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Abstract

A solution to the phase problem in optics is considered within the context of the analysis of time-
dependent signals. The analysis concerns, in particular, determination of the amplitude and phase
structure of signals and processes of ultrashort duration. The operation of the scheme is based on
the registration of two spectra of the investigated radiation separated spatially. The first spectrum
corresponds to the signal directly, while the other one is formed by summation of two spectra shifted
geometrically with respect to each other by a distance of the order of a spectral device resolution. The
description of the summarized spectrum contains the frequency derivative. The information obtained
allows one to determine the amplitude and phase structure of the signal.

Keywords: structure of optical signals, spectral analysis.

1. Introduction

Nowadays optical investigations (in particular, the spectral ones) based on ultrashort radiation pulses,
especially on signals of ultrashort duration 10−10 − 10−14 s, are of great interest (see, e.g., [1–4]). These
studies are basically done in such fundamental fields as matter state analysis and kinetics of atoms and
molecules in physical, chemical, and biological processes, analysis of nonstationary processes of interaction
of radiation with matter, formation and study of wave packets, very-high-speed optoelectronic systems,
and a number of others. In solving physical problems, one needs, along with analysis of the structure and
spectrum of a signal changing in time, to determine the amplitude and phase structures of the influence
of the substance or object studied on the probing optical radiation.

Among measurement methods one should first of all distinguish direct methods of signal registration
with the use of high-speed image tubes [5–11]. The intensity distribution of a signal is measured. The
time resolution is limited by the dynamical resolution of electron optics and by the maximum speed of
electronic scanning and is about one picosecond. Among indirect measurement tools, correlation methods
provide the highest time resolution [5, 6, 8]. The structure of the correlation function is directly obtained
by these methods. Moreover, the amplitude structure of a signal can be obtained as well. In this case
some additional information about the signal is required to interpret the results unambiguously. Methods
based on the Kerr effect, the Pockels effect, or the saturating absorption [5] give similar results.
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To obtain information on the amplitude and phase structures of signals, holographic methods are used,
which allow one to record data on separate spectral components. Methods based on the nonstationary
reference wave [12–15] were developed further in spectral holography [16–19]. We would also like to note
a physically attractive approach based on hole burning in the absorption spectra of spectral-selective
media [20–22]. Media with a narrow line and homogeneous line broadening and a wide absorption band
caused by inhomogeneous broadening are used for the registration. However, holographic methods as well
as registration in selective media require a single pulse as a reference signal. The duration of the pulse
should be less than the typical scale of time variations in the analyzed signal, because for registration of
the total spectrum one needs an additional spectrum of the same width or wider. The analysis of such
an additional pulse naturally reduces to a similar problem of its amplitude-phase structure.

The spectral methods [23–25] give partial information about a signal.
Thus, all the methods mentioned above have some limitations or present some difficulties in their

realization. Either only a part of the information is registered (the duration, the correlation function, the
spectrum), or a specially formed reference wave or specific low-temperature recording media are required.

The contemporary development of physical and coherent optics and the appropriate methods and
technology [26–28] has provided us with the possibility of formulation and solving fundamental phase
problems connected with detecting, processing, and analyzing the amplitude and phase characteristics
of arbitrary optical signals varying in time. Thus, it is possible to solve the phase problem in optics as
applied to time-dependent signals. In particular, to measure the amplitude and phase characteristics of
arbitrary laser pulses as well as their spectra and the influence of an object on the probe signal, we use
an approach based on registration of amplitude distributions of signals, which are specially formed by
modulators, that is, the modulation-spectral method of analysis, and solving the phase problem in optics
[29–31]. To solve problems of this kind, the interferometric methods are used as well, with frequency shift
in one of the channels due to either the displacement of the mirror [32] or diffraction on the traveling
acoustic wave [33] or modulation by an electrooptic crystal [34]. Further, a spectral device is used for
the registration. The distinctive feature of the above-mentioned methods is connected with the fact that
it is easier to obtain high spectral resolution than high time resolution in a wide spectral range.

In this paper, a scheme based on registration of two separate spectra of the investigated optical signal
is considered. One spectrum corresponds directly to the signal. The other one is formed by two signal
spectra displaced geometrically with respect to each other by a distance of the order of the spectral device
resolution. Either the spectrum of the time-varying optical signal or the signal itself is analyzed.

The operation of the scheme is described within the framework of physical optics [35–37].

