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Abstract. It has been approximately 30 years since D.R. Cox introduced the proportional hazards method

to model the relationship between covariates and survival time. However, the proportional hazards model

has limited value when the proportionality assumption is violated. Over the years, there have many been

many alternative proposals to the proportional hazards regression model for the case of right censored

survival data, but to date none have demonstrated widespread acceptance. In general, problems

encountered in these methods include their computational algorithms or evaluation of their asymptotic

properties. In this work, an estimating equation based on a U-statistic of degree 2 is proposed. It is easy to

implement and the U-statistic framework provides a straightforward development of asymptotic infer-

ential theory for the regression parameters.
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1. Introduction

It has been approximately 30 years since D.R. Cox introduced the proportional
hazards method to model the relationship between covariates and survival time (Cox,
1972). It remains to this day the predominant model applied to survival data. The
widespread popularity of the proportional hazards methodology stems from the
interpretation of the regression coefficient as a relative risk parameter constant with
respect to time, the development of asymptotic inferential procedures that are easy to
implement with the advent of readily available software, and the efficiency of the
regression parameter estimates for a wide range of underlying hazard functions.
Additionally, no parametric assumption of the underlying hazard function is re-
quired. However, the proportional hazards model has limited value when the pro-
portionality assumption is violated. Although there are many techniques developed
to determine if the proportionality assumption holds, there is no methodology such as
Box and Cox (1964) to transform the data to the proportional hazards model in order
to bring it into line with this assumption. Thus, increasing the scope of alternative
regression models when the proportionality assumption does not hold will benefit
analyses of survival data.
An alternative semiparametric approach is the accelerated failure time model

log ti ¼ bT0 xi þ �i i ¼ 1; . . . ; n ð1Þ
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where the f�ig are independent identically distributed errors with distribution
function F, and xi is independent of �i. The model is termed semiparametric because
the functional form of the response surface is assumed known, while the error dis-
tribution F is unknown.
A natural approach for inference on b0 with F unknown is the estimating equation.

In the accelerated failure time regression model with right censored data, the esti-
mating equation approach has been used for L-estimation (Ying, Jung and Wei,
1995), R-estimation (Tsiatis, 1990; Ying, 1993; Fygenson and Ritov, 1994) and
M-estimation (Buckley and James, 1979; Ritov, 1990; Lai and Ying, 1991). A
baseline requirement of the estimating function, needed for the development of
asymptotic inferential theory, is that it have asymptotic mean zero. The L or quantile
based estimating equation of Ying, Jung and Wei (1995) satisfies this requirement by
incorporating a consistent estimate for the distribution function of random cen-
soring times. The M-estimate, which uses ‘real time’ data, uses the Kaplan–Meier
estimate of the stochastic error term. R estimation inverts the rank based test sta-
tistics to produce an asymptotically unbiased estimating equation. The consistency
and asymptotic normality of L, M, and R estimators in the presence of right cen-
sored data have been developed in the cited works above, and provide the large
sample foundation for inference of the regression parameter b0.
The practical application of these techniques has been hindered due to complica-

tions stemming from the discontinuous nature of the estimating functions and
estimation of the asymptotic variance of the regression estimate; both problems are
attributable to censoring. In L estimation, Ying, Jung and Wei (1995) minimize the
L2 norm of the estimating function to estimate b0. However, they are cautious as to
the reliability of this search due to discontinuities in the estimating function. For R
and M estimation, computation of the estimate b̂, is typically based on a Newton–
Raphson type algorithm that searches for a zero solution, or zero crossing, of the
estimating function. Newton–Raphson is based on a Taylor series expansion, and
requires computation of the first derivative of the estimating function with respect to
b. For R estimates, application of this algorithm is complicated by the fact that the
estimating functions are step functions in b. Tsiatis (1990) demonstrates that the step
function may be asymptotically approximated by a linear function in a neighbor-
hood of b0. The resulting regression estimates involve kernel smoothing of the
hazard function of the error term ð�Þ, which is unstable in the right tail when cen-
soring is present (Hess, Serachitopol and Brown, 1999). Gray (2000) uses a penalized
likelihood for the hazard estimation. In both cases, the consistency of the asymptotic
variance estimate, which is a function of the hazard, has not been established. Fy-
genson and Ritov (1994) propose a family of rank based estimating functions that
are monotone in b. They replace the smoothing employed by Tsiatis with numerical
differentiation for computing the Taylor expansion. Although estimation of the
regression coefficient may alternatively be accomplished through a minimization
algorithm, the asymptotic variance estimate of b̂ is complicated by the use of
numerical differentiation, particularly in the multiple covariate case.
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The estimating equation most easily adapted to the Newton–Raphson zero finding
algorithm is the M estimating equation, which uses real time data. In the presence of
right censored data, these equations incorporate the Kaplan–Meier estimate of the
regression residual � ¼ t� bTx. In addition to the discontinuities produced by the
Kaplan–Meier estimate, its introduction into the estimating equation results in an
asymptotic variance of the regression estimate that contains the density and the
density derivative of �. Again, due to censoring, estimation of these functions are
unstable in the right tail.
In this paper, an unbiased M estimating equation is created using the failure times

