ﬁi‘ Machine Learning, 56, 35-60, 2004
‘ (© 2004 Kluwer Academic Publishers. Manufactured in The Netherlands.

Optimal Time Bounds for Approximate Clustering*

RAMGOPAL R. METTU ramgopal @cs.dartmouth.edu
Department of Computer Science, Dartmouth College, Hanover, NH 03755, USA

C. GREG PLAXTON plaxton @cs.utexas.edu
Department of Computer Science, University of Texas at Austin, Austin, TX 78712, USA

Editors: Nina Mishra and Rajeev Motwani

Abstract. Clustering is a fundamental problem in unsupervised learning, and has been studied widely both as
a problem of learning mixture models and as an optimization problem. In this paper, we study clustering with
respect to the k-median objective function, a natural formulation of clustering in which we attempt to minimize the
average distance to cluster centers. One of the main contributions of this paper is a simple but powerful sampling
technique that we call successive sampling that could be of independent interest. We show that our sampling
procedure can rapidly identify a small set of points (of size just O(k log 7)) that summarize the input points for the
purpose of clustering. Using successive sampling, we develop an algorithm for the k-median problem that runs in
O(nk) time for a wide range of values of k and is guaranteed, with high probability, to return a solution with cost at
most a constant factor times optimal. We also establish a lower bound of €2(nk) on any randomized constant-factor
approximation algorithm for the k-median problem that succeeds with even a negligible (say ﬁ) probability.
The best previous upper bound for the problem was O(nk), where the O-notation hides polylogarithmic factors
in n and k. The best previous lower bound of Q2(nk) applied only to deterministic k-median algorithms. While we
focus our presentation on the k-median objective, all our upper bounds are valid for the k-means objective as well.
In this context our algorithm compares favorably to the widely used k-means heuristic, which requires O(nk) time
for just one iteration and provides no useful approximation guarantees.

Keywords: k-means, k-median, unsupervised clustering, approximation algorithms, discrete location theory

1. Introduction

Clustering is a fundamental problem in unsupervised learning that has found application in
many problem domains. Approaches to clustering based on learning mixture models as well
as minimizing a given objective function have both been well-studied (Arora & Kannan,
2001; Charikar & Guha, 1999; Charikar et al., 1999; Dasgupta, 1999; Duda & Hart, 1973;
Lindsay, 1995). In recent years, there has been significant interest in developing clustering
algorithms that can be applied to the massive data sets that arise in problem domains such

*This material is based upon work supported by the National Science Foundation under Grants CCR-9821053
and CCR-0310970. The first author was supported by grants to Bruce Donald while at Dartmouth College: from
the National Institutes of Health (RO1 GM-65982), and the NSF (IIS-9906790, EIA-0102710, EIA-0102712,
EIA-9818299, and EIA-9802068, EIA-0305444). A preliminary version of this work appears in Proceedings of
the 18th Annual Conference on Uncertainty in Artificial Intelligence, Edmonton, Canada, August 2002.

36 R.R. METTU AND C. G. PLAXTON

as bioinformatics and information retrieval on the World Wide Web. Such data sets pose
an interesting challenge in that clustering algorithms must be robust as well as fast. In this
paper, we study the k-median problem and obtain an algorithm that is time optimal for most
values of k and with high probability produces a solution whose cost is within a constant
factor of optimal.

A natural technique to cope with a large set of unlabeled data is to take a random sample
of the input in the hopes of capturing the essence of the input and subsituting the sample
for the original input. Ideally we hope that the sample size required to capture the relevant
information in the input is significantly less than the original input size. However, in many
situations naive sampling does not always yield the desired reduction in data. For exam-
ple, for the problem of learning Gaussians, this limitation manifests itself in the common
assumption that the mixing weights are large enough so that a random sample of the data
will capture a nonnegligible amount of the mass in a given Gaussian. Without this assump-
tion, the approximation guarantees of recent algorithms for learning Gaussians (Arora &
Kannan, 2001; Dasgupta, 1999) no longer hold.

A major contribution of our work is a simple yet powerful sampling technique that
we call successive sampling. We show that our sampling technique is an effective data
reduction technique for the purpose of clustering in the sense it captures the essence of the
input with a very small subset (just O(k log %), where k is the number of clusters) of the
points. In fact, it is this property of our sampling technique that allows us to develop an
algorithm for the k-median problem that has a running time of O (nk) for k between log n and
n/log? n and, with high probability, produces a solution with cost within a constant factor of
optimal.

Given a set of points and associated interpoint distances, let the median of the set be the
point in the set that minimizes the weighted sum of distances to all other points in the set.
(Remark: The median is essentially the discrete analog of the centroid, and is also called the
medoid (Manning & Schiitze, 1999).) We study a well-known clustering problem where the
goal is to partition n weighted points into k sets such that the sum, over all points x, of the
weight of x multiplied by the distance from x to the median of set containing x is minimized.
This clustering problem is a variant of the classic k-median problem; the k-median problem
asks us to mark k of the points such that the sum over all points x of the weight of x times
the distance from x to the nearest marked point is minimized. It is straightforward to see that
the optimal objective function values for the k-median problem and its clustering variant
are equal, and furthermore that we can convert a solution to the k-median problem into
an equal-cost solution to its clustering variant in O(nk) time. We establish a lower bound
of Q(nk) time on any randomized constant-factor approximation algorithm for either the
k-median problem or its clustering variant. Therefore, any constant-factor approximation
algorithm for the k-median problem implies a constant-factor approximation algorithm with
the same asymptotic time complexity for the clustering variant. For this reason, we focus
only on the k-median problem in developing our upper bounds.

It is interesting to note that algorithms for the k-median problem can be used for a certain
model-based clustering problem as well. The recent work of Arora and Kannan (2001)
formulates an approximation version of the problem of learning arbitrary Gaussians. Given
points from a Gaussian mixture, they study the problem of identifying a set of Gaussians

OPTIMAL TIME BOUNDS FOR APPROXIMATE CLUSTERING 37

whose log-likelihood is within a constant factor of the log-likelihood of the original mixture.
Their solution to this learning problem is to reduce it to the k-median problem and apply an
existing constant-factor approximation algorithm for k-median. Thus, our techniques may
also have applicability in model-based clustering.

In this paper, we restrict our attention to the metric version of the k-median problem,
in which the n input points are assumed to be drawn from a metric space. That is, the
interpoint distances are nonnegative, symmetric, satisfy the triangle inequality, and the
distance between points x and y is zero if and only if x = y. For the sake of brevity, we
write “k-median problem” to mean “metric k-median problem” throughout the remainder of
the paper. It is well-known that the k-median problem is NP-hard; furthermore, it is known
to be NP-hard to achieve an approximation ratio better than 1 + % (Jain, Mahdian, & Saberi,
2002). Thus, we focus our attention on developing a k-median algorithm that produces a
solution with cost within a constant factor of optimal.

In light of the practical importance of clustering we are also motivated to ask how input
characteristics such as the point weights and interpoint distances affect the complexity of
the k-median problem and its clustering variant. Weighted points are useful in a number
of applications; we ask the following natural question: Does allowing inputs with arbitrary
point weights incur a substantial time penalty? We note that even for moderate weights, say
O (n?), the naive approach of viewing a weighted point as a collection of unit-weight points
increases the input size dramatically. For certain applications, the interpoint distances may
lie in a relatively small range. Thus we are motivated to ask: Does constraining distances to
a small range admit substantially faster algorithms? We resolve both of the above questions
for a wide range of input parameters by establishing a time bound of ®(nk) for the k-median
problem and its clustering variant. Thus, in many cases having large point weights does
not incur a substantial time penalty, and, we cannot hope to develop substantially faster
algorithms even when the interpoint distances lie in a small range.

1.1. Comparison to k-means

Even before the hardness results mentioned above were established, heuristic approaches
to clustering such as the k-means heuristic were well-studied (see, e.g., Duda & Hart, 1973;
MacQueen, 1967; Manning & Schiitze, 1999). The k-means heuristic is commonly used in
practice due to ease of implementation, speed, and good empirical performance. Indeed, one
iteration of the k-means heuristic requires just O(nk) time (Duda & Hart, 1973); typical
implementations of the k-means heuristic make use of a small to moderate number of
iterations.

However, it is easy to construct inputs with just a constant number of points that, for
certain initializations of k-means, yield solutions whose cost is not within any constant
factor of the optimal cost. For example, suppose we have 5 unit-weight points in R* where
three points are colored blue and two are colored red. Let the blue points have coordinates
0, 1), (0, 0), and (0, —1), and let the red points have coordinates (— D, 0) and (D, 0). For
k = 3, the optimal solution has cost 1, whereas the k-means heuristic, when initialized
with the blue points, converges to a solution with cost 2D (the blue points). Since D can be
arbitrarily large, in this case the k-means heuristic does not produce a solution within any

38 R.R. METTU AND C. G. PLAXTON

constant factor of optimal. Indeed, a variety of heuristics for initializing k-means have been
previously proposed, but no such initialization procedure is known to ensure convergence
to a constant-factor approximate solution.