2. Spectral Intensity Distributions to Register

A schematic optical diagram for development, registration, and analysis of amplitude and phase
spectrum characteristics of time-varying optical signals is shown in Fig. 1. The operation of the spectral
device is based on formation and geometrical shift of two spectra of the studied signal. It contains
the collimator objective Ob1, the camera objective Ob2, and the dispersion element DS, for example,
a diffraction grating. The input slit S of the spectral device is of a specific structure, providing two
displaced spectra, which is a distinctive feature of the scheme. In the simplest case, a slit doubled in
height can be used. This leads to the formation of two spectra separated in height. Besides, one of the
slits consists of two parts displaced in the direction of the device dispersion (see Fig. 1).
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Fig. 1. Schematic optical diagram of the spectral device for analyzing the spectrum of a time-varying optical
signal. S is the input slit, Ob1 is the collimator, Ob2 is the camera objective, and DS is the dispersion system.

The analyzed time-dependent optical signal (laser radiation)

Eo(t) = Eo(t) exp[−iωo t] (1)

is characterized by the time-dependent complex amplitude Eo(t) , the duration To, and the average fre-
quency ωo . The spectrum of the analyzed signal is placed in the vicinity of the frequency ωo. Its width
is noticeably smaller than the carrier frequency, ∆ωs < ωo . Then, the analyzed signal is directed onto
the input slit S of the spectral device placed in the plane ξη .

To simplify the calculations, it is assumed that the objectives Ob1 and Ob2 and the dispersion system
DS are placed in the vicinity of the plane uv . The field in front of the collimator objective Ob1 at distance
f1 from the input slit is described by the Kirchhoff integral [35–37]

E(u, v, t) = E(u, v, t) exp[−iωo t] = − i

λ f1

∫
Eo(t1) exp[−i ωo t1]

∣∣∣∣∣
t = t1 −r1/c

dξ dη. (2)

The effect of the collimator and camera objectives (the focal distances f1 and f2, respectively) is described
in the paraxial approximation by the quadratic phase factors [35–37],

O1(u, v) = exp

[
− i

ωo

c

u2 + v2

2 f1

]
, O2(u, v) = exp

[
− i

ωo

c

u2 + v2

2 f2

]
. (3)

The effect of the dispersion system is described by the transition to the spectral representation of the
complex amplitudes of the signal,

Eo(t) =
1

2 π

∫
Eo(ω) exp[− i ω t] dω. (4)

The angular dispersion is introduced from the phase relation describing the propagation of waves with
different frequencies at different angles,

dθ(ω)
dω

= exp

[
i
ωo

c
u cos[θ(ω)]

]
, (5)
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where

cos[θ(ω)] =
x(ω)
f2

=
ωo

f2

dx

dω
=

ωo

D f2
(6)

is the direction cosine for the component with frequency ω and 1
/

D = dx
/

dω is the inverse linear
dispersion characterizing the spectral device. The effect of the dispersion element on the radiation is
described by [see (5) and (6)]

D(u, ω) = exp

[
i
ωo

c
u

x(ω)
f2

]
. (7)

After the dispersion element and the camera objective, the field for the spectral component ω with
account of (3) and (7) is

Ed(u, v, t) = Ed(u, v, t) exp[−iωo t] = E(u, v, t) O1(u, v) O2(u, v) D(u, ω) exp[−iωo t].

The field in the registration plane xy at distance f2 from the camera objective is described by a Kirchhoff
integral similar to (2) [35– 37], the effects of the objectives [see (3)] and the dispersion element [see (7)]
being taken into account,

E(x, y, t) = E(x, y, t) exp[−iωo t]

= − i

λ f2

∫
E(u, v, t2) O1(u, v) O2(u, v) D(u, ω) exp[−i ωo t2]

∣∣∣∣∣
t2 = t− r2/c

du dv. (8)

One assumes that, in expressions (2) and (8), in the slow phase factors describing the signal structure
(frequencies ω )

r1 = f1, r2 = f2.

In high-frequency factors (the frequency ωo ), the Fresnel approximation is taken [35–37]

r1 = f1 +
ξ2 + η2

2 f1
+

u2 + v2

2 f1
− ξu + η v

f1
,

r2 = f2 +
u2 + v2

2 f2
+

x2 + y2

2 f2
− u x + v y

f2
.

