 |Z |

2

Proof: δ+(Y, Z ) is a sum of |Z | random variables δ+(Y, v) (v ∈ Z ), each bounded above
by |Y | and having expected value δ+(Y,S)

|S| .
Thus applying Fact 2, we get

Pr[|δ+(Y, Z ) − |Z |δ+(Y, S)/|S|| > ε′|Z ||Y |] ≤ 2e−ε′2|Z |2|Y |2/2|Z ||Y |2 ≤ 2e−ε′2|Z |/2

Now notice that since we picked W uniformly at random from V , with a high probability
the sizes of Wi s are in proportion to |COPT

i |. The following lemma formalizes this.

Lemma 17. With probability at least 1 − 2ke−ε′2εm/2 over the choice of W, ∀ i, |Wi | ∈
(1 ± ε′) m

n |COPT
i |.

Proof: For a given i , using Fact 1 and since |COPT
i | ≥ εn,

Pr

[∣∣∣∣|Wi | − m

n

∣∣COPT
i

∣∣∣∣∣∣ > ε′ m
n

∣∣COPT
i

∣∣] ≤ 2e−ε′2m|COPT
i |/2n ≤ 2e−ε′2εm/2

Taking a union bound over the k values of i we get the result.

Using Lemma 17, we show that the computed values of p̂i and n̂i j are close to the true
values pi and ni j respectively. This gives us the following two lemmas.
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Lemma 18. If Wi ⊂ COPT
i and W j ⊂ COPT

j , i �= j, then with probability at least
1− 4e−ε′2εm/4 over the choice of W, δ+(Wi , W j ) ∈ m2

n2 δ+(COPT
i , COPT

j ) ± 3ε′m2.

Proof: We will apply Lemma 16 in two steps. First we will bound δ+(Wi , W j ) in terms
of δ+(Wi , COPT

j ) by fixing Wi and considering the process of picking W j from COPT
j .

Using Wi for Y , W j for Z and COPT
j for S in Lemma 16, we get the following.4

Pr

[∣∣∣∣δ+(Wi , W j ) − m

n
δ+(

Wi , COPT
j

)∣∣∣∣ > ε′m2

]
≤ 2e−ε′2εm/4

We used the fact that m ≥ |W j | ≥ εm/2 with high probability. Finally, we again apply
Lemma 16 to bound δ+(Wi , COPT

j ) in terms of δ+(COPT
i , COPT

j ). Taking Y to be COPT
j , Z to

be Wi and S to be COPT
i , we get

Pr

[∣∣∣∣δ+(
Wi , COPT

j

) − m

n
δ+(

COPT
i , COPT

j

)∣∣∣∣ > 2ε′ m
n

∣∣COPT
i

∣∣∣∣COPT
j

∣∣] ≤ 2e−ε′2εm/4

Again we used the fact that |Wi | < 2m
n |COPT

i | with high probability. So, with probability at
least 1−4e−ε′2εm/4, we have, |m

n δ+(Wi , COPT
j )− m2

n2 δ+(COPT
i , COPT

j )| < 2ε′ m2

n2 |COPT
i ||COPT

j | <

2ε′m2 and |δ+(Wi , W j ) − m
n δ+(Wi , COPT

j )| < ε′m2. This gives us

Pr

[∣∣∣∣δ+(Wi , W j ) − m2

n2
δ+(

COPT
i , COPT

j

)∣∣∣∣ > 3ε′m2

]
≤ 4e−ε′2εm/4

Lemma 19. With probability at least 1− 8
ε′2 e−ε′3εm/4 over the choice of W, p̂i ≥ pi −9ε′.

Proof: Note that we cannot use an argument similar to the previous lemma directly here
since we are dealing with edges inside the same set. Instead we use the following trick.

Consider an arbitrary partition of COPT
i into 1

ε′ sets of size ε′n′ each where n′ = |COPT
i |.