and administrative or lost to follow up censoring times. Estimation of a density or a
density derivative function is not required since it does not use the Kaplan–Meier
estimate in the estimating function. The additional censoring information, which is
not related to the parameter of interest, reduces the efficiency of the proposed esti-
mator. However, the development of an asymptotic inferential theory, including
estimation of the asymptotic variance, is straightforward and the estimating proce-
dure is easy to implement. In Section 2 of the paper, administrative censoring is
introduced. In Section 3, the M estimating equation is presented and the asymptotic
distribution of the regression estimate is developed. In Section 4, model based
quantile prediction of survival time is proposed. In Section 5, simulations are per-
formed to examine the finite sample adequacy of the parameter estimate and coverage
based on asymptotic confidence intervals. Section 6 includes concluding remarks.

2. Censoring Times

In the conventional approach to survival analysis, each individual is associated with
a bivariate stochastic vector of survival and censoring times fti; cigni¼1. The minimum
time and censoring indicator are observed for each subject

yi ¼ minðti; ciÞ di ¼ Iðti � ciÞ i ¼ 1; . . . ; n:

The censoring time may be considered the result of the operation c ¼ minðc½1�; c½2�Þ,
where c½1� is defined as the time from study entry to study closure, often termed
administrative censoring, and c½2� as the time from study entry to a non-informative
lost to follow up (Miller, 1981). Thus the censoring time c is independent of survival
time.
In this paper, censoring times are explicitly used to create a mean zero estimating

function. For each subject, a censoring time c is determined. For subjects who have
not failed ðd ¼ 0Þ, c ¼ minðc½1�; c½2�Þ. This coincides with the conventional use of
independent censoring in survival analysis. However, subjects who have failed
ðd ¼ 1Þ are assigned the administrative censoring time c ¼ c½1�. Under this con-
struction, the censoring time c remains independent of the survival time t. The use of
administrative censoring in survival analysis has been proposed previously in works
including: Robins and Tsiatis (1991), Robins (1992), Oakes (1993) and Joffe (2001).
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3. Estimation and Inference for Regression Parameter b0

We begin by estimating the regression parameter b0 from the accelerated failure time
model in equation (1) for the uncensored data case. Although it is unnecessary to
present a new estimating equation in this situation, the equation and the attendant
inference procedure are presented to provide the framework and intuition of the
methodology for the case of right censored data.

3.1. No Censoring

To estimate b0 in the case of no censoring, consider the estimating function

S�
nðbÞ ¼ n�3=2

X
i

X
j

ðxi � xjÞð�bi � �bj Þ; ð2Þ

where �b ¼ log t� bTx is termed the regression residual. At b ¼ b0, the estimating
function has expectation zero, S�

nðbÞ is continuous in b, and S�
nðb0Þ is a U-statistic of

degree 2 (Bickel, Gotze and van Zwet, 1986). In addition, the derivative of the
function with respect to b, @S�

nðbÞ=@b ¼ �n�3=2
P

i

P
jðxi � xjÞðxi � xjÞT is negative

definite, demonstrating that S�
n is a monotone function of b. Zero mean, continuity,

and monotonicity provide the foundation for the asymptotic theory of M-estima-
tion, and insure that the neighborhood of b0 is located in an algorithmic search for
the zero solution to the estimating equation. The M-estimate b̂ is the solution to the
estimating equation S�

nðbÞ ¼ 0.
Employment of the asymptotic distribution theory for the U-statistic S�

nðb0Þ in
conjunction with a Taylor series expansion of S�

nðb̂Þ around b0 demonstrates that
n1=2ðb̂� b0Þ has a limiting normal distribution with mean zero. From a numerical
viewpoint, the monotonicity of the estimating function insures that the solution to
the estimating equation is unique and that the Newton–Raphson algorithm con-
verges at a quadratic rate.