Calculations with the introduction of all the above intermediate expressions [see (2)–(7)] into expression
(8) that describes the field in the registration plane gives

E(x, y, t) = − 1
λ2 f1 f2

exp

[
− i ωo t + i

ωo

c

(
f1 + f2 +

x2 + y2

2 f2

)]

×Eo

(
t − f1 + f2

c

) ∫
exp

[
i
ωo

c

ξ2 + η2

2 f1

]

×

{∫
exp

[
− i

ωo

c
u

(
ξ

f1
− x(ω)

f2
+

x

f2

)
− i

ωo

c
v

(
η

f1
+

y

f2

)]
du dv

}
dξ dη. (9)
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Integration over u and v within ±uo and ±vo characterizing the size of the dispersion system (2uo×
2vo) gives the spread function

a(ξ, η, x, y) =
∫

exp

[
− i

ωo

c
u

(
− x(ω)

f2
+

x

f2
+

ξ

f1

)
− i

ωo

c
v

(
y

f2
+

η

f1

)]
du dv

= 4 uo vo sinc

[
ωo

c
uo

(
− x(ω)

f2
+

x

f2
+

ξ

f1

)]
sinc

[
ωo

c
vo

(
y

f2
+

η

f1

)]
, (10)

which is caused by the diffraction on the aperture of the dispersion system. If the dispersion system is
large, the spread function is similar to the δ–function. In the maximum of the spread function for the
spectral component of the frequency ω,

ξ = −
(
x − x(ω)

) f1

f2
, η = − y

f1

f2
.

In the output plane xy, a component of the frequency ω forms the field determined by the field structure
in the input slit. For a certain frequency ω in the output plane, x = x(ω). This corresponds to an
unambiguous relation between the coordinate x and the frequency ω of the spectral component.

Omitting the constant phase delay
(
f1,+ f2

)
/c, the field in the registration plane xy in the output

of the spectral device [see (9)] with regard for (10) is

E(x, y, t) = − 1
λ2 f1 f2

exp

[
− i ωo t + i

ωo

c

x2 + y2

2 f2

]
exp

[
i
ωo

c

(
x − x(ω)

)2
+ y2

2 f2

f1

f2

]
Eo(t).

Going to the spectral components, one obtains

E(x, y, ω) =
∫

E(x, y, t) exp[i ω t] dt

= − 1
λ2 f1 f2

exp

[
− i ωo t + i

ωo

c

x2 + y2

2 f2
+ i

ωo

c

(
x − x(ω)

)2
+ y2

2 f2

f1

f2

]
Eo(ω). (11)

In further calculations one can assume that, up to amplitude and phase factors inessential for the
analysis, the field E(x, y, ω) at the output of the spectral device is determined by the value

Eo(ω) exp[−iωo t].

In the scheme under consideration, two spectra are formed in the output of the spectral device. The
first one corresponds to the analyzed signal directly and is characterized for a certain coordinate x by
the value

Eo(ω, t) = Eo(ω) exp[−iωo t] =
∫

Eo(t) exp[i ω t] dt exp[−iωo t]. (12)

The second spectrum is the sum of two components for a certain coordinate x. One of them coincides with
the signal spectrum Eo(ω, t) [see (12)]. The other component is shifted geometrically, i.e., the frequency
ω or ωo of the analyzed signal in the first component gets into the frequency ω + ∆ω or ωo + ∆ω of
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the second component. The geometrical shift of the spectrum does not change its structure. The second
component of the spectrum is described similarly to (12) by

Eo(ω, ∆ω, t) = Eo(ω + ∆ω) exp[−i (ωo + ∆ω) t]

=
∫

Eo(t) exp[i (ω + ∆ω) t] dt exp[−i (ωo + ∆ω) t]. (13)

For a small frequency shift (∆ω � ωo) close to the spectral resolution δω of the device (
∣∣∣∆ω

∣∣∣ ∼ δω),
this expression can be expanded in series. For the part containing the information about the signal
structure [see (13)] this leads to

exp[i (ω + ∆ω) t] = exp[i ω t] exp[i∆ω t] ' exp[i ω t]
[
1 + i∆ω t

]
or

Eo(ω + ∆ω) =
∫

Eo(t) exp[i ω t] dt + ∆ω

∫
(it) Eo(t) exp[i ω t] dt

= Eo(ω) + ∆ω
d

dω
Eo(ω).

For the part containing the carrier frequency ωo [see (13)] one can assume

exp[−i (ωo + ∆ω) t] ' exp[−iωo t].