Let this partition be COPT
i,1 , . . . , COPT

i,1/ε′ and let Wi, j = Wi ∩ COPT
i, j . Let m ′ = |Wi |. Now

consider δ+(Wi, j1 , Wi, j2 ). Using an argument similar to the previous lemma, we get that
with probability at least 1 − 4e−ε′3εm/4,

δ+(
Wi, j1 , Wi, j2

) ∈
∣∣Wi, j1

∣∣∣∣Wi, j2

∣∣∣∣COPT
i, j1

∣∣∣∣COPT
i, j2

∣∣δ+(
COPT

i, j1 , COPT
i, j2

) ± 2ε′∣∣Wi, j1

∣∣∣∣Wi, j2

∣∣

Noting that
|Wi, j1 ||Wi, j2 |
|COPT

i, j1
||COPT

i, j2
| < (1 + 3ε′) m ′2

n′2 , with probability at least 1 − 4e−ε′3εm/4, we get,

Pr

[∣∣∣∣δ+(
Wi, j1 , Wi, j2

) − m ′2

n′2 δ+(
COPT

i, j1 , COPT
i, j2

)∣∣∣∣ < 8ε′∣∣Wi, j1

∣∣∣∣Wi, j2

∣∣] ≥ 1 − 8e−ε′3εm/4
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This holds for every value of j1 and j2 with probability at least 1 − 8
ε′2 e−ε′3εm/4. Now,

δ+(Wi , Wi ) ≥
∑
j1< j2

δ+(
Wi, j1 , Wi, j2

)

≥ 1

1 + 8ε′
m ′2

n′2
∑
j1< j2

δ+(
COPT

i, j1 , COPT
i, j2

)

≥ 1

1 + 8ε′
m ′2

n′2

(
pi

n′2

2
− 1

ε′
ε′2n′2

2

)

≥ (pi − 9ε′)
|Wi |2

2

Now let Ui j = Ui ∩COPT
j . The following lemma shows that for all i , with a high probability

all Ui j s are ε′-good w.r.t. {Wi }. So we will be able to find ε′-good partitions for most Ui s.

Lemma 20. For a given i, let Ui j = Ui ∩ COPT
j , then with probability at least 1 − 32k 1

ε′2
× e−ε′3εm/4 over the choice of Ui , ∀ j ≤ k, {Ui j } are ε′-good w.r.t. {W j }.

Proof: Consider the partition {Ui j } of Ui . Using an argument similar to Lemma 18, we get
|δ+(Ui j , Wl) − m2

n2 δ+(COPT
j , COPT

l )| ≤ 3ε′m2 with probability at least 1 − 4e−ε′2εm/4. Also,
again from Lemma 18, |δ+(W j , Wl) − m2

n2 δ+(COPT
j , COPT

l )| ≤ 3ε′m2. So, |δ+(Ui j , Wl) −
δ+(W j , Wl)| ≤ 6ε′m2 with probability at least 1 − 8e−ε′2εm/4. This gives us the second
condition of Definition 2.

Similarly, using Lemma 19, we obtain the first condition. The failure probability in this
step is at most 16 1

ε′2 e−ε′3εm/4.
Now, consider δ+(x, Ui j ). This is a sum of m {0, 1} random variables (corresponding to

picking Ui from V ), each of which is 1 iff the picked vertex lies in COPT
j and is adjacent to

x . Applying Chernoff bound, we get,

Pr

[∣∣∣∣δ+(x, Ui j ) − m

n
δ+(

x, COPT
j

)∣∣∣∣ > ε′m
]

≤ 2e−ε′2m/2

Similarly we have,

Pr

[∣∣∣∣δ+(x, W j ) − m

n
δ+(

x, COPT
j

)∣∣∣∣ > ε′m
]

≤ 2e−ε′2m/2.

So we get, Pr[|δ+(x, Ui j ) − δ+(x, W j )| > 2ε′m] ≤ 4e−ε′2m/2.
Note that, here we are assuming that W and Ui are picked independently from V . However,

picking Ui from V \ W is similar to picking it from V since the collision probability is
extremely small.