The reader may wonder whether, by not restricting the k output points to be drawn from
the n input points, the k-means heuristic is able to compute a solution of substantially lower
cost than would otherwise be possible. The reduction in the cost is at most a factor of two
since given a k-means solution with cost C, it is straightforward to identify a set of k input
points with cost at most 2C.

The k-means heuristic typically uses an objective function that sums squared distances
rather than distances. The reader may wonder whether this variation leads to a substantially
different optimization problem. It is straightforward to show that squaring the distances of
a metric space yields a distance function that is “near-metric” in the sense that all of the
properties of a metric space are satisfied except that the triangle inequality only holds to
within a constant factor (2, in this case). It is not difficult to show that all of our upper bounds
hold, up to constant factors, for such near-metric spaces. Thus, if our algorithm is used as
the initialization procedure for k-means, the cost of the resulting solution is guaranteed to
be within a constant factor of optimal. Our algorithm is particularly well-suited for this
purpose because its running time, being comparable to that of a single iteration of k-means,
does not dominate the overall running time.

1.2. Our results

Before stating our results we introduce some useful terminology that we use throughout this
paper. Let U denote the set of all points in a given instance of the k-median problem; we
assume that U is nonempty. A configuration is anonempty subset of U. An m-configuration
is a configuration of size at most m. For any points x and y in U, let w(x) denote the
nonnegative weight of x, let d(x, y) denote the distance between x and y, and let d(x, X) be
defined as minycx d(x,). The cost of any configuration X, denoted cost (X), is defined as
> ey d(x, X) - w(x). We denote the minimum cost of any m-configuration by OPT,,. For
brevity, we say that an m-configuration with cost at most a-OPT is an (m, a)-configuration.
A k-median algorithm is (m, a)-approximate if it produces an (m, a)-configuration. A k-
median algorithm is a-approximate if it is (k, a)-approximate. In light of the practical
importance of clustering in the application areas mentioned previously, we also consider
the given interpoint distances and point weights in our analysis. Let R; denote the ratio
of the diameter of U (i.e., the maximum distance between any pair of points in U) to the
minimum distance between any pair of distinct points in U. Let R,, denote the ratio of the
maximum weight of any point in U to the minimum nonzero weight of any point in U.
(Remark: We can assume without loss of generality that at least one point in U has nonzero
weight since the problem is trivial otherwise.) Letr; = 1+ |log R;] andr, = 14 [log R,].
Our main result is a randomized O(1)-approximate k-median algorithm that runs in

0((n+rdrw 10g %) max{k, logn}+(krW)2) (1)

w

OPTIMAL TIME BOUNDS FOR APPROXIMATE CLUSTERING 39

time. Note that if £k = Q(logn), krf) = O(n), and ryry, log % = O(n), this time bound
simplifies to O(nk). Furthermore, these constraints simplify if we make the standard as-
sumption that the interpoint distances and point weights are polynomially bounded. Then,
we only need k = Q(logn) and k = O(ﬁ) to obtain a time bound of O(nk). Our al-
gorithm succeeds with high probability, that is, for any positive constant £, we can adjust
constant factors in the definition of the algorithm to achieve a failure probability less than
ne.

We also establish a matching €2(nk) lower bound on the running time of any randomized
constant factor approximation algorithm for the k-median problem with a nonnegligible
success probability (e.g., at least ﬁ), subject to the requirement that R; exceeds n/k by
a sufficiently large constant factor relative to the desired approximation ratio. To obtain
tight bounds for the clustering variant, we also prove an 2(nk) time lower bound for any
O(1)-approximate algorithm, but we only require that R; be a sufficiently large constant
relative to the desired approximation ratio. Additionally, our lower bounds assume only that
Ry, = O(1).

The key building block underlying our k-median algorithm is a novel sampling technique
that we call “successive sampling”. The basic idea is to take a random sample of the points,
set aside a constant fraction of the n points that are “close” to the sample, and recurse on
the remaining points. We show that this technique rapidly produces a configuration whose
cost is within a constant factor of optimal. Specifically, for the case of uniform weights, our
successive sampling algorithm yields a (k log 7, O(1))-configuration with high probability
in O(n max{k, logn}) time.

In addition to this sampling result, our algorithms rely on an extraction technique due to
Guha et al. (2000) that uses a black box O(1)-approximate k-median algorithm to compute
a (k, O(1))-configuration from any (rm, O(1))-assignment. The black box algorithm that we
use is the linear-time deterministic online median algorithm of Mettu and Plaxton (2003).

In developing our randomized algorithm for the k-median problem we first consider
the special case of uniform weights, that is, where R,, = r,, = 1. For this special case
we provide a randomized algorithm running in O(n max{k, logn}) time subject to the
constraint 4 log ¥ = O(n). The uniform-weights algorithm is based directly on the two
building blocks discussed above: We apply the successive sampling algorithm to obtain
(klog %, O(1))-configuration and then use the extraction technique to obtain a (k, O(1))-
configuration. We then use this algorithm to develop a k-median algorithm for the case
of arbitrary weights. Our algorithm begins by partitioning the » points into r,, power-of-2
weight classes and applying the uniform-weights algorithm within each weight class (i.e.,
we ignore the differences between weights belonging to the same weight class, which are
less than a factor of 2 apart). The union of the r,, k-configurations thus obtained is an
(rwk, O(1))-configuration. We then make use of our extraction technique to obtain a (k,
O(1))-configuration from this (r,,k, O(1))-configuration.

1.3. Problem definitions

Without loss of generality, throughout this paper we consider a fixed set of n points, U, with
an associated distance function d : U x U — R and an associated nonnegative demand

40 R.R. METTU AND C. G. PLAXTON

function w : U — R. We assume that d is a metric, that is, d is nonnegative, symmetric,
satisfies the triangle inequality, and d(x, y) = 0 iff x = y. For a configuration X and a set
of points Y, we let cost (X, Y) = ery d(x, X) - w(x) and we let cost (X) = cost (X, U).
For any set of points X, we let w(X) denote erx w(x).

We define an assignment as a function from U to U. For any assignment 7, we let
7(U) denote the set {r(x) | x € U}. We refer to an assignment t with |[t(U)| < m
as a m-assignment. Given an assignment t, we define the cost of 7, denoted c (1), as
eru d(x, t(x))- w(x). Itis straighforward to see that for any assignment t, cost (7(U)) <
c (7). For brevity, we say that an assignment t with |7(U)| < m and cost at most a - OPT}
is an (m, a)-assignment. For an assignment v and a set of points X, we let ¢ (7, X) =
Y rexdx, T(x)) - w(x).

The input to the k-median problem is (U, d, w) and an integer k, 0 < k < n. Since our
goal is to obtain a (k, O(1))-configuration, we can assume without loss of generality that
all input points have nonzero weight. We note that for all m, 0 < m < n, removing zero
weight points from an m-configuration at most doubles its cost. To see this, consider an m-
configuration X; we can obtain an m-configuration X’ by replacing each zero weight point
with its closest nonzero weight point. Using the triangle inequality, it is straightforward to
see that cost (X /) < 2cost (X). This argument can be used to show that any minimum-cost
set of size m contained in the set of nonzero weight input points has cost at most twice
OPT,,. We also assume that the input weights are scaled such that the smallest weight is 1;
thus the input weights lie in the range [1, R,]. For output, the k-median problem requires us
to compute a minimum-cost k-configuration. The uniform weights k-median problem is the
special case in which w(x) is a fixed real for all points x. The output is also a minimum-cost
k-configuration.

1.4. Previous work

The first O(1)-approximate k-median algorithm was given by Charikar et al. (1999). Sub-
sequently, there have been several improvements to the approximation ratio (see, e.g.,
(Charikar & Guha, 1999) for results and citations). In this section, we focus on the results
that are most relevant to the present paper; we compare our results with other recent ran-
domized algorithms for the k-median problem. The first of these results is due to Indyk,
who gives a randomized (O(k), O(1l))-approximate algorithm for the uniform weights k-
median problem (Indyk, 1999) that runs in O(nk/8%) time, where 8 is the desired failure
probability.

Thorup (2001) gives randomized O(1)-approximate algorithms for the k-median, k-
center, and facility location problems in a graph. For these problems, we are not given a
metric distance function but rather a graph on the input points with m positively weighted
edges from which the distances must be computed; all of the algorithms in Thorup (2001)
run in O(m) time. Thorup (2001) also gives an O(nk) time randomized constant-factor
approximation algorithm for the k-median problem that we consider. As part of this k-
median algorithm, Thorup gives a sampling technique that also consists of a series of
sampling steps but produces an (O((k log? n)/¢), 2 + £)-configuration for any positive real
e with 0 < ¢ < 0.4, and is only guaranteed to succeed with probability 1/2.