As a result, the second component of the spectrum is described by

Eo(ω, ∆ω, t) =

(
Eo(ω) + ∆ω

d

dω
Eo(ω)

)
exp[−iωo t]. (14)

The series expansion above definitely imposes a constraint on the total duration Tr of the analyzed
signal:

Tr ∆ω � 2 π or Tr ∆ν � 1 , Tr ∆λ � λ2
o

c

(see Sec. 4).
For further analysis, one has to take into consideration the amplitude and phase structure of the

complex amplitude of the signal spectrum

Eo(ω) = Ao(ω) exp[iΦo(ω)]. (15)

With account of possible differences in amplitudes (A1 and A2 ) and phases (exp[iΦ1] and exp[iΦ2] ) in
the two formed spectra, the complex amplitude distributions of the spectra are described by the following
expressions [see (12)–(15)]:

Eo(ω, t) = A1 Ao(ω) exp
[
i
(
Φ1 + Φo(ω)

)]
exp[−iωo t],

Eo(ω, ∆ω, t) = A2

[
Ao(ω) + ∆ω

d

dω
Ao(ω) + i∆ω Ao(ω)

d

dω
Φo(ω)

]
(16)
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× exp
[
i
(
Φ2 + Φo(ω)

)]
exp[−iωo t].

The sum field distributions [see (16)]

Eo(ω, t) and Es(ω, ∆ω, t) = Eo(ω, t) + Eo(ω, ∆ω, t) (17)

are registered in the spectral plane.
The recorded value, similarly to any optical measuring system, is the intensity distribution, which,

for the two signal spectra [see (17)], are described, up to inessential factors and taking into account (15),
by [see (16)]

Io(ω)
A2

o(ω)
= A2

1, (18)

Is(ω, ∆ω)
A2

o(ω)
=
[
A2

1 + A2
2 + A1 A2 cos

(
Φ1 − Φ2

)]
+

d

dω

(
Ao(ω)

) ∆ω

Ao(ω)
2 A2

[
A2 + A1 cos

(
Φ1 − Φ2

)]
+

d

dω

(
Φo(ω)

)
∆ω 2 A1 A2 sin

(
Φ1 − Φ2

)
. (19)

The first summand in expression (19) (in square brackets) characterizes the intensity distribution of
the two signal spectra in the absence of their mutual displacement. This summand coincides with the
expression from [38, 39].

3. Processing the Information Registered

To process the information represented as the spectra intensity distributions [see (18) and (19)], one
has to know the frequency shift ∆ω , the amplitudes in the two spectra A1 and A2, and the values of the
constant phase delays Φ1 and Φ2 in the formed spectra. In correspondence with the measured intensity
distribution Io(ω) [see (18)] and with A1 known, the amplitude distribution in the spectrum in this case
(we take into account that the amplitude is positive and the sign of the signal is determined by the phase)
is described by

Ao(ω) =
1

A1

[
Io(ω)

]1/2
(20)

and further the derivative dAo(ω)/dω distribution is calculated. From the measured intensity distribution
Is(ω) [see (19)] with account of the first-order terms in ∆ω, A2 , Φ1, and Φ2 being known, one determines
the derivative of the phase in the spectrum

d

dω

(
Φo(ω)

)
∆ω =

1

2 A1 A2 sin
(
Φ1 − Φ2

){Is(ω, ∆ω)
A2

o(ω)
−
[
A2

1 + A2
2 + 2 cos

(
Φ1 − Φ2

)]

− d

dω

(
Ao(ω)

) ∆ω

Ao(ω)
2A1A2

[
A2

A1
+ cos

(
Φ1 − Φ2

)]}
(21)

and calculates the phase distribution Φo(ω) in the spectrum by integration. From the amplitude Ao(ω)
and phase Φo(ω) distributions found, the structure of the complex amplitude of the signal spectrum Eo(ω)
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is determined [see (15)]. If necessary, the amplitude and phase structure of the time-varying optical signal
Eo(t) or Eo(t) [see (4)] is calculated by the inverse Fourier transformation.

When adjusting the set-up, it is convenient to choose certain phase delays Φ1 and Φ2 for the two
spectra. For the phase difference Φ1−Φ2, it is appropriate to take the value π/2±kπ , which corresponds
to sin(Φ1 − Φ2) = 1 and cos(Φ1 − Φ2) = 0. In this case, expression (21) transforms to

d

dω

(
Φo(ω)

)
∆ω =

1
2 A1 A2

{
Is(ω, ∆ω)

A2
o(ω)

−
(
A2

1 + A2
2

)
− d

dω

(
Ao(ω)

) ∆ω

Ao(ω)
2 A2

2

}
,

i.e., the derivative of the phase in the spectrum dΦo(ω)/dω is determined more simply.