Now, the expected number of points that do not satisfy condition 3 for some Ui j is
4ne−ε′2m/2. The probability that more than ε′n of the points fail to satisfy condition 3 for
one of the Ui j s in Ui is at most k 1

ε′n 4ne−ε′2m/2 ≤ 4k
ε′ e−ε′2m/2. This gives us the third condition.
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The total probability that some Ui does not satisfy the above conditions is at most

8e−ε′2εm/4 + 16
1

ε′2 e−ε′3εm/4 + 4k

ε′ e−ε′2m/2 ≤ 32
1

ε′2 e−ε′3εm/4

Now we can bound the total number of agreements of A1, . . . , Ak, {x}x∈Ak+1 in terms of
OPT:

Theorem 21. If |COPT
k+1 | < εn, then A ≥ OPT − 3εn2 with probability at least 1 − ε.

Proof: From Lemma 20, the probability that we were not able to find an ε′-good partition
of Ui w.r.t. W1, . . . , Wk is at most 32 1

ε′2 e−ε′3εm/4. By our choice of m, this is at most ε2/4.
So, with probability at least 1−ε/2, at most ε/2 of the Ui s do not have an ε′-good partition.

In the following calculation of the number of agreements, we assume that we are able
to find good partitions of all Ui s. We will only need to subtract at most εn2/2 from this
value to obtain the actual number of agreements, since each Ui can affect the number of
agreements by at most mn.

We start by calculating the number of positive edges inside a cluster A j . These are given
by

∑
a

∑
x∈A j

δ+(Uaj , x). Using the fact that Uaj is good w.r.t. {Wi } (condition (3)),∑
x∈A j

δ+(Uaj , x) ≥
∑
x∈A j

(δ+(W j , x) − 2ε′m) − ε′n|Uaj |

=
∑

b

δ+(W j , Ubj ) − 2ε′m|A j | − ε′n|Uaj |

≥
∑

b

{
p̂ j

|W j |2
2

− 18ε′m2

}
− 2ε′m|A j | − ε′n|Uaj |

The last inequality follows from the fact that Ubj is good w.r.t. {Wi } (condition (1)). From
Lemma 17,

∑
x∈A j

δ+(Uaj , x) ≥
∑

b

{
m2

n2
p̂ j (1 − ε′)2

∣∣COPT
j

∣∣2

2
− 18ε′m2

}
− 2ε′m|A j | − ε′n|Uaj |

≥ m

n
p̂ j (1 − ε′)2

∣∣COPT
j

∣∣2

2
− 18ε′mn − 2ε′m|A j | − ε′n|Uaj |

Thus we bound
∑

a δ+(A j , Uaj ) as
∑

a δ+(A j , Uaj ) ≥ p̂ j (1−ε′)2 |COPT
j |2
2 −18ε′n2−3ε′n|A j |.

Now using Lemma 19, the total number of agreements is at least

∑
j

[
p̂ j (1 − ε′)2

∣∣COPT
j

∣∣2

2

]
− 18ε′n2k − 3ε′n2

≥
∑

j

[
(p j − 9ε′)(1 − ε′)2

∣∣COPT
j

∣∣2

2

]
− 18ε′n2k − 3ε′n2

Hence, A+ ≥ OPT+ − 11ε′kn2 − 21ε′n2k ≥ OPT+ − 32ε′n2k.
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Similarly, consider the negative edges in A. Using Lemma 18 to estimate δ−(Uai , Ubj ),
we get,∑

ab

δ−(Uai , Ubj ) ≥ δ−(
COPT

i , COPT
j

) − 9ε′n2 − 2ε′n|Ai | − ε′n|A j |

Summing over all i < j , we get the total number of negative agreements is at least OPT− −
12ε′k2n2.

So we have, A ≥ OPT − 44ε′k2n2 = OPT − εn2/2. However, since we lose εn2/2 for
not finding ε′-good partitions of every Ui (as argued before), εn2 due to COPT

k+1 , and εn2/2
for using k = 1

ε
we obtain A ≥ OPT − 3εn2.