3.2. Right Censoring

To present the estimating function in the presence of right censored data, we
introduce the censoring residual mb ¼ log c� bTx. In this setup, mb is observable up
to the unknown parameter b. Since some failure times are censored, not all regres-
sion residuals are observable, requiring an alternative estimating equation than the
one presented in (2).
Suppose the estimating function is restricted to regression residuals corresponding

to observed failure times. This corresponds to the set fi :�bi < mb
i g. One such esti-

mating function isX
i

X
j

didjðxi � xjÞð�bi � �bj Þ:
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This restriction to failure time residuals produces a biased estimating equation, with
the bias a result of the unequal censoring residuals. To create equal restriction
intervals on the regression residuals, the following estimating equation is presented

~SnðbÞ ¼ n�3=2
X
i

X
j

diðxi � xjÞð�bi � �bj ÞIð�
b
j < mb

i ÞIðm
b
j � mb

i Þ: ð3Þ

The indicator functions Ið�bj < mb
i ÞIðm

b
j � mb

i Þ are used to truncate the regression
residual �bj at mb

i and to select dj ¼ 1. This matches the truncation of �bi at mb
i ,

produced by the selection indicator di ¼ 1. Thus, the regression residuals (�bi , �
b
j )

corresponding to observed failures are restricted to the same interval with upper
bound mb

i . These equal restriction intervals produce a mean zero estimating function
at b ¼ b0. As a result, the following lemma is presented.

Lemma 1 The estimating function ~Snðb0Þ converges to a normal mean zero random
variable. In the Appendix A it is shown that E½ ~Snðb0Þ� ¼ 0. Since ~Snðb0Þ is a U-statistic
of degree 2, the lemma follows directly from the asymptotic distribution theory of
U-statistics.

The estimating function ~SnðbÞ is piecewise linear in b. It has jumps at 2n2p points in
the domain B of b; for all other b 2 B � B, the estimating function is differentiable.
Since the number of jumps is countable, it is assumed that b0 2 B. Thus from an
asymptotic viewpoint, the distributional properties of the estimated b0 are
straightforward. However, there are practical difficulties with this unsmooth esti-
mating function. Although the Newton–Raphson algorithm can be applied to find
the zero solution to ~SnðbÞ, its piecewise linearity will effect the algorithm’s iterative
search and computation of the asymptotic variance of the estimate. Both are a
function of the piecewise constant Hessian matrix

~AnðbÞ ¼ �n�3=2
X
i

X
j

diðxi � xjÞðxi � xjÞTIð�bj < mb
i ÞIðm

b
j � mb

i Þ b 2 B:

As a result of the potential problems caused by the discontinuities, a smoothed
analog of ~SnðbÞ is proposed. To ease the notation for the smoothed estimating
equation, all pairwise differences wi � wj are written as wij. Then the smoothed
estimating equation is

SnðbÞ ¼ n�3=2
X
i

X
j

didjxij�
b
ijfGbTxji;h2

ðcjiÞ � GbTxji;h2
ðyj � ciÞg ð4Þ

where GbTxji;h2
is a local distribution function from a location-scale family, symmetric

about bTxji with scale parameter h2. Using smoothing terminology, h is the band-
width. The piecewise linear function ~SnðbÞ and the smoothed function SnðbÞ are
asymptotically equivalent, assuming the bandwidth h goes to zero at a sufficiently
fast rate. Heuristically, this is demonstrated by rewriting ~SnðbÞ as

~SnðbÞ ¼ n�3=2
X
i

X
j

didjxijð�bi � �bj ÞIfðyj � ciÞ < bTxji � cjig
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and noting that as h goes to zero in equation (4), the local distribution function G
converges to a step function with a single jump at bTxji, and therefore
GbTxji;h2

ðcjiÞ � GbTxji;h2
ðyj � ciÞ converges to Ifðyj � ciÞ < bTxji � cjig. Further details

on the rate of convergence are provided in the Appendix A.

We define the estimate b̂, as the solution to the estimating equation SnðbÞ ¼ 0. The
following theorem summarizes the asymptotic distribution of the solution to the
estimating equation SnðbÞ ¼ 0. A proof of the theorem is provided in the Appendix
A.