4. On Practical Realization of the Scheme

The total spectral range ∆λr or ∆νr = ∆ωr/2 π registered determines the time resolution of the
scheme

δt =
1

∆νr
=

2π

∆ωr
=

λ2
o

c ∆λr
.

The total registration time Tr is characterized by the spectral range of the signal interference in the
registration plane δωs determined by the spectrum shift ∆ω and the spread function width of the device
δω (see Sec. 3) including the spread function of the dispersion element and the slit width [40]. The sum
value of the spectral range is described in the generic case by the width of the convolution s(ω) of the
spectral distributions for the spectrum shift m(ω′) and the spread function a(ω − ω′)

s(ω) =
∫

m(ω′) a(ω − ω′) dω′.

For estimations, one can use the approximate relationship

δωs ' ∆ω + δω or δνs =
δωs

2 π
, δλs = δνs

λ2

c
. (22)

The full time Tr of the registration is described by (see Sec. 3)

Tr �
1

δνs
=

2π

δωs
=

λ2
o

c δλs
.

For a spectrum localized in the vicinity of λ ∼ 1000 nm and for a 150-mm reflective diffraction grating
with 800 grooves per millimeter, the resolution is R ∼ 120000 − 240000 to the first and second orders
when using the narrow face of the groove [41]. This gives the spectral resolution δλ ∼ 0.008 or 0.004 nm
and, under the spectral range relation ∆λ ' 3δλ, the sum spectral range is δλs ' 0.03 nm. As a result,
the total time of registration Tr ∼ 10−11 or 3 · 10−11 s. A time resolution of δt ∼ 10−14 s is provided for
registration in the spectral range of ∆λr ∼ 300 nm.

5. Error Estimations in Field Structure Measurements

The estimation of the error of the measured amplitude and phase structures of the field is similar to
that in [34].
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The analysis is based on the expressions for the amplitude distribution Ao(ω) and the derivative of
the phase Φo(ω) in the spectrum [see (20) and (21)]. To simplify the expressions for making the error
estimations, one assumes

A1 = A2 = 1 , sin(Φ1 − Φ2) = 1 , cos(Φ1 − Φ2) = 0.

In this case, expressions (20) and (21) are transformed to

Ao(ω) =
[
Io(ω)

]1/2
, (23)

d

dω
Φo(ω) =

Is(ω, ∆ω)
2 ∆ω A2

o(ω)
− 1

∆ω
− 1

Ao(ω)
d

dω
Ao(ω). (24)

The root-mean-square error of the field complex amplitude in the spectrum is described up to the first-
order terms by [see (15)] 〈

|∆Eo(ω)|2
〉

=
〈
|∆Ao(ω)|2

〉
+ A2

o(ω)
〈
|∆Φo(ω)|2

〉
. (25)

The root-mean-square error of the amplitude is [see (23)]

〈
|∆Ao(ω)|2

〉
=

1
4

〈
|∆Io(ω)|2

〉
Io(ω)

. (26)

Taking into account the relation

d

dω
Ao(ω) =

d

dω

[
Io(ω)

]1/2
=

1
2

1[
Io(ω)

]1/2

d

dω

[
Io(ω)

]
, (27)

one obtains for the phase [see (24)]

d

dω
Φo(ω) =

1
2 ∆ω

[
Is(ω, ∆ω) − Io(ω) − ∆ω dIo(ω)/dω

Io(ω)

]
=

1
2 ∆ω

Ψ(ω) (28)

and

Φo(ω) =
1

2 ∆ω

∫ ωo+∆ωs

ωo−∆ωs

Ψ(ω′) dω′.