OPTIMAL TIME BOUNDS FOR APPROXIMATE CLUSTERING 41

For the data stream model of computation, Guha et al. (2000) give a single-pass O(1)-
approximate algorithm for the k-median problem that runs in O (nk) time and requires O (n®)
space for a positive constant €. They also establish a lower bound of Q(nk) for deterministic
O(1)-approximate k-median algorithms.

Mishra, Oblinger, and Pitt (2001) show that in order to find a (k, O(1))-configuration,
it is enough to take a sufficiently large sample of the input points and use it as input to a
black-box O(1)-approximate k-median algorithm. To compute a (k, O(1))-configuration
with an arbitrarily high constant probability, the required sample size is O(Rjk). In the
general case, the size of the sample may be as large as n, but depending on the diameter of
the input metric space, this technique can yield running times of o(n?) (e.g., if the diameter
is o(n2/ k)).

1.5. Outline

The rest of this paper is organized as follows. In Sections 2 and 3, we present and analyze
our successive sampling algorithm. In Section 4, we make use of our sampling algorithm, in
conjunction with an extraction result, to develop an O(1)-approximate uniform weights k-
median algorithm. Then, in Section 5, we use the uniform weights algorithm as a subroutine
to develop an O(1)-approximate k-median algorithm for the case of arbitrary weights. We
present our lower bounds for the k-median problem and its clustering variant in Section 6.
We offer some concluding remarks in Section 7.

2. Approximate clustering via successive sampling

Our first result is a successive sampling algorithm that constructs an assignment that has
cost O(OPT}) with high probability. We make use of this algorithm to develop our uniform
weights k-median algorithm. (Remark: We assume arbitrary weights for our proofs since
the arguments generalize easily to the weighted case; furthermore, the weighted result may
be of independent interest.) Informally speaking, the algorithm works in sampling steps.
In each step we take a small sample of the points, set aside a constant fraction the weight
whose constituent points are each close to the sample, and recurse on the remaining points.
Since we eliminate a constant fraction of the weight at each sampling step, the number of
samples taken is logarithmic in the total weight. We are able to show that using the samples
taken, it is possible to construct an assignment whose cost is within a constant factor of
optimal with high probability. For the uniform weights k-median problem, our sampling
algorithm runs in O(n max{k, logn}) time. (We give a k-median algorithm for the case of
arbitrary weights in Section 5.)

Throughout the remainder of this paper, we use the symbols «, 8, and k' to denote real
numbers appearing in the definition and analysis of our successive sampling algorithm. The
value of & and k’ should be chosen to ensure that the failure probability of the algorithm
meets the desired threshold. (See the paragraph preceding Lemma 3.3 for discussion of the
choice of « and k’.) The asymptotic bounds established in this paper are valid for any choice
of Bsuchthat0 < 8 < 1.

42 R.R. METTU AND C. G. PLAXTON

We also make use of the following definitions:

— A ball A is a pair (x, r), where the center x of A belongs to U, and the radius r of A is
a nonnegative real.

— Given a ball A = (x,r), we let Points(A) denote the set {y € U | d(x,y) < r}.
However, for the sake of brevity, we tend to write A instead of Points(A). For example,
we write “x € A” and “A U B” instead of “x € Points(A)” and “Points(A) U Points(B)”,
respectively.

— For any set X and nonnegative real », we define Balls(X, r) as the union of all balls (x, r)
such that x € X.

2.1. Algorithm

The following algorithm takes as input an instance of the k-median problem and produces an
assignment o such that with high probability, ¢ (o) = O(cost (X)) for any k-configuration
X.

Let Uy = U, and let Sy = @. While |U;| > ak’:

Construct a set of points S; by sampling (with replacement) |k’ | times from U;, where at
each sampling step the probability of selecting a given point is proportional to its weight.
For each point in U;, compute the distance to the nearest point in S;.

Using linear-time selection on the distances computed in the previous step, compute the
smallest real v; such that w(Balls(S;, v;)) > Bw(U;). Let C; = Balls(S;, v;).

For each x in C;, choose a point y in S; such that d(x, y) < v; and let o(x) = y.

— Let Ul'+1 = U,' \C,

Note that the loop terminates since w(U;+;) < w(U;) for all i > 0. Let ¢ be the total
number of iterations of the loop. Let C; = S; = U,. By the choice of C; in each iteration
and the loop termination condition, ¢ is O(log %). For the uniform demands k-median
problem, ¢ is simply O(log %). From the first step it follows that |o(U)| is O(tk’).

The first step of the algorithm can be performed in O(nk’) time over all iterations. In
each iteration the second and third steps can be performed in time O(|U;| k') by using a
(weighted) linear time selection algorithm. For the uniform demands k-median problem,
this computation requires O(nk’) time over all iterations. The running times of the fourth
and fifth steps are negligible. Thus, for the uniform demands k-median problem, the total
running time of the above algorithm is O (nk’).

3. Analysis of the successive sampling algorithm

The goal of this section is to establish that, with high probability, the output o of our
successive sampling algorithm has cost O (OPT}). We formalize this statement in Theorem 1
below; this result is used to analyze the algorithms of Sections 4 and 5. The proof of the
theorem makes use of Lemma 3.3, established in Section 3.1, and Lemmas 3.5 and 3.11,
established in Section 3.2.

OPTIMAL TIME BOUNDS FOR APPROXIMATE CLUSTERING 43

Theorem 1. With high probability, c () = O(cost (X)) for any k-configuration X.

Proof: The claim of Lemma 3.3 holds with high probability if we set K’ = max{k, logn}
and o and B appropriately large. The theorem then follows from Lemmas 3.3, 3.5 and
3.11. O

Before proceeding, we give some intuition behind the proof of Theorem 1. The proof
consists of two main parts. First, Lemma 3.3 shows that with high probability, for i such that
0 <i <t,the value v; computed by the algorithm in each iteration is at most twice a certain
number ;. We define u; to be the minimum real for which there exists a k-configuration
X contained in U; with the property that a certain constant fraction, say %, of the weight of
U, is within distance u; from the points of X. We note that i; can be used in establishing
a lower bound on the cost of an optimal k-configuration for U;. By the definition of u;,
for any k-configuration Y, a constant fraction, say %, of the weight of U; has distance at
least p; from the points in Y. To prove Lemma 3.3, we consider an associated balls-in-bins
problem. Foreach i, 1 <i < ¢, we consider a k-configuration X that satisfies the definition
of u; and for each point in X, view the points in U; within distance u; as a weighted
bin. Then, we view the random samples in the first step of the sampling algorithm as ball
tosses into these weighted bins. We show that with O(k) such ball tosses, a high constant
fraction of the total weight of the bins is covered with high probability. Since the value of
v; is determined by the random samples, it is straightforward to conclude that v; is within
twice ;.

It may seem that Theorem 1 follows immediately from Lemma 3.3, since for each i, we
can approximate p; within a factor of 2 with v;, and any optimal k-configuration can be
charged a distance of at least w; for a constant fraction of the weight in U;. However, this
argument is not valid since for j > i, U is contained in U;; thus an optimal k-configuration
could be charged p; and p ; for the same point. For the second part of the proof of Theorem 1
we provide a more careful accounting of the cost of an optimal k-configuration. Specifically,
in Section 3.2, we exhibit mutually disjoint sets with which we are able to establish a valid
lower bound on the cost of an optimal k-configuration. That is, for each i, 1 <i < ¢, we
exhibit a subset of U; that has a constant fraction of the total weight of U; and for which an
optimal k-configuration must be charged a distance of at least x;. Lemma 3.11 formalizes
this statement and proves a lower bound on the cost of an optimal k-configuration, and
Lemma 3.5 completes the proof of Theorem 1 by providing an upper bound on the cost
of o.

3.1. Balls and bins analysis

The proof of Lemma 3.3 below relies on bounding the failure probability of a certain family
of random experiments. We begin by bounding the failure probability of a simpler family of
random experiments related to the well-known coupon collector problem. For any positive
integer m and any nonnegative reals a and b, let us define f(m, a, b) as the probability
that more than am bins remain empty after [b] balls are thrown at random (uniformly and
independently) into m bins. Techniques for analyzing the coupon collector problem (see

44 R.R. METTU AND C. G. PLAXTON

e.g., Motwani & Raghavan, 1995) can be used to obtain sharp estimates on f(m, a, D).
However, the following simple upper bound is sufficient for our purposes.