The algorithm can fail in four situations:

1. More than ε/2 Ui s do not have an ε′-good partition. However, this happens with proba-
bility at most ε/2.

2. Lemma 17 does not hold for some Wi . This happens with probability at most 2ke−ε′2εm/2.
3. Lemma 19 does not hold for some i . This happens with probability at most 8k

ε′2 e−ε′3εm/4

4. Lemma 18 does not hold for some pair i, j . This happens with probability at most
4k2e−ε′2εm/4.

Observe that the latter three probabilities sum up to at most ε/2 by our choice of m. So, the
algorithm succeeds with probability greater than 1 − ε.

Now we need to argue for the case when |COPT
k+1 | ≥ εn. Notice that in this case, using an

argument similar to Lemma 17, we can show that |Wk+1| ≥ εm
2 with a very high probability.

This is good because, now with a high probability, Ui(k+1) will also be ε′-good w.r.t. Wk+1

for most values of i . We can now count the number of negative edges from these vertices
and incorporate them in the proof of Theorem 21 just as we did for the other k clusters.
So in this case, we can modify algorithm Divide&Choose to consider ε′-goodness of the
(k + 1)th partitions as well. This gives us the same guarantee as in Theorem 21. Thus our
strategy will be to run Algorithm Divide&Choose once assuming that |COPT

k+1 | ≥ εn and then
again assuming that |COPT

k+1 | ≤ εn, and picking the better of the two outputs. One of the two
cases will correspond to reality and will give us the desired approximation to OPT.

Now each Ui has O(km) different partitions. Each iteration takes O(nm) time. There
are n/m Ui s, so for each partition of W , the algorithm takes time O(n2km). Since there
are km different partitions of W , the total running time of the algorithm is O(n2k2m) =
O(n2eO( 1

ε10 log ( 1
ε

))). This gives us the following theorem:

Theorem 22. For any δ ∈ [0, 1], using ε = δ
3 , Algorithm Divide&Choose runs in time

O(n2eO( 1
δ10 log ( 1

δ
))) and with probability at least 1 − δ

3 produces a clustering with number of
agreements at least OPT − δn2.

6. Random noise

Going back to our original motivation, if we imagine there is some true correct clustering
OPT of our n items, and that the only reason this clustering does not appear perfect is that
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our function f (A, B) used to label the edges has some error, then it is natural to consider
the case that the errors are random. That is, there is some constant noise rate ν < 1/2
and each edge, independently, is mislabeled with respect to OPT with probability ν. In
the machine learning context, this is called the problem of learning with random noise. As
can be expected, this is much easier to handle than the worst-case problem. In fact, with
very simple algorithms one can (w.h.p.) produce a clustering that is quite close to OPT,
much closer than the number of disagreements between OPT and f . The analysis is fairly
standard (much like the generic transformation of Kearns (1998) in the machine learning
context, and even closer to the analysis of Condon and Karp for graph partitioning (Condon
& Karp, 1999)). In fact, this problem nearly matches a special case of the planted-partition
problem of McSherry (2001). Shamir and Tsur (2002) independently consider the random
noise problem in a slightly more general framework—they consider different amounts of
noise for positive and negative edges. Their results are similar in spirit as ours. We present
our analysis anyway since the algorithms are so simple.

One-sided noise. As an easier special case, let us consider only one-sided noise in which
each true “+” edge is flipped to “−” with probability ν. In that case, if u and v are in
different clusters of OPT, then |N+(u) ∩ N+(v)| = 0 for certain. But, if u and v are in the
same cluster, then every other node in the cluster independently has probability (1 − ν)2

of being a neighbor to both. So, if the cluster is large, then N+(u) and N+(v) will have
a non-empty intersection with high probability. So, consider clustering greedily: pick an
arbitrary node v, produce a cluster Cv = {u : |N+(u) ∩ N+(v)| > 0}, and then repeat on
V − Cv . With high probability we will correctly cluster all nodes whose clusters in OPT
are of size ω(log n). The remaining nodes might be placed in clusters that are too small, but
overall the number of edge-mistakes is only Õ(n).