THEOREM 1 If b̂ lies in a compact neighborhood of b0, then under the conditions stated
in the Appendix A, n1=2ðb̂� b0Þ converges in distribution to Nð0;A�1VA�1Þ, where
A ¼ Efn�1=2@SnðbÞ=@bgjb¼b0

and V ¼ n�1varfSnðb0Þg.

Since the estimating equation is not monotone in b, the asymptotic distribution
theory requires a consistent estimate of b0 to start the Newton–Raphson algorithm.
Based on the results in Fygenson and Ritov (1994), an initial consistent estimate b̂I
may be determined by choosing b to minimize k

P
i

P
j dib

TxijIfbTxij > yijgk. The
Nelder and Mead (1965) simplex algorithm is used to minimize this convex function.
As noted earlier, although estimation of the regression coefficient is straightforward,
the use of numerical differentiation to compute the asymptotic variance makes this
approach less useful, particularly in the multiple covariate case.
The smoothing in the estimating equation (4) is performed on the difference

in linear functionals bTxji ¼ bTxj � bTxi, a one-dimensional variable. A Gauss-
ian local distribution function is used with bandwidth h ¼ r̂2n�1=3, where
r̂2 ¼

P
i

P
jðb̂TI xjiÞ

2=n2. Note that although there may be multiple covariates in the
model, the curse of dimensionality does not play a role since the smoothing is
performed on the linear functional bTxji. This use of smoothing is distinguished from
the smoothing needed to estimate the residual density function in prior R and M
estimating equation approaches alluded to earlier. In those situations, estimation of
the entire error density function was problematic due to censoring. In the present
situation, the smoothing operation is not on the residual or any function of survival
time, and hence, the ensuing problems do not apply. This use of smoothing has also
been proposed in the context of single-index regression models (Hardle, Hall and
Ichimura, 1993).

4. Prediction

The accelerated failure time model enables the user to predict characteristics of the
survival time distribution conditional on covariates. For example, the conditional
median log survival time is represented by

mdðlog tjxÞ ¼ bTxþmdð�jxÞ:
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Since x is independent of �, one can use Kaplan–Meier to estimate mdðlog t� b̂TxÞ,
which is denoted by â0:50. It follows that the conditional median log survival time
may be estimated by

m̂dðlog tjxÞ ¼ b̂Txþ â0:50;

where b̂ was estimated in the previous section. Any quantile can be used for pre-
diction, as long as it is well estimated by Kaplan–Meier. Thus, the amount of cen-
soring will dictate how far out in the survival distribution accurate prediction of the
conditional quantiles can be performed. If over 50% of a data set contains censored
survival times, a quantile from the survival distribution larger than 0.50 should be
used for prediction in the accelerated failure time model.

5. Prostate Cancer Example

A total of 363 subjects with prostate cancer that metastasized to the bone were
treated at Memorial Sloan–Kettering Cancer Center between the years 1989 and
2000. To date, 324 patients have died. An important prognostic factor in this patient
population is the enzyme alkaline phosphatase. Alkaline phosphatase is found in
both the bone and the liver, and for this patient population, high levels are indicative
of an increased tumor burden located in the bone. The relationship between log
alkaline phosphatase and log survival time is explored using the conditional median
response accelerated failure time model.
To determine the covariate specification in the accelerated failure time model, a

kernel smoothed Kaplan–Meier estimate of the conditional median survival time was
computed. A graphic depiction of this relationship is presented as a dashed line in
Figure 1. The curve was generated using a Gaussian kernel with bandwidth chosen
equal to 2r̂n�1=5, where r̂ is the estimated standard deviation of log alkaline phos-
phatase. The figure suggests that for log alkaline phosphatase values in the range
3–4, its relationship with survival time is constant, and the relationship is concave
thereafter. As a result, we considered the specification mdðtÞ ¼ a expf�bðx� 3:5Þ2g
or in the accelerated failure time model form, log t ¼ �bðx� 3:5Þ2 þ �, where x
represents log alkaline phosphatase and the mdfexpð�Þg ¼ a. The solid curve in
Figure 1, represents the fit from the accelerated failure time model, and demonstrates
that this model provides a good fit to the data. The estimated coefficient was
b̂ ¼ �0:067 and the estimated seðb̂Þ ¼ 0:002, confirming the anticipated strong
relationship between log alkaline phosphatase and survival time in this patient
population. For the purposes of prediction, the intercept coefficient estimate was
â ¼ 18:92.

