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Abstract

The tomographic map and density operator description of quantum states are reviewed. The con-
nection between the tomogram and the probability distribution function is discussed. The relation
of the Green function of the Moyal equation for the Wigner function to the Green function of the
Schrödinger (von Neumann) equation in the tomographic representation is studied. An example of a
quantum system with a quadratic Hamiltonian is considered.
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1. Introduction

The state of a physical system can be determined if one knows all the physical properties of the sys-
tem, which makes it possible to describe completely the system at a given time and predict its behavior
in the future. Take, for example, the spin-1/2 system. Let ŝ be the spin operator and ni, i = 1, 2, 3 be
three linearly independent unit vectors. We can see that, if one knows the probability distribution for
eigenvalues of the operators ŝni, i = 1, 2, 3, then one can reconstruct the density operator corresponding
to the quantum state of the system [1]. In other words, if ℘i(ξ), ξ = ±~/2 is the probability distribu-
tion function of eigenvalues of the operator ŝni, then a class of such probability distribution functions
corresponding to three linearly independent unit vectors ni can describe the system’s quantum state.
Generally, the state of a quantum system at an arbitrary time can be completely determined by a class
of probability distribution functions of the appropriate number of physical quantities involved.

In the standard formulation of quantum mechanics using a vector from an appropriate Hilbert space
and the set of orthonormal basis vectors in this space, one can describe the state of a quantum sys-
tem. Nevertheless, a description of quantum states by means of positive probability distributions for the
system’s observable, similar to the classical description of states in classical statistical mechanics, is de-
sirable. To construct a classical-like formalism for quantum mechanics, different kinds of quasiprobability
distribution functions such as the Wigner function [2], Husimi Q-function [3], and Sudarshan–Glauber
P -function [4, 5] are introduced.

Wigner used the Weyl map to represent a Hermitian density operator by a real function. Thus, the
state of a quantum system can be represented by the Weyl transformation of the corresponding density
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operator, which is called the Wigner function. Also physical quantities can be represented by the Weyl
transformation of the corresponding Hermitian operators. Moyal found the time evolution differential
equation of the Wigner function, called the Moyal equation. Though the Weyl formulation of quantum
mechanics is useful when considering concrete problems [6, 7], the Wigner function can take negative
values and cannot be interpreted as a probability distribution function.

Indeed, due to the Heisenberg uncertainty relation for the position and momentum of the quan-
tum systems a joint probability distribution function in the phase space does not exist. So for a long
time, people think that it is impossible to formulate quantum mechanics using the notion of probability
and avoiding the notion of wave function. But recently it was found that in the optical-tomography
scheme [8, 9] it is possible to reconstruct the Wigner function of photons using the probability distri-
bution function involved. An extension of the optical-tomography method [10, 11] leads to introducing
the tomographic symbol of a quantum state or tomogram. Using, for the description of quantum states,
the tomographic symbol of the density operator (symplectic tomogram), which is the standard positive
probability distribution, a new probability distribution of quantum mechanics was suggested [11, 12].

For a one-dimensional quantum system, the physical content of the tomographic symbol is as follows.
We introduce an overcomplete set of basis ket-vectors such as |X,µ, ν〉, in which X,µ, and ν are three

real variables. The wave functions in the position representation of these ket-vectors are

〈q|X,µ, ν〉 =
1√

2πiν
exp

(
iµ

2ν
q2 − iX

ν
q +

iµ

2ν
X2

)
.

If the quantum system is in the state |ψ〉, then the state tomographic symbol reads

w(X,µ, ν) = |〈ψ|X,µ, ν〉|2.

The possibility of tomograms to represent a quantum state is based on using the appropriate overcomplete
set of basis ket-vectors.

The time evolution of quasiprobabilities mentioned above can be determined using the corresponding
Green functions. The Green functions of quantum-evolution equations for quasidistributions (or prop-
agators) have been studied. Nevertheless, the connection of the Green function of the Moyal equation
for the Wigner function with the Green function of the Schrödinger (von Neumann) equation in the
tomographic representation has not been considered until now. The aim of this paper is to study this
connection in detail.

The paper is organized as follows.
In Sec. 2, we review the wave function (or equivalently the ket-vector) formalism of quantum mechan-

ics. In Sec. 3, we present the concept of density operator and the von Neumann equation in quantum
mechanics. Section 4 is devoted to a review of the Wigner function, the Moyal equation, and the relation
between the propagator of the von Neumann equation and the propagator of the Moyal equation. In
Sec. 5, we introduce the tomographic symbol of the density operator as some map of the Wigner function
and review some of its properties. Furthermore, in this section we introduce a set of inverses for this
map. In Sec. 6, we study the properties of the Fourier transform of the tomographic symbol. Also in this
section we obtain the direct and inverse maps that relate the Wigner function to the Fourier transform of
the tomographic symbol. In Sec. 7, using the results of Sec. 6, we find a correspondence rule between op-
erators acting on the Wigner functions and those acting on tomographic symbols. Moreover, we rederive
the Schrödinger equation in the tomographic representation. In Sec. 8, we study in detail the propagator
of the Schrödinger equation in the tomographic representation and its relation to the propagator of the
Moyal equation. In Sec. 9, we test our results on some well-known problems.
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2. The Wave-Function Formalism of Quantum Mechanics

Let the state of a one-dimensional quantum system be represented by the ket-vector |ψ〉. Then the
Schrödinger equation for this quantum system with the Hamiltonian Ĥ(q̂, p̂, t) reads

i~
∂

∂t
|ψ(t)〉 = Ĥ(q̂, p̂, t)|ψ(t)〉, (1)

where

Ĥ(q̂, p̂, t) =
p̂2

2m
+ V (q̂, t).

Generally, q̂ and p̂ are the position-like and momentum-like operators, respectively, with the commutator

[q̂, p̂] = i~,

and V (q̂, t) is the potential-energy-like operator. Since this equation is linear and of first order in time
and Ĥ(q̂, p̂, t) is a Hermitian operator, then there exists a unitary time-evolution operator Û(t) such that

|ψ(t)〉 = Û(t)|ψ(0)〉.

In the position basis, this equation reads

ψ(q, t) =
∫
G(q, q′, t)ψ(q′, 0) dq′, (2)

where
G(q, q′, t) = 〈q|Û(t)|q′〉

is called the Green function of the Schrödinger equation. In view of (1) and the arbitrariness of ψ(q′, 0),
the Green function must satisfy the following differential equation:

i~
∂

∂t
G(q, q′, t) = H

(
q,

~
i

∂

∂q
, t

)
G(q, q′, t)

with the given initial condition
G(q, q′, 0) = δ(q − q′).

This is the well-known wave-function formalism of quantum mechanics.

3. The Density-Operator Formalism of Quantum Mechanics

To describe the time evolution of both pure and mixed quantum states, one can use the density
operator, which is defined as follows:

ρ̂ =
∑
j

wj |ϕj〉〈ϕj |, (3)

where wj ’s are the fractional populations of normalized states |ϕj〉 of the quantum system. If an observable
Â is given, then its expectation value in the quantum state corresponding to the density operator ρ̂ is
given by

〈Â〉ρ̂ = Tr [ρ̂Â].
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The time evolution of the density operator ρ̂ can be determined using the Schrödinger equation (1) and
is given by the von Neumann equation as follows:

∂ρ̂

∂t
+
i

~
[Ĥ, ρ̂] = 0.

Using the representation of the operators q̂ and p̂ in the position basis, we obtain

〈q|Ĥ(q̂, p̂, t)|ψ〉 = H

(
q,

~
i

∂

∂q
, t

)
〈q|