Lemma3.1. For any positive real e, there exists a positive real A such that for all positive
integers m and any real b > m, we have f(m, e, Ab) < e b

Proof: Imagine throwing the [Ab] balls one at a time into the m bins, and consider a throw
to be successful if it lands in a previously empty bin. Thus f(m, e, Ab) is the probability
that the number of successful throws is less than (1 — &)m. While the number of successful
throws is less than (1 — ¢)m, each successive throw has success probability greater than ¢.
It follows that an upper bound on f(m, €, Ab) is given by the probability of obtaining at
most (1 — &)m successes in [Ab] independent Bernoulli trials, each of which has success
probability e. The claim then follows by choosing A sufficiently large and applying the tail
bound on the binomial distribution given by Eq. (4) in Appendix A. O

We now develop a weighted generalization of the preceding lemma. For any positive
integer m, nonnegative reals a and b, and m-vector v = (ry, ..., r,—1) of nonnegative reals
r;, we define define g(m, a, b, v) as follows. Consider a set of m bins numbered from 0
to m — 1 where bin i has associated weight r;. Let R denote the total weight of the bins.
Assume that each of [b] balls is thrown independently at random into one of the m bins,
where bin i is chosen with probability ;/R, 0 < i < m. We define g(m, a, b, v) as the
probability that the total weight of the empty bins after all of the balls have been thrown is
more than aR.

Lemma 3.2. For any positive real ¢ there exists a positive real A such that for all positive
integers m and any real b > m, we have g(m, &, Ab,v) < e~" for all m-vectors v of
nonnegative reals.

Proof: Fix e, b, m, and v. As in the paragraph preceding the lemma statement in Section 2,
letv = (rg,...,rn_1) and let R denote the sum of the r;’s.

We will use Lemma 3.1 to deduce the existence of a suitable choice of A that depends only
on ¢. Our strategy for reducing the claim to its unweighted counterpart will be to partition
almost all of the weight associated with the m weighted bins into ®(m) “sub-bins” of equal
weight. Specifically, we let s denote % and for each i we partition the weight r; associated
with bini into |] complete sub-bins of weight s and one incomplete sub-bin of weight less
than s. Furthermore, when a ball is thrown into a particular bin, we imagine that the throw
is further refined to a particular sub-bin of that bin, where the probability that a particular
sub-bin is chosen is proportional to its weight.

Note that the total weight of the incomplete sub-bins is less than ¢ R/2. Furthermore,
we can assume without loss of generality that & < 1, since the claim holds vacuously for
& > 1. It follows that less than half of the total weight R lies in incomplete sub-bins. Thus,
by Eq. (4) in Appendix A, for any positive real A’ we can choose A sufficiently large to
ensure that the following claim holds with probability of failure at most e~*/2 (i.e., half the
desired failure threshold appearing in the statement of the lemma): At least A'b of the [Ab]
balls are thrown into complete sub-bins.

OPTIMAL TIME BOUNDS FOR APPROXIMATE CLUSTERING 45

Let m’ denote the number of complete sub-bins. Since at least half of the total weight
R belongs to complete sub-bins, we have m/e < m’ < 2m/e. Accordingly, by a suitable
application of Lemma 3.1, we can establish the existence of a positive real A" (depending
only on ¢) such that, after at least A’ balls have landed in complete sub-bins, the probability
that the number of empty complete sub-bins exceeds em’/2 is at most e~ /2.

From the claims of the two preceding paragraphs, we can conclude that there exists a A
(depending only on ¢) such that the following statement holds with probability of failure
at most e ~?: The number of empty complete sub-bins is at most em’/2. Note that the total
weight of the empty complete sub-bins is at most s - 5 - 2?’" = e¢R/2. As argued earlier, the
total weight of the incomplete sub-bins is also at most ¢ R/2. Thus, there exists a positive
real A such that after [Ab] ball tosses, the probability that the total weight of the empty bins
is more than &R is at most e, O

For the remainder of this section, we fix a positive real y such that § <y < 1. For 0 <
i <t,let u; denote the minimum nonnegative real such that there exists a k-configuration
X for which the following properties hold: (1) the total weight of all points x in U; such
that d(x, X) < w; is at least yw(U;); (2) the total weight of all points x in U; such
that d(x, X) > w; is at least (1 — y)w(U;). (Note that such a u; is guaranteed to exist.)
Lemma 3.3 below establishes the main probabilistic claim used in our analysis of the
algorithm of Section 2.1. We note that the lemma holds with high probability by taking
k' = max{k, [logn]} and « and B appropriately large.

Lemma 3.3. For any positive real &, there exists a sufficiently large choice of « such that
v; <2u; foralli, 0 <i <t, with probability of failure at most e~ 5,

Proof: Fix i and let X denote a k-configuration such that w(Balls(X, u;)) > yw(U;). Let
us define each point y in U; to be good if it belongs to Balls(X, j;), and bad otherwise.
Let G denote the set of good points. We associate each good point y with its closest point
in X, breaking ties arbitrarily. For each point x in X, let A, denote the set of good points
associated with x; note that the sets A, form a partition of G. Recall that S; denotes the ith
set of sample points chosen by the algorithm. For any x in X, we say that S; covers A, iff
S; N A, is nonempty. For any point y, we say that S; covers y iff there exists an x in X such
that y belongs to A, and S; covers A,. Let G’ denote the set of points covered by S;; note
that G’ C G.

We will establish the lemma by proving the following claim: For any positive reals ¢
and &, there exists a sufficiently large choice of « such that w(G’) > (1 — &)w(G) with
probability of failure at most e =¥, This claim then implies the lemma because f (the factor
appearing in the definition of v;) is less than y (the factor appearing in the definition of ;)
and for all points y covered by S;, d(y, S;) < 2u;.

It remains to prove the preceding claim. First, note that the definition of u; implies
that at least a y fraction of the total weight is associated with good points. Thus, Eq. (4)
in Appendix A implies that for any positive reals A and &, there exists a sufficiently large
choice of « such that at least Ak’ of the |ak’| samples associated with the construction of
S; are good with probability of failure at most e ¢ /2.

46 R.R. METTU AND C. G. PLAXTON

To ensure that w(G’) is at least (1 — &)w(G) with failure probability ek /2, we can
apply Lemma 3.2 by viewing each sample associated with a good point in S; as a ball toss
and each set A, as a bin with weight w(A,). The claim then follows. O

3.2. Upper and lower bounds on cost

Recall that Lemma 3.3 alone is not sufficient to establish Theorem 1 (see the text preceding
Section 3.1 for an informal discussion). In this section, we give the analysis needed to
complete the proof of Theorem 1 by providing an upper bound on the cost of the assignment
o as well a lower bound on the cost of an optimal k-configuration. Lemmas 3.4 and 3.5
establish the upper bound on ¢ (o), while the rest of the section is dedicated to establishing
the lower bound on the cost of an optimal k-configuration.

Lemma 3.4. Foralli suchthat0 <i <t, c(o, C;) < v;w(C)).
Proof: Observe that

c(o,Cy) = Z d(x,o((x)) - wx)

xeC;

<> vi-w(x)

XEC,'

= v;w(Cy),
where the second step follows from the definition of C; and the construction of o(x). O

Lemma 3.5.

c(0) < Y viw(C)

o<i<t

Proof: Observe that ¢ (0) = Y o_;, ¢ (0, C;) < Y i, viw(C;). The first step follows
since the sets C;, 0 < i < ¢, form a partition of U. The second step follows from Lemma 3.4.
O

‘We now focus on establishing a lower bound on the cost of an optimal k-configuration.
Throughout the remainder of this section we fix an arbitrary k-configuration X. For all i
such that 0 < i < t, we let F; denote the set {x € U; | d(x, X) > u;}, and for any integer
m > 0, we let F/" denote F; \ (Uj-oF;+jm) and we let G; ,, denote the set of all integers j
such that 0 < j <t and j is congruent to i modulo m.

Lemma 3.6. Leti, j, £, and m be integers suchthatQ) <€ <t,m > 0,1 # j, andi and
Jj belong to Gy .. Then F" N F;” = .

OPTIMAL TIME BOUNDS FOR APPROXIMATE CLUSTERING 47

Proof: Without loss of generality, assume that i < j. Then, by definition, F/" = F; \
(Us=0 Firsm). Since FJ'-" C Fjand j =i + sm for some positive integer s, it follows that
F" and F;}" do not intersect. O

Lemma 3.7. Let i be an integer such that 0 < i <t and let Y be a subset of F;. Then
w(F;) > (1 —y)w(U;) and cost (X, Y) > pujw(Y).

Proof: First, note that by the definition of w;, w(F;) is at least (1 — y)w(U;). By the
definition of F;, d(y, X) > p; for any y in F;. Thus cost (X, Y) = Z‘,ey d(y, X) - w(y) >
wiw(Y). » O

Lemma 3.8. For all integers £ and m such that0 < { <t andm > 0,

cost (X, Uieg,, F{") = Z wiw(F").

iEG({m
Proof: By Lemma 3.6, for all £ and m such that0 < ¢ < andm > O,

cost (X U,-Ege,mFi”’) = Z cost (X Flm) .

ieGem

By Lemma 3.7, cost (X, F") > p;w(F;"), and the claim follows. O

For the remainder of the section, let r = [log_g ((1 — y)/3)].
Lemma 3.9. Foralli suchthat0 <i <t, w(Fy,) < jw(F)).