6. Simulations

A simulation study was performed to assess the finite sample performance of the
estimate b̂ and the accuracy of the asymptotic normal approximation developed in
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the theorem. The log survival times were generated from a single covariate linear
regression model log ti ¼ b0xi þ �i; the regression parameter b0 was set equal to 2.0.
The �i were independent identically distributed as either normal or extreme value
random variables with mean 1 and variance r2. The strength of the regression was
varied from strong to weak by choosing r to be f0.25, 0.50, 1.0, 2.0, 4.0g. The
censoring times were determined by first generating values from a uniform distri-
bution (0, s), and then taking the log of these values. The choice of s determines the
percentage of censored observations in each replication. The upper terminal ðsÞ of
the uniform was chosen to produce censoring proportions of f0.0, 0.25, 0.50, 0.75g.
For all simulations, the sample size was n ¼ 200, with x taking values
�7.96(0.08)7.96. There were 5,000 replications for each simulation.
The results of the simulations presented in Table 1(a) and (b) demonstrate that the

accuracy of the estimator and the asymptotic normal approximation are good. The
bias of the estimator is small, except in the case that the censoring proportion and
the dispersion parameter are high. This observation, which was made earlier in the
general case of M-estimators with survival data (Heller and Simonoff, 1990), is
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Figure 1. Estimated median survival time from a smoothed Kaplan–Meier estimator is plotted as a dashed

line. Median survival time from the accelerated failure time model is plotted as a solid line.
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attributable to the asymmetric effect of large r on right censored data. Large positive
� produce censored survival times and large negative � produce observed survival
times. Table 1(a) and (b) also show good concordance between the estimated stan-
dard error ðR̂Þ and the simulation standard error, and that the empirical coverage
probabilities of the asymptotic 95% confidence intervals are close to the nominal
0.95 level.

7. Discussion

The proposed method enables estimation of the intercept term and regression
coefficients using M-estimation with real time survival data. The estimation and
inference are based on the set of assumptions that the errors f�g are independent and
identically distributed, and the mean response function is correctly specified. In
comparison, the proportional hazards model requires an independent identically
distributed error term, a correct specification of the conditional hazard function,
along with the proportionality assumption. The proportional hazards assumption,
which can be stated as: there exists a monotone transformation h such that,
hðtÞ ¼ bTxþ �, where � is a standard extreme value random variable, enables esti-
mation and inference within a likelihood framework. As a result, an efficient estimate
of the regression coefficient b can be produced.
It is anticipated that the reduced number of assumptions will translate into a wider

range of applications for the M-estimate relative to the proportional hazards esti-
mate. However, if the proportional hazards assumption is appropriate, its applica-
tion will provide a more efficient estimate. This contrast follows the standard
tradeoff of efficiency vs. robustness when deciding between likelihood and estimating
equation methods. Future research will examine the relative efficiency of the methods
under various forms of model misspecification. Additional consideration will be
given to the choice of a weight function in the estimating equation. Weights could be
chosen to produce a more efficient estimate or to produce a negative definite Hessian
AnðbÞ ¼ @SnðbÞ=@b. Finally, the relationship between bandwidth selection and effi-
ciency will be explored by choosing h to minimize the asymptotic variance of b̂

subject to the constraint that nh4 converges to zero.

Appendix A

Lemma 1 E½ ~Snðb0Þ� ¼ 0

n3=2 ~Snðb0Þ ¼
X
i

X
j

xijfdi�iIð�j < miÞ � di�jIð�j < miÞgIðmj � miÞ

Taking the expectation conditional on ðci; cj; xi; xjÞ

¼
X
i

X
j

xijfF2ðmiÞEð�ij�i < miÞ � F2ðmiÞEð�jj�j < miÞgIðmj � miÞ ¼ 0:
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Table 1. The columns in the table represent: the strength of the regression relationship, the percent

censored, the bias of b̂, the standard deviation of the simulation estimates of b̂, the average estimated

standard error, and the empirical coverage probability.