Two-sided noise. For the two-sided case, it is technically easier to consider the symmetric
difference of N+(u) and N+(v). If u and v are in the same cluster of OPT, then every node
w �∈ {u, v} has probability exactly 2ν(1−ν) of belonging to this symmetric difference. But,
if u and v are in different clusters, then all nodes w in OPT(u) ∪ OPT(v) have probability
(1 − ν)2 + ν2 = 1 − 2ν(1 − ν) of belonging to the symmetric difference. (For w �∈
OPT(u) ∪ OPT(v), the probability remains 2ν(1 − ν).) Since 2ν(1 − ν) is a constant less
than 1/2, this means we can confidently detect that u and v belong to different clusters
so long as |OPT(u) ∪ OPT(v)| = ω(

√
n log n). Furthermore, using just |N+(v)|, we can

approximately sort the vertices by cluster sizes. Combining these two facts, we can w.h.p.
correctly cluster all vertices in large clusters, and then just place each of the others into a
cluster by itself, making a total of Õ(n3/2) edge mistakes.

7. Extensions

So far in the paper, we have only considered the case of edge weights in {+, −}. Now
we consider real valued edge weights. To address this setting, we need to define a cost
model—the penalty for placing an edge inside or between clusters.

One natural model is a linear cost function. Specifically, let us assume that all edge weights
lie in [−1, +1]. Then, given a clustering, we assign a cost of 1−x

2 if an edge of weight x is
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within a cluster and a cost of 1+x
2 if it is placed between two clusters. For example, an edge

weighing 0.5 incurs a cost of 0.25 if it lies inside a cluster and 0.75 otherwise. A 0−weight
edge, on the other hand, incurs a cost of 1/2 no matter what.

Another natural model is to consider weighted disagreements. That is, a positive edge
incurs a penalty equal to its weight if it lies between clusters, and zero penalty other-
wise, and vice versa for negative edges. The objective in this case is to minimize the
sum of weights of positive edges between clusters and negative edges inside clusters.
A special case of this problem is edge weights lying in {−1, 0, +1}. Zero-weight edges
incur no penalty, irrespective of the clustering, and thus can be thought of as missing
edges.

In this section we show that our earlier results generalize to the case of linear cost functions
for the problem of minimizing disagreements. However, we do not have similar results for
the case of weighted disagreements or agreements. We give evidence that this latter case is
hard to approximate.

Linear cost functions

First we consider the linear cost function on [−1, +1] edges. It turns out, as we show in
the following theorem, that any algorithm that finds a good clustering in a graph with +1
or −1 edges also works well in this case.

Theorem 23. Let A be an algorithm that produces a clustering on a graph with +1 and
−1 edges with approximation ratio ρ. Then, we can construct an algorithm A′ that achieves
a (2ρ + 1)-approximation on a [−1, 1]−graph, under a linear cost function.

Proof: Let G be a [−1, 1]—graph, and let G ′ be the graph with +1 and −1 edges obtained
when we assign a weight of 1 to all positive edges in G and −1 to all the negative edges (0
cost edges are weighted arbitrarily). Let OPT be the optimal clustering on G and OPT′ the
optimal clustering on G ′. Also, let m ′ be the measure of cost (on G ′) in the {+, −} penalty
model and m in the new [−1, 1] penalty model.

Then, m ′
OPT′ ≤ m ′

OPT ≤ 2mOPT. The first inequality follows by design. The latter in-
equality holds because the edges on which OPT incurs a greater penalty according to m ′

in G ′ than according to m in G, are either the positive edges between clusters or negative
edges inside a cluster. In both these situations, OPT incurs a cost of at least 1/2 in m and at
most 1 in m ′.

Our algorithm A′ simply runs A on the graph G ′ and outputs the resulting clustering A.
So, we have, m ′

A ≤ ρm ′
OPT′ ≤ 2ρmOPT.