Proof: Note that w(F,,) < w(Uis,) < (1 — B w(U;) < %w(m), where the last
step follows from Lemma 3.7. The claim then follows by the definition of 7. O

Lemma 3.10. Foralli suchthat0 <i <t, w(F/) > @
Proof: Observe that
w(F) = w(F; \ Uj=oFi4)r)

F;
w(ﬂ)—z%)

v

j>0
- w(F;)
- 2

bl

where the second step follows from Lemma 3.9. O

48 R.R. METTU AND C. G. PLAXTON

Lemma 3.11. For any k-configuration X,

l—y
cost(X) > = Z miw(C;).

0<i<t

Proof: Letf = arg maXO§j<r{ZieG . w(F})} and fix a k-configuration X. Then cost (X)
is at least "

cost (X UieG,, Ftr) =

Y% V
| M

S
E g
)
5 =

I\

|
|‘M

E
=4
5

where the first step follows from Lemma 3.8, the second step follows from averaging and
the choice of ¢, the third step follows from Lemma 3.10, the fourth step follows from
Lemma 3.7, and the last step follows since C; C U;. a

4. An efficient algorithm for the case of uniform weights

In this section we obtain a fast k-median algorithm for the case of uniform weights. Our
algorithm makes use of the sampling algorithm of Section 2, a black-box k-median algorithm
and a slight generalization of algorithm Small-Space of Guha et al. (2000) that we call
Modified-Small-Space. Section 4.1 below gives the analysis required to generalize algorithm
Small-Space of Guha et al. In Section 4.2 we describe our uniform weights algorithm in
detail, including a discussion of the approximation bound and running time.

4.1. Algorithm Modified-Small-Space

In this subsection we establish that a modified version of algorithm Small-Space of Guha
et al. (2000) is O(1)-approximate. Our version of algorithm Small-Space, which we refer
to as Modified-Small-Space, and its analysis are used to establish the results in Sections 4
and 5. We note that the changes to the algorithm of Guha et al. are trivial; the discussion
in this section is included for completeness.

We now discuss the modification to algorithm Small-Space of Guha et al. and the changes
required in the analysis. In Step 2 of algorithm Small-Space, £ O(k)-configurations are

OPTIMAL TIME BOUNDS FOR APPROXIMATE CLUSTERING 49

computed. Then, in Step 3, a weight function is constructed based on these configurations.
In algorithm Modified-Small-Space, we instead compute £ assignments in Step 2 and use
them in Step 3 to construct a weight function. Theorem 2.4 of Guha et al. (2000) proves the
approximation bound for algorithm Small-Space. In order to prove the same approximation
bound for algorithm Modified-Small-Space, we need a slight generalization of Guha et al.
(2000, Theorem 2.3), which is used in the proof of Guha et al. (2000, Theorem 2.4). The
rest of their analysis, including the proof of Theorem 2.4, remains unchanged.

This section is organized as follows. We first present algorithm Modified-Small-Space.
We then restate Theorem 2.4 of Guha et al. for algorithm Modified-Small-Space as
Theorem 2 below and give the required generalization of Theorem 2.3 with Lemma 4.1
below.

‘We also make use of some additional definitions in this section. For any assignment t, we
define w, as follows: For a point x in 7(U), w.(x) = Zyerlm w(y). For any assignment
T and set of points X, we let ¢;(X) denote err(U) dx, X) - wq(x).

Algorithm Modified-Small-Space(U)

1. Divide U into ¢ disjoint pieces, Uy, ..., Up_;.

2. Foreachi, 0 <i < ¢, compute an assignment t; : U; — U;. Let T be an assignment

that is defined as follows: If x is in U;, then t(x) = 7;(x).

Let U’ denote t(U) and let w, be the weight function on U’.

4. Compute a k-configuration using U’ as the set of points, w, as the weight function, and
d as the distance function.

et

Theorem 2 (Guha et al., 2000). If an (a, b)-approximate k-median algorithm is used
in Step 2 of algorithm Modified-Small-Space, and a c-approximate k-median algorithm is
used in Step 4 of algorithm Modified-Small-Space, then algorithm Modified-Small-Space
is 2c(1 4+ 2b) + 2b)-approximate.

Lemma 4.1. Let the sets U;, 0 < i < ¢, be a partition of U. Let 7;, 0 < i < £, be
assignments such that t;(U) C U; and l'i_l(U) = Uj. Let T be an assignment that is defined
as follows: for x in U;, then t(x) = t;(x). Let X be a configuration such that X C t(U).
Then,

c:(X) < cost(X)+ Z c(t).

0<i<t
Proof: Observe that

(X)) =) do, X)) we(x)

xet(U)

= > dx,X)| D w)

xetr(U) yer—(x)

50 R.R. METTU AND C. G. PLAXTON

< DD @ T+, X)) - w(y)

xet(U) yer—(x)

= Z(d(y, (y) +d(y, X)) - w(y)

yeU
= ¢ (1) + cost (X)
= cost(X) + Z c (1),

0<i<t

where the third step follows from Lemma 4.2 and the last step follows from the definition
of r. O

Lemma 4.2. Let © be an assignment, let X be a configuration such that X < t(U),
let x be a point in T(U), and let y be a point in =" (x). Then d(x, X) < d(y, 1(y)) +
d(y, X).

Proof: Letzbeapointin X suchthatd(y, X) = d(y, z). Observethatd(x, X) < d(x, z) <
dx,y)+d(y,z)=d(y, 1(y) +d(y, X). 0

4.2. Algorithm

We obtain our uniform weights k-median algorithm by applying our sampling algorithm in
Step 2 of algorithm Modified-Small-Space and the deterministic online median algorithm
of Mettu and Plaxton (2003) in Step 4. We set the parameter ¢ of algorithm Modified-Small-
Space to 1 and parameter £’ of our sampling algorithm to max{k, logn}. By Theorem 1, the
output of our sampling algorithm is an (m, O(1))-assignment with high probability, where
m = O(max{k, logn}log 7). The online median algorithm of Mettu and Plaxton (2003) is
also an O(1)-approximate k-median algorithm. Thus, by Theorem 2, the resulting k-median
algorithm is O(1)-approximate with high probability.

We now analyze the running time of the above algorithm on inputs with uniform weights.
The time required to compute the output assignment o in Step 2 is O (n max{k, logn}). We
note that the weight function required in Step 3 of Modified-Small-Space can be computed
during the execution of the sampling algorithm without increasing its running time. The
deterministic online median algorithm of Mettu and Plaxton (2003) requires O(|o (U)N+
|o(U)| ry) time. The total time taken by the algorithm is therefore

Ok + o) + o) rg) = O <nk’ + k2 1og? % + rak’ log %)
, n
=0 (nk’ + rqgk’ log %)

where the first step follows from the analysis of our sampling algorithm for the case of
uniform weights. The second step follows from the fact that k' log? 7 is O(n). By the choice

OPTIMAL TIME BOUNDS FOR APPROXIMATE CLUSTERING 51

of k’, the overall running time is O((n + r4 log %) max{k, logn}). Note that if k = Q(logn)
and ry log % = O(n), this time bound simplifies to O(nk).

5. An efficient algorithm for the case of arbitrary weights

The algorithm developed in Sections 2 and 4 is O(1)-approximate for the k-median problem
with arbitrary weights. However, the time bound established for the case of uniform weights
does not apply to the case of arbitrary weights because the running time of the successive
sampling procedure is slightly higher in the latter case. (More precisely, the running time
of the sampling algorithm of Section 2 is O (nk’ log %) for the case of arbitrary weights.)
In this section, we use the uniform-weight algorithm developed in Sections 2 and 4 to
develop a k-median algorithm for the case of arbitrary weights that is time optimal for a
certain range of k. We first give an informal description of the algorithm, which consists
of three main steps. First, we partition the input points according to weight into r,, sets.
Next, we run our uniform weights k-median algorithm on each of the resulting sets, and
show that the union of the resulting outputs is an (O(kr,), O(1))-configuration. We then
obtain a (k, O(1))-configuration by creating a problem instance from the (O (kr,), O(1))-
configuration computed in the previous step and then feeding this problem instance as input
to an O(1)-approximate k-median algorithm.

We now give a precise description of our k-median algorithm. Let A be the uniform
weights k-median algorithm of Sections 2 and 4, and let B be an O(1)-approximate k-
median algorithm.