r % censor Eðb̂� b0Þ V1=2ðb̂Þ EðR̂1=2Þ Coverage

(A) Normal error

0.25

0 0.000 0.000 0.000 0.944

25 0.000 0.000 0.000 0.940

50 0.000 0.010 0.010 0.944

75 )0.001 0.036 0.035 0.936

0.50

0 0.000 0.010 0.010 0.948

25 )0.001 0.014 0.014 0.943

50 )0.001 0.022 0.020 0.942

75 )0.001 0.072 0.069 0.923

1.00

0 0.001 0.014 0.014 0.950

25 )0.001 0.026 0.024 0.932

50 )0.003 0.042 0.041 0.937

75 )0.015 0.134 0.134 0.928

2.00

0 0.003 0.032 0.030 0.938

25 )0.001 0.052 0.049 0.930

50 0.004 0.083 0.081 0.944

75 0.003 0.218 0.252 0.959

4.00

0 0.005 0.065 0.061 0.936

25 0.015 0.099 0.095 0.936

50 0.037 0.147 0.155 0.948

75 0.085 0.370 0.419 0.963

(B) Extreme value error

0.25

0 0.000 0.000 0.000 0.946

25 0.000 0.000 0.000 0.945

50 0.000 0.010 0.010 0.939

75 )0.001 0.035 0.035 0.936

0.50

0 0.000 0.010 0.010 0.945

25 0.000 0.014 0.014 0.944

50 )0.001 0.020 0.020 0.942

75 )0.008 0.069 0.068 0.932

1.00

0 0.000 0.014 0.014 0.947

25 )0.001 0.024 0.024 0.943

50 )0.002 0.041 0.040 0.939

75 )0.009 0.128 0.130 0.933

2.00

0 0.000 0.032 0.030 0.947

25 0.000 0.049 0.047 0.935
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THEOREM 1 n1=2ðb̂� b0Þ converges in distribution to NðA�1VA�1Þ.

The proof is divided into three parts: (a) the asymptotic equivalence between the
smooth and unsmooth estimating functions; (b) the consistency of the estimator; and
(c) the asymptotic distribution of the estimator.
For the proof below, let GbTxji;h2

ðzÞ be a local distribution function from a location-
scale family, symmetric about bTxji with scale (bandwidth) parameter h2,
UðzÞ ¼ G0;1ðzÞ, and /ðzÞ ¼ @UðzÞ=@z.
The following conditions are required for the proof.

(i) The random vector ðx; t; cÞ lies in a pþ 2 dimensional bounded rectangle.
(ii) The parameter vector b lies in a p dimensional bounded rectangle.
(iii) n�1=2SnðbÞ has a bounded first derivative n�1=2AnðbÞ in a compact neighborhood

of b0 �Nðb0Þ, with n�1=2AnðbÞ non-zero in Nðb0Þ.
(iv) UðzÞ has bounded support and is Lipschitz continuous on its support. /ðzÞ is the

kernel density, symmetric about zero, of order 2.
(v) As n ! 1, the bandwidth h is chosen such that nh4 ! 0.

(a) SnðbÞ ¼ ~SnðbÞ þOpðn1=2h2Þ uniformly in b.
The smoothed estimating equation is

SnðbÞ ¼ n�3=2
X
i

X
j

didjxij�ijfGbTxji;h2
ðcjiÞ � GbTxji;h2

ðyj � ciÞg

where all pairwise differences wi � wj are written as wij. The difference between the
smoothed and unsmoothed estimating functions is written as

SnðbÞ � ~SnðbÞ ¼ n�3=2
X
i

X
j

didjxij�ij U
vij � 0

h

� �
� Ið0 < vijÞ

� �

� n�3=2
X
i

X
j

didjxij�ij U
uij � 0

h

� �
� Ið0 < uijÞ

� �

where vij ¼ cji � bTxji and uij ¼ ðyj � ciÞ � bTxji. To determine the order of magni-
tude of SnðbÞ � ~SnðbÞ, the first component in this difference is examined; the same

Table 1. (Continued)

r % censor Eðb̂� b0Þ V1=2ðb̂Þ EðR̂1=2Þ Coverage

50 0.003 0.079 0.078 0.936

75 0.031 0.220 0.241 0.952

4.00

0 0.002 0.062 0.061 0.945

25 0.012 0.097 0.091 0.927

50 0.037 0.149 0.147 0.940

75 0.197 1.14 0.496 0.936
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argument is applied to the second component. Using the Cauchy–Schwarz inequality
and the bounding conditions,

n�3=2
X
i

X
j

didjxij�ij U
vij � 0

h

� �
� Ið0 < vijÞ

� ������
�����

� Mn�3=2
X
i

X
j

U
vij � 0

h

� �
� Ið0 < vijÞ

� ������
�����

To simplify subsequent expressions, this is written as

� Mn1=2
Z
v

U
v� 0

h

� �
� Ið0 < vÞ

� �
d F̂n�nðvÞ

����
���� ðA:1Þ

where F̂n�nðvÞ is the empirical cumulative distribution function with jumps at each of
the n2 elements of vij. For FðvÞ ¼ limn!1 F̂n�nðvÞ, we can further the inequality in
(A.1) to