The function Ψ(ω) is introduced to simplify the notation. The root-mean-square error of the phase is

〈
|∆Φo(ω)|2

〉
=

(
1

2 ∆ω

∫ ωo+∆ωs

ωo−∆ωs

∆Ψ(ω′) dω′

)(
1

2 ∆ω

∫ ωo+∆ωs

ωo−∆ωs

∆Ψ(ω′′) dω′′

)
. (29)

In this expression the integration can be replaced by summation. Partition of the spectrum 2 ∆ωs into
the intervals δωs to sum over is determined by the value of the spectrum shift ∆ω and by the resolution
of the spectral device δω [see (22)]. The total number of intervals is given by the relation

2 n = 2 m =
2 ∆ωs

δωs
. (30)
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One can assume the function ∆Ψ(ω) to be constant within a small interval δωs. Then, expression (29)
is transformed to〈

|∆Φo(ω)|2
〉

=

〈
1

2 ∆ω

+n∑
−n

δωs ∆Ψ(ωn)

〉〈
1

2 ∆ω

+m∑
−m

δωs ∆Ψ(ωm)

〉
. (31)

Since the errors for different intervals δωs are independent, only contributions from coinciding intervals
in expression (31) survive 〈

|∆Φo(ω)|2
〉

= 2 n

(
δωs

2 ∆ω

)2 〈
|∆Ψ(ω)|2

〉
. (32)

In correspondence with the general expressions for the root-mean-square error and the measured
intensity distributions Io(ω) [see (18)] and Is(ω, ∆ω) [see (19)], one obtains

〈
|∆Ψ(ω)|2

〉
=

(
∂Ψ(ω)
∂Io(ω)

)2 〈
|∆Io(ω)|2

〉
+

(
∂Ψ(ω)

∂Is(ω, ∆ω)

)2 〈
|∆Is(ω, ∆ω)|2

〉
. (33)

For making further error estimations, one can make some simplifications. For sufficiently smooth spectra,
one can assume

d

dω

[
Io(ω)

]
∼ 0

within the interval δωs. In this case [see (28)],

Ψ(ω) ' Is(ω, ∆ω) − Io(ω)
Io(ω)

and expression (33) is transformed to

〈
|∆Ψ(ω)|2

〉
=

(
Is(ω, ∆ω)[

Io(ω)
]2
)2 〈

|∆Io(ω)|2
〉

+

(
1

Io(ω)

)2 〈
|∆Is(ω, ∆ω)|2

〉
. (34)

Expression (34) is simplified noticeably if the relative errors of the measured intensities are assumed
independent of the frequency, i.e.,

∆Io(ω)
Io(ω)

' ∆Is(ω, ∆ω)
Is(ω),∆ω

'

(
∆I

I

)
.

In this case, the standard deviation is described by (26) for the amplitude and

〈
|∆Φo(ω)|2

〉
= 4 n

(
δωs

2 ∆ω

)2(
Is(ω, ∆ω)

Io(ω)

)2(
∆I

I

)2

for the phase; or with account of δωs ' ∆ω [see also (30)]

〈
|∆Φo(ω)|2

〉
=

∆ωs δωs

(∆ω)2

(
Is(ω, ∆ω)

Io(ω)

)2(
∆I

I

)2

' ∆ωs

∆ω

(
Is(ω, ∆ω)

Io(ω)

)2(
∆I

I

)2

. (35)
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The estimations can be simplified further if one assumes the measured intensities in the spectra are
reasonably close to each other,

Is(ω, ∆ω) ' Io(ω).

In this case, expression (35) is transformed to

〈
|∆Φo(ω)|2

〉
' ∆ωs δωs

(∆ω)2

(
∆I

I

)2

' ∆ωs

∆ω

(
∆I

I

)2

. (36)

As a result, the standard deviation of the complex amplitude of the field in the spectrum is described in
correspondence with (25) and with account of the root-mean-square errors (26) and (36) by the following
expression:

〈
|∆Es(ω)|2

〉
'

[
1
4

+
∆ωs δωs

(∆ω)2

(
Is(ω, ∆ω)

Io(ω)

)2]
Io(ω)

(
∆I

I

)2

'

[
1
4

+
∆ωs

∆ω

]
Io(ω)

(
∆I

I

)2

.

Moreover, based on ∫
E(ω) E∗(ω) dω = 2 π

∫
E(t) E∗(t) dt

one can obtain 〈∣∣∣∆Es(ω)
∣∣∣2〉 =

〈∣∣∣∆Es(t)
∣∣∣2〉.

6. Conclusions

In this paper, we demonstrated a scheme for measuring the amplitude and phase structure of a time-
varying optical signal. The method is based on a spectral device with registration of two spectra: the
spectrum of the studied signal and the doubled spectrum with geometrical displacement in the direction
of the device’s dispersion. The estimations for a spectral device with a diffraction grating give a time
resolution up to 10−14 s if the total duration of the analyzed signal is about 10−10 s, the spectral resolution
is not lower than 0.01 nm, and the shift of the spectrum is about 0.04 nm.
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