— Compute sets B; for 0 < i < r, such that for all x € B;, 2/ < w(x) <2+,

—Fori =0,1...r, — 1: Run A with B; as the set of input points, d as the distance
function, 2/*! as the fixed weight, and the parameter X’ = max{k, [logn1}; let Z; denote
the output. Let ¢; denote the assignment induced by Z;, that is, ¢;(x) = y iff y is in Z;
and d(x, Z;) = d(x, y). For a point x, if x € Z;, let wy, (x) = w(qﬁ;l(x)), otherwise let
wg, (x) = 0.

— Let ¢ be the assignment corresponding to the union of the assignments ¢; defined in
the previous step, and let wy denote the weight function corresponding to the union of
the weight functions wg,. Run B with ¢(U) as the set of input points, d as the distance
function, and wy, as the weight function. Output the resulting k-configuration.

Note that in the second step, k' is defined in terms of n (i.e., |U|) and not | B;|. Thus, the
argument of the proof of Theorem 1 implies that .4 succeeds with high probability in terms
of n. Assuming that r,, is polynomially bounded in n, with high probability we have that
every invocation of A is successful.

We now observe that the above algorithm corresponds to algorithm Modified-Small-
Space with the parameter £ is set to r,, the uniform weights algorithm of Section 4 is used
in Step 2 of Small-Space, and the online median algorithm of Mettu and Plaxton (2003)
is used in Step 4 of Small-Space. Thus, Theorem 2 implies that the output of B is a (k,
O(1))-configuration with high probability.

We now discuss the running time of the above algorithm. It is straightforward to compute
the sets B; in O(n) time. Our uniform weights k-median algorithm requires O((|B;| +

52 R.R. METTU AND C. G. PLAXTON

1Bi|
k

|Bi1\ ., nk’ , n
0 (0<§<r <|B,| —|—rdlog A)k) =0 (rw (Z +rdk log m
n
=0 ((n + rare log—> k/>)
kry,

(The first step follows from the fact that the sum is maximized when |B;| = n/r,.) Note
that each weight function wgy, can be computed in O(|B;| k) time; it follows that wg can
be computed in O(nk) time. We employ the online median algorithm of Mettu and Plaxton
(2003) as the black-box k-median algorithm 3. Since |¢(U)| is at most kr,, the time required
for the invocation of B is O((kr,,)? + kr,r4). It follows that the overall running time of the
algorithm is as stated in Eq. (1).

rq log =)k’ time to compute Z;, so the time required for all invocations of A is

6. Lower bounds

In this section, we give lower bounds for the k-median problem and its clustering variant.
Throughout the section, we refer to the clustering variant as the k-clustering problem. Recall
that the k-clustering problem asks us to partition the input points such that the sum, over all
sets in the partition, of the weight of a point times the distance to the median of its set, is
minimized. Since any k-median solution can be converted into a solution for the k-clustering
problem in O(nk) time, in developing our upper bounds it was sufficient to consider only
the k-median problem. Unfortunately this reduction is not useful for the present purpose
of establishing Q2(nk) lower bounds; accordingly, in this section we consider the problems
separately.

For both the k-clustering problem and the k-median problem, we establish a lower bound
of Q(nk) time on any randomized algorithm thatis O(1)-approximate with even a negligible
probability. Since the overall objective of this paper is to study the complexity of approximate
clustering in terms of the four parameters n, k, R;, and R,, it is desirable for the metric
spaces associated with our lower bound arguments to have small values for both R; and
R, In terms of R,,, we achieve this goal completely, since all of the input distributions that
we consider below have uniform weights, that is, R,, = 1. For the k-clustering problem,
our lower bounds are established with R, equal to a constant (sufficiently large relative to
the desired approximation ratio); this is clearly best possible up to a constant factor. For
the k-median problem, our lower bound requires R, to exceed n/k by a sufficiently large
constant factor relative to the desired approximation ratio.

In our proofs, we assume an oracle model of computation in which the algorithm is
charged only for asking the oracle the distance between a pair of points. We refer to each
call to the oracle as a probe. By a generalization of Yao’s technique (Yao, 1977) due to
Mackenzie (1997), we can establish an upper bound of p on the success probability of
a randomized algorithm by exhibiting an input distribution for which every deterministic
algorithm has a success probability of at most p. (The intuition underlying this reduction is
that the success probability of a randomized algorithm is just a convex combination of the

OPTIMAL TIME BOUNDS FOR APPROXIMATE CLUSTERING 53

success probabilities of a number of deterministic algorithms.) Thus in what follows, we
restrict our attention to exhibiting “hard” distributions for deterministic algorithms. All of
the problems considered in this section take the same input as the k-median problem. Our
lower bounds also hold for the non-uniform case since for each choice of » and k, we exhibit
a probability distribution over the set of n-point metric spaces on which no deterministic
algorithm making a sufficiently small number of probes can achieve more than a negligible
probability of success.

For any positive real £ > 1, it is convenient to define a metric space to be £-simple if the
following conditions hold: (1) all of the points have unit weight; (2) the points of the metric
space can be partitioned into equivalence classes such that the distance between any pair
of distinct points is 1 if the points belong to the same equivalence class, and £ otherwise.
Thus, any £-simple metric space has R; = ¢ and R,, = 1. Our lower bounds are all based
on £-simple input distributions for some appropriately chosen value of £.

In order to establish a lower bound for the k-clustering problem, we find it convenient
to introduce a problem that we call the k-matching problem. The input to the k-matching
problem is the same as the input to the k-clustering problem. The output is a partition of
the n input points into a collection of disjoint pairs and singletons, subject to the constraint
that there are at most k singletons. We refer to such an output as a k-matching. The cost
of a k-matching is defined as the sum, over all output pairs of points (x, y), of d(x, y) -
min{w(x), w(y)}. The goal of the k-matching problem is to compute a minimum-cost k-
matching.

Given an algorithm for the k-clustering problem, consider the associated k-matching
algorithm defined as follows: (1) run the k-clustering algorithm to partition the n input
points into at most k clusters; (2) arbitrarily partition each even-sized cluster into a number
of pairs; (3) arbitrarily partition each odd-sized cluster into a singleton and a number of
pairs; (4) return the k-matching formed by the singletons and pairs computed in the previous
two steps. Using the triangle inequality, it is straightforward to prove that the cost of the
k-matching produced by this algorithm is at most the cost of the k-clustering computed
in Step (1) (i.e., the sum over all points x of the weight of x multiplied by the distance
from x to the medoid of its cluster). Furthermore, this k-matching algorithm uses exactly
the same number of probes as the associated k-clustering algorithm. Below we will exhibit
an input distribution with respect to which any deterministic k-matching algorithm making
a sufficiently small number of probes has only a negligible probability of computing a
k-matching with cost within a constant factor of the cost of the optimal clustering. By the
foregoing reduction from the k-matching problem to the k-clustering problem, such a result
implies that any deterministic k-clustering algorithm running on the same input distribution
and making the same small number of probes has only the same negligible probability of
computing a k-clustering with cost within a constant factor of optimal.

In order to state and prove our lower bounds it is convenient to introduce a shorthand
notation for expressing certain kinds of statements. In particular, for any statement S,
we define an associated statement f(S) as follows: For all positive reals ¢ and c, there
exist positive reals § and y and a positive integer ny such that for all positive integers
n and k for which n > ng and 1 < k < n, there exists a probability distribution D
over the set of £-simple n-point metric spaces where £ = y such that any deterministic

54 R.R. METTU AND C. G. PLAXTON

k-matching algorithm A making at most nk probes on an input drawn uniformly at ran-
dom from D, the statement S holds with probability at least 1 — ¢. (We remark that later in
the section we will often be interested in statements of the form f(S) for some S that
has no explicit dependence on one or more of the quantified variables ¢, ¢, &, y, no,
n, and k introduced above. We also remark that if f(S) and f(T') hold, then f(S A T)
holds.)

We define f/(S) in the same way as f(S) except that the restriction on k is strengthened
tol <k < %. Similarly, f”(S) is the same as f(S) except that the restriction on k is
%” < k < n. Note that for any statement S, f/'(S) A f”(S) implies f(S).

Finally, for addressing the k-median problem we define statements g(S), g'(S), and g”(S)
in an analogous manner, where the algorithm .4 is assumed to be a k-median algorithm rather
than a k-matching algorithm, and £ is defined to be Z* instead of y.

The rest of this section is devoted to proving the following two theorems.

Theorem 3. The statement f (“the cost of the k-matching solution computed by A is more
than c times the cost of an optimal k-clustering solution”) holds.

Theorem 4. The statement g(“the cost of the k-median solution computed by A is more
than c times the cost of an optimal k-median solution”) holds.

The proof of the first theorem follows from Lemmas 6.1 and 6.2 below. The proof of the
second theorem follows from Lemmas 6.3 and 6.4.