�Mn1=2
Z
v

U
v� 0

h

� �
� Ið0 < vÞ

� �
d½F̂n�nðvÞ � FðvÞ�

����
����

þMn1=2
Z
v

U
v� 0

h

� �
� Ið0 < vÞ

� �
dFðvÞ

����
����

Let

U1ðhÞ ¼
Z
v

U
v� 0

h

� �
d½F̂n�nðvÞ � FðvÞ�

U2ð0Þ ¼
Z
v

Ið0 < vÞ d½F̂n�nðvÞ � FðvÞ�

BðhÞ ¼
Z
v

U
v� 0

h

� �
dFðvÞ � ½1� Fð0Þ�

so (A.2) is expressed as

� Mn1=2jU1ðhÞ �U2ð0Þj þMn1=2jBðhÞj:

The order of magnitude of these terms is as follows.
For U1ðhÞ, a change of variable z ¼ h�1v and integration by parts gives

U1ðhÞ ¼ �
Z
z

/ðzÞ½F̂n�nðzhÞ � FðzhÞ� dz;

and hence
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Mn1=2jU1ðhÞ �U2ð0Þj

¼ Mn1=2
Z
z

/ðzÞ F̂n�nðzhÞ � FðzhÞ
� �

� F̂n�nð0Þ � Fð0Þ
� �	 


dz

����
����:

Using the results on oscillations of empirical processes (Shorack and Wellner, 1986,
p. 531)

Mn1=2jU1ðhÞ �U2ð0Þj ¼ Op h log n log
1

h log n

� �� �1=2 !
:

For BðhÞ, integration by parts and a two-term Taylor expansion around h ¼ 0,
produces

BðhÞ ¼ � h2

2

Z
z

z2/ðzÞf 0ðzh�Þ

where h� lies between h and zero.
Combining the above arguments,

jSnðbÞ � ~SnðbÞj � Mn1=2jU1ðhÞ �U2ð0Þj þMn1=2jBðhÞj

¼ Op h log n log
1

h log n

� �� �1=2
þn1=2h2

 !
:

Using the Lipschitz and boundedness conditions, along with nh4 ! 0, it follows that

SnðbÞ � ~SnðbÞ ¼ Opð1Þ uniformly in b:

(b) b̂ is a consistent estimate of b0
At the first Newton–Raphson iteration,

b̂ð1Þ ¼ b̂I þ fn�1=2Anðb̂IÞg�1n�1=2Snðb̂IÞ;
where b̂I is a consistent initial estimate of b0.
Denoting the limiting value of n�1=2SnðbÞ by SðbÞ, the triangle inequality shows

jn�1=2Snðb̂IÞ � Sðb0Þj � jn�1=2Snðb̂IÞ � Sðb̂IÞj þ jSðb̂IÞ � Sðb0Þj:
By the boundedness conditions, n�1=2SnðbÞ converges uniformly to SðbÞ for

b 2 Nðb0Þ and so for n large, the first term on the right hand side is �=2. The
continuity of S and the consistency of b̂I implies that the second term on the right
hand side is also �=2 for n large. Since Sn is a U-statistic, Sðb0Þ ¼ 0, and so
jn�1=2Snðb̂IÞj < � for n large. Therefore, since n�1=2AnðbÞ 6¼ 0 for b 2 Nðb0Þ,
jb̂ð1Þ � b̂Ij < � for all n � N. Repeating these arguments for all iterations until con-
vergence, b̂ converges in probability to b0.
(c) The asymptotic distribution of n1=2ðb̂� b0Þ
Taylor expanding Snðb̂Þ around b0

Snðb̂Þ ¼ Snðb0Þ þ Anðb#Þðb̂� b0Þ
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where b# lies between b̂ and b0. Since n
�1=2AnðbÞ is bounded and non-zero, it follows

from the Lemma and parts (a) and (b) that n1=2ðb̂� b0Þ converges in distribution to
Nð0;A�1VA�1Þ, where V ¼ n�1varfSnðb0Þg and A is the limiting value of
n�1=2Anðb0Þ.
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