Now we need to bound m A in terms of m ′
A. Notice that, if a positive edge lies between

two clusters in A, or a negative edge lies inside a cluster, then the cost incurred by A for
these edges in m ′ is 1 while it is at most 1 in m. So, the total cost due to such mistakes is
at most m ′

A. On the other hand, if we consider cost due to positive edges inside clusters,
and negative edges between clusters, then OPT also incurs at least this cost on those edges
(because cost due to these edges can only increase if they are clustered differently). So cost
due to these mistakes is at most mOPT.
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So we have,

m A ≤ m ′
A + mOPT ≤ 2ρmOPT + mOPT

= (2ρ + 1)mOPT

Interestingly, the above theorem holds generally for a class of cost functions that we call
unbiased. An unbiased cost function assigns a cost of at least 1

2 to positive edges lying
between clusters and negative edges inside clusters, and a cost of at most 1

2 otherwise. A
0−weight edge always incurs a cost of 1

2 as before. For example, one such function is 1+x3

2
if an edge of weight x lies between clusters and 1−x3

2 otherwise.

Weighted agreements/disagreements

Next we consider minimizing weighted disagreements or maximizing weighted agreements.
Consider first, the special case of edge weights lying in {−1, 0, +1}. Notice that, as before,
if a perfect clustering exists, then it is easy to find it, by simply removing all the − edges
and producing each connected component of the resulting graph as a cluster. The random
case is also easy if defined appropriately. However, our approximation techniques do not
appear to go through. We do not know how to achieve a constant-factor, or even logarithmic
factor, approximation for minimizing disagreements. Note that we can still use our Divide
& Choose algorithm to achieve an additive approximation of εn2 for agreements. However,
this does not imply a PTAS in this variant, because OPT might be o(n2).

Now, suppose we allow arbitrary real-valued edge weights, lying in [−∞, +∞]. For
example, the edge weights might correspond to the log odds5 of two documents belonging
to the same cluster. It is easy to see that the problem of minimizing disagreements for this
variant is APX-hard, by reducing the problem of minimum multiway cut to it. Specifically, let
G be a weighted graph with special nodesv1, . . . , vk . The problem of minimum multiway cut
is that of finding the smallest cut that separates these special nodes. This problem is known
to be APX-hard (Garey & Johnson, 2000). We convert this problem into a disagreement
minimization problem as follows: among each pair of special nodes vi and v j , we put an
edge of weight −∞. Then, notice that any clustering algorithm will definitely put each of
v1, . . . , vk into separate clusters. The number (or total weight) of disagreements is equal
to the value of the cut separating the special nodes. Thus, any algorithm that achieves an
approximation ratio of ρ for minimizing disagreements, would achieve an approximation
ratio of ρ for minimum multiway cut problem. We get the following:

Theorem 24. The problem of minimizing disagreements on weighted graphs with un-
bounded weights is APX-hard.

Note that the above result is pretty weak. It does not preclude the possibility of achieving
a constant approximation, similar to the one for {+, −}-weighted graphs. However we have
reason to believe that unlike before, we cannot obtain a PTAS for maximizing agreements
in this case. We show that a PTAS for maximizing agreements gives a polynomial time
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procedure for O(nε) coloring a 3 − colorable graph. While it is unknown whether this
problem is NP-Hard, the problem is well-studied and the best known result is due to Blum
and Karger (1997), who give a polynomial time algorithm to Õ(n3/14) color a 3-colorable
graph.

Theorem 25. Given a PTAS for the problem of maximizing agreements, we can use the
algorithm to obtain an algorithm for O(nε) coloring a 3 − colorable graph, for any ε > 0.

Proof: Let G = (V, E) be a 3 colorable graph, and let m = |E | and n = |V |. Let K be
an n vertex complete graph obtained from G as follows: an edge e of K has weight −1 if
e is an edge in G, and has a positive weight of δm/( n

2 ) otherwise. Here δ is a parameter to
be specified later.

If we choose each color class as a cluster, it is easy to see that the resulting clustering
agrees on the m negative weight edges and on at least 3( n/3

2 ) positive weight edges. Thus
the total weight of agreements in the optimal clustering is at least m(1+ δ/3). Let us invoke
the PTAS for maximizing agreements with ε′ = δ/30, then we obtain a clustering which
has cost of agreements at least m(1 + δ/3)/(1 + δ/30) ≥ m(1 + δ/5).