Lemma 6.1. The statement f’(“the cost of the k-matching solution computed by A is
more than c times the cost of an optimal k-clustering solution’) holds.

Proof: Let D denote the distribution of ¢-simple n-point metric spaces where each point
is independently placed into one of k equivalence classes uniformly at random. Given an
input instance drawn from D, the cost of an optimal k-clustering solution is easily seen to
ben — k.

In the following definitions, we make use of a parameter 8’ that will be chosen sufficiently
small with respect to ¢ and sufficiently large with respect to 6. We call a point x heavy if
A probes the distance between x and more than 8’k other points. We call a point x lucky
if one of A’s first 8’k probes involving x is to a point y such that d(x, y) = 1. We call
a point x clean with respect to an execution of algorithm A if it is neither heavy nor
lucky.

We first observe that the statement S; = f/(“at least (1 — &)n points are not heavy”) holds
since A is allowed at most §nk probes and § can be made arbitrarily small with respect to
8.

Let us now choose an arbitrary point x and derive an upper bound on the probability that
x is lucky. Assume without loss of generality that, before .4 makes any probes involving x, it
knows the distance between all pairs of points not containing x. (Knowing this information
could only enhance the probability that x is lucky.) Under this assumption, the probability
that x is lucky is at most 8’k/k = &’ since x is equally likely to belong to any of the &
equivalence classes. By linearity of expectation, the expected number of lucky points is at

OPTIMAL TIME BOUNDS FOR APPROXIMATE CLUSTERING 55

most §'n. By Markov’s inequality, the probability that the number of lucky points exceeds
m times the expected number is at most 1/m for all m > 0. Hence the statement S, = f'(“at
least (1 — &)n of the points are not lucky”’) holds.

By combining statements S; and S,, we have S3 = f/(“atleast (1 — &)n points are clean”).
(Remark: The reader might believe that the factor of (1 —¢) appearing in statement S3 should
be (1 —2¢) to account for the two factors of (1 — ¢) appearing in statements S; and S;. Note,
however, that the parameter ¢ is universally quantified in each of these three statements.
Let Ti(¢e) (resp., T»(¢), Tz(¢)) denote the statement S; (resp., S2, S3) with no universal
quantification over ¢. Note that T3(¢) follows from T(e/2) and T>(e/2). Thus Sz follows
from S; and S5.)

Since A is a k-matching algorithm, it outputs at least % > n /8 pairs. This observation,
together with statement S; above, implies f’(“at least n/9 of the pairs produced by A consist
of two clean points™). Each such output pair of clean points independently contributes £ to
the cost of the k-matching produced by .A with probability at least 1 — ﬁ The claim of
the lemma now follows by Eq. (4) in Appendix A, assuming that we choose § sufficiently
small, and y and n sufficiently large, as a function of ¢ and c. O

Lemma 6.2. The statement f"(“the cost of the k-matching solution computed by A is
more than c times the cost of an optimal k-clustering solution’) holds.

Proof: The proof of the preceding lemma does not readily extend to large values of k, so
we resort to a somewhat different approach. In this case we define the input distribution D
by randomly partitioning the n points into k clusters (i.e., equivalence classes), n — k of
which are pairs, and 2k — n of which are singletons. As in the proof of Lemmas 6.1, the
cost of an optimal k-clustering solution is n — k.

In the following, let a denote an integer parameter to be chosen sufficiently large with
respect to 1/¢. For the sake of the analysis, it is useful to think of sampling from the input
distribution D via the following three-stage process: (1) independently place each of the
n points uniformly at random into one of |2 | supergroups; (2) randomly partition each
supergroup of size s into |s/2] pairs and, if s is odd, one singleton; (3) split all but a
random subset of n — k of the pairs into singletons. (Note that the number of pairs formed
in Step (2) is at least % Since a is to be chosen sufficiently large, we can assume that
a > 2 and hence this quantity is at least n/4. Since k > 3n /4, the number of pairs formed
in Step (2) is at least n — k; it follows that Step (3) is well-defined.) In what follows we refer
to the resulting n — k pairs and 2k — n singletons as input-pairs and input-singletons, in
order to avoid confusion with the pairs and singletons computed by algorithm A, which we
refer to as output-pairs and output-singletons. In addition, we refer to the pairs identified
in Step (2) as intermediate-pairs.

We define a supergroup to be good if it contains between a/2 and 2a points. Equa-
tions (4) and (2) in Appendix A can be used to upper bound the (small) probability
that an individual supergroup is bad (i.e., not good). This upper bound, together with
Markov’s inequality, yields f”(“at least a 1 — ¢ fraction of the supergroups are good”),
which we refer to below as statement S;. Furthermore, Eq. (3) in Appendix A can be
used to establish S, = f”(“at least a 1 — ¢ fraction of the points belong to good
supergroups”).

56 R.R. METTU AND C. G. PLAXTON

We define a point x to be clean with respect to an execution of A if .4 never probes the
distance between x and another point in the same supergroup as x. We define a supergroup
G to be clean if every point in G is clean. By an argument similar to that used to establish
f/(“at least a 1 — ¢ fraction of the points are clean”) in the proof of Lemma 6.1, we can
show that with probability at least 1 — §’, at least a 1 — §’ fraction of the points are clean,
where 8’ can be made arbitrarily small compared to 1/a (which in turn is small compared
to €) by choosing § sufficiently small compared to 1/a. Observing that the number of dirty
(i.e., not clean) supergroups is at most the number of dirty points, we obtain S3 = f"(“at
least a 1 — ¢ fraction of the supergroups are clean”).

Combining statements S;, S,, and S3, we obtain Sy = f”(“at least a 1 — ¢ fraction of
the points belong to clean good supergroups”). Statement S; implies Ss= f”(“at least
a 1 — ¢ fraction of the intermediate-pairs belong to clean good supergroups”). Thus in
what follows we may assume without loss of generality that at most an ¢ fraction of the
intermediate-pairs belong to bad or dirty supergroups. Let A denote the set of all such
intermediate-pairs. Augment A as necessary with other intermediate-pairs to obtain a set
B with exactly |e(n — k)] intermediate-pairs. By the principle of deferred decisions, in
particular, by deferring the random choice of the set of n — k input-pairs from the set of
intermediate-pairs, the expected fraction of the input-pairs contained in B is at most €. Since
B contains A, the same inequality holds for A. Using Markov’s inequality, we now obtain
Se = f"(“atleast a 1 — ¢ fraction of the input-pairs belong to clean good supergroups”).

Let us define a supergroup to be interesting if it is clean, good, and contains at least
one input-pair. Since there are n — k input-pairs and a good supergroup cannot contain
more than a input-pairs, statement Sg implies S7 = f”(“there are at least % interesting
supergroups”).

Let us define a supergroup to be red if it contains at least one output-pair; otherwise, it
is blue. If there are i interesting blue supergroups then at least i output-pairs either span
distinct supergroups or contain at least one input-singleton; it follows that the cost of the
k-matching produced by A is at least i £. If at least half (say) of the interesting supergroups
are blue, this argument establishes the lemma by statement S;, assuming a sufficiently large
choice for the parameter y = £. Thus, in what follows, we may assume that at least half of
the interesting supergroups are red.

Let G denote an interesting red supergroup and let (x, y) denote an output-pair belonging
to G; such a pair exists since G is red. If x is an input-singleton then the cost of output-pair
(x,y) is £, and we can attribute this cost to G. Otherwise, x belongs to some input-pair
(x, z), and algorithm A pays ¢ for the pair (x, y) unless y = z. Because G is interesting, it is
clean and good. Hence G contains at least a /2 points and, using the principle of deferred de-
cisions, the probability that y = z is at most (41/2% (Here we are deferring the choice of the
intermediate-pairs within a clean supergroup.) By choosing a sufficiently large compared to
1/¢, we can ensure that the latter probability is arbitrarily smaller than ¢. Furthermore, the
event that y = z is independent of the analogous events defined for other interesting red su-
pergroups. Thus each interesting red supergroup independently contributes, with probability
1 — p where p is arbitrarily small compared to ¢, a cost of at least £ to the total cost of the
k-matching produced by .A. The claim of the lemma now follows by Eq. (4) in Appendix A,
with the parameters a, §, y, and ng set to suitably chosen functions of € and c. O

OPTIMAL TIME BOUNDS FOR APPROXIMATE CLUSTERING 57

Lemma 6.3. The statement g'(“the cost of the k-median solution computed by A is more
than c times the cost of an optimal k-median solution) holds.

Proof: Let D denote the distribution of ¢-simple n-point metric spaces associated with
the following partitioning scheme: (1) independently place each of the n points into one of
Lk /2] tentative equivalence classes uniformly at random; (2) randomly select [k /2] special
points and move each of these special points into a singleton equivalence class. Note that
for any such instance, the cost of an optimal k-median solution is n — k.

We define a point x to be clean with respect to an execution of algorithm A if there is
no point y in the same tentative equivalence class as x for which .4 has probed
d(x,y).

It is not difficult to establish g’(“at least (1 — &)n points are clean”). The proof of this
statement is omitted since it is similar to the proof of the statement f’(“at least (1 — &)n
points are clean”) that is given within the proof Lemma 6.1. Since the special points are
chosen uniformly at random, it follows that g’(““at least (1 — &) [k/2] of the special points
are clean”).

Let X denote the random variable corresponding to the set of clean points, and let Y
denote the remaining points. Let Z denote the random variable corresponding to the set of
special clean points. We now argue that the conditional distribution of Z given X and |Z|
has a simple structure, namely, Z is a uniformly random subset of X of size |Z|. This claim
holds because the definition of a clean point implies that the behavior of algorithm A is the
same no matter which size-|Z| subset of X is equal to Z. Combining this claim with the
results of the preceding paragraph, it is straightforward to establish g’(“A fails to output %
(say) of the clean special points”).

Note that each special point that does not appear in the output of A contributes £ to the
cost of the k-median solution computed by A. Thus we obtain g’(“the cost of the solution
computed by A is at least (1 — £)k€/16”). Choosing y sufficiently large (depending on ¢),
the claim of the lemma then follows since £ = yn/k. O

Lemma 6.4. The statement g"(“the cost of the k-median solution computed by A is more
than c times optimal”) holds.

Proof: This proof is similar to that of Lemma 6.2 above. We define the input distribution
D in the same manner, as well as the following terms: supergroup, good supergroup, clean
supergroup, interesting supergroup, input-pair, input-singleton. We note that since these
definitions refer only point sets that are drawn from the input distribution D, they remain
valid even though we now assume A to be a k-median algorithm. Furthermore, we can use
arguments similar to those used to establish statement S; in Lemma 6.2 to establish the
statement 7 = g”(“at least % of the supergroups are interesting”), where a is an integer
parameter to be chosen sufficiently large with respect to 1/¢.

We define the input-weight of a supergroup as the number of input-pairs and input-
singletons that it contains. We define the output-weight of a supergroup as the size of
its intersection with the k-median solution computed by .A. We define the discrepancy
of a supergroup as its input-weight minus its output-weight. Note that the sum of the

58 R.R. METTU AND C. G. PLAXTON

discrepancies of all supergroups is zero since the total input-weight and the total output-
weight are each equal to k. A supergroup is balanced if it has discrepancy 0.

If the total discrepancy of the supergroups with positive discrepancy is s then it is straight-
forward to prove that the cost of the k-median solution computed by A is at least s€. If s is
at least one-quarter of the number of interesting supergroups then this argument establishes
the lemma by statement 7" above. Thus in what follows we may assume that s is less than
one-quarter of the number of interesting supergroups. Under this assumption, at least half
of the interesting supergroups are balanced (since at most one-quarter of them can have
negative discrepancy).

Let G denote an interesting balanced supergroup with i input-pairs and j input-singletons.
Thus the input-weight and output-weight of G is i + j (since G is balanced), and i > 1
(since G is interesting). In order to avoid paying a cost of £ for servicing any of the points
in supergroup G, the subset of G of size i + j contained in the output of A has to include
exactly one point out of each of the i input-pairs, and all of the j input-singletons. Since
G is clean, the probability that A produces such an output is 2 divided by (f.’), where
b = 2i + j denotes the cardinality of G. Given thati > 1 and j > 0, this probability is at
most 2/b. Since G is interesting (and hence good), we have a/2 < b and so 2/b < 4/a.
Furthermore, the event that A produces such an output is independent of the analogous
events defined for other interesting balanced supergroups. Thus each interesting balanced
supergroup independently contributes, with probability at least 1 — 4/a, a cost of at least
£ to the total cost of the k-median solution produced by .A. The claim of the lemma now
follows by Eq. (4) in Appendix A, with the parameters a, §, y, and n set to suitably chosen
functions of ¢ and c. O

7. Concluding remarks

In this paper, we have presented a constant-factor approximation algorithm for the k-median
problem that runs in optimal ®(nk) time if logn < k < If we use our algorithm as

log?n*
an initialization procedure for k-means, our analysis guarat%tees that the cost of the output
of k-means is within a constant factor of optimal. Preliminary experimental work (Mettu,
2002) suggests that this approach to clustering yields improved practical performance in
terms of running time and solution quality.

Appendix A: Tail bounds for the binomial distribution

In this section we state several standard bounds on the tail of the binomial distribution. See,
for example, the text by Alon and Spencer (1991, Appendix A) for derivations of these
inequalities.

Let n be a nonnegative integer and let p be a real [0, 1]. Let X denote the random
variable corresponding to the total number of successes in n independent Bernoulli tri-
als, each of which succeeds with probability p. The random variable X is said to be
binomially distributed with parameters n and p. Note that E(X) = np; let u denote
E(X).

OPTIMAL TIME BOUNDS FOR APPROXIMATE CLUSTERING 59

The following pair of inequalities are useful for bounding the upper tail of the binomial
distribution. The first is valid for all § in [0, 1]:

Pr(X > (1 + 8)p) < e 413 (2)

The second holds for all § > 0:

o n
Pr(X > (1+8)u) < <W> 3)

The following inequality is useful for bounding the lower tail of the binomial distribution;
it is valid for all § in [0, 1].

Pr(X < (1 — §)p) < e 512 4)

References

Arora, S., & Kannan, R. (2001). Learning mixtures of arbitrary Gaussians. In Proceedings of the 33rd Annual
ACM Symposium on Theory of Computing (pp. 247-257).

Alon, N., & Spencer, J. H. (1991). The probabilistic method. New York, NY: Wiley.

Charikar, M., & Guha, S. (1999). Improved combinatorial algorithms for facility location and k-median problems.
In Proceedings of the 40th Annual IEEE Symposium on Foundations of Computer Science (pp. 378-388).

Charikar, M., Guha, S., Tardos, E., & Shmoys, D. B. (1999). A constant-factor approximation algorithm for the
k-median problem. In Proceedings of the 31st Annual ACM Symposium on Theory of Computing (pp. 1-10).

Dasgupta, S. (1999). Learning mixtures of Gaussians. In Proceedings of the 40th Annual IEEE Symposium on the
Theory of Computation (pp. 634—644).

Duda, R. O., & Hart, P. E. (1973). Pattern classification and scene analysis. New York: John Wiley and Sons.

Guha, S., Mishra, N., Motwani, R., & O’Callaghan, L. (2000). Clustering data streams. In Proceedings of the 41st
Annual IEEE Symposium on Foundations of Computer Science (pp. 359-366).

Indyk, P. (1999). Sublinear time algorithms for metric space problems. In Proceedings of the 31st Annual ACM
Symposium on Theory of Computing (pp. 428-434).

Jain, K., Mahdian, M., & Saberi, A. (2002). A new greedy approach for facility location problems. In Proceedings
of the 34th ACM Symposium on Theory of Computation (pp. 731-740).

Lindsay, B. (1995). Mixture models: Theory, geometry, and applications. Hayward, California: Institute for Math-
ematical Statistics.

MacQueen, J. (1967). Some methods for classification and analysis of multivariate observations. In Proceedings
of the 5th Berkeley Symposium on Mathematical Statistics and Probability, vol. 1 (pp. 281-297).

MacKenzie, P. D. (1997). Lower bounds for randomized exclusive write PRAMs. Theory of Computing Systems,
30, 599-626.

Manning, C. D., & Schiitze, H. (1999). Foundations of statistical natural language processing. Cambridge: MIT
Press.

Mettu, R. R. (2002). Approximation Algorithms for NP-Hard Clustering Problems. PhD thesis, Department of
Computer Science, University of Texas at Austin.

Mettu, R. R., & Plaxton, C. G. (2003). The online median problem. SIAM Journal on Computing, 32, 816-832.

Mishra, N., Oblinger, D., & Pitt, L. (2001). Sublinear time approximate clustering. In Proceedings of the 12th
Annual ACM-SIAM Symposium on Discrete Algorithms (pp. 439—447).

Motwani, R., & Raghavan, P. (1995). Randomized Algorithms. Cambridge University Press, Cambridge, UK.

60 R.R. METTU AND C. G. PLAXTON

Thorup, M. (2001). Quick k-median, k-center, and facility location for sparse graphs. In Proceedings of the 28th
International Colloquium on Automata, Languages, and Programming (pp. 249-260).

Yao, A. (1977). Probabilistic computations: Toward a unified measure of complexity. In Proceedings of the 18th
IEEE Symposium on Foundations of Computer Science (pp. 222-227).

Received November 19, 2002
Revised November 17, 2003
Accepted December 12, 2003

Final manuscript February 22, 2004