We now claim that the size of largest cluster is at least n/5. Suppose not. Then the weight
of positive agreements can be at most δm/( n

2 ) · 5 · ( n/5
2 ) which is about δm/5. Since the

total weight of negative edges is m, the total weight of agreements for the clustering cannot
be more than m(1 + δ/5), violating the guarantee given by the PTAS. Hence, there exists a
cluster of size at least n/5 in this clustering. Call this cluster C .

Now observe that since the PTAS returns a clustering with at least (1 + δ/5)m agree-
ments, and the total weight of all positive edges is at most δm, the total weight of negative
agreements is at least (1 − 4δ

5 )m. This implies that C contains at most 4δ
5 m negative weight

edges. Thus the density of negative weight edges in C is at most 4δm
5 /( n/5

2 ) ≈ 20δ · m/( n
2 ).

That is, the cluster C has an edge density of at most about 20δ times that of G and size at
least n/5.

We can now apply this procedure recursively to C (since C is also 3-colorable). After
2 logb n such recursive steps, where b = 1

20δ
, we obtain a set of density at most 1/n2 times

that of C (and hence independent). Call this independent set I . Note that the size of I is at
least n/(52 logb n). Choosing δ such that b = 52/ε, it is easy to verify that I has size at least
n1−ε.

Now we can remove I from G and iterate on G − I (since G − I is also 3-colorable). It
is easy to see that this procedure gives an O(nε) coloring of G.

8. Conclusions

In this paper, we have presented a constant-factor approximation for minimizing disagree-
ments, and a PTAS for maximizing agreements, for the problem of clustering vertices in a
fully-connected graph G with {+, −} edge labels. In Section 7 we extended some of our
results to the case of real-valued labels, under a linear cost metric. As mentioned before,
an interesting open question is to construct good approximations for minimizing agree-
ments and maximizing agreements for the case of edge weights lying in {−1, 0, +1}, or to
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prove hardness of approximation for this case. Another interesting question is to determine
whether the lower bound given by erroneous triangles is tight to within a small constant
factor.6 Such a fact might lead to a better approximation for minimizing disagreements.

8.1. Subsequent work

Following the initial publication of this work, several better approximations and lower
bounds have been developed for minimizing disagreements and maximizing agreements
for general weighted graphs. Demaine and Immorlica (2003) and Emanuel and Fiat (2003)
independently developed log-factor approximations for the problem of minimizing dis-
agreements. The latter show that this problem is equivalent to the minimum multiway cut
problem. The approximation for minimizing disagreements in the unweighted case was
improved to a factor of 4 by Charikar, Guruswami, and Wirth (2003). They also give a
0.7664-approximation for maximizing agreements in a general weighted graph, which was
recently improved to 0.7666 by Swamy (2004). Charikar et. al. also improve our hardness
of approximation result for minimizing disagreements to 29/28, and give a hardness of
approximation of 115/116 for maximizing agreements.
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Notes

1. A PTAS (polynomial-time approximation scheme) is an algorithm that for any given fixed ε > 0 runs in
polynomial time and returns an approximation within a (1+ ε) factor. Running time may depend exponentially
(or worse) on 1/ε, however.

2. Not counting trivial cases, like finding the best linear separator in a 2-dimensional space, that have only
polynomially-many hypotheses to choose from. In these cases, agnostic learning is easy since one can just
enumerate them all and choose the best.

3. Observe that in the vertex addition step, all vertices are added in one step as opposed to in the vertex removal
step.

4. We are assuming that W is a set of size m chosen randomly from n with replacement, since m is a constant,
we will have no ties with probability 1 − O(n−1).

5. For example, if the classifier assigns a probability p to two documents being the same, the log odds could be
defined as log p

1−p .
6. Interestingly, we were unable to come up with an example for which this factor is larger than 2. The latter is

achieved in a star-like topology where all edges incident to a “root” vertex are positive and all other edges are
negative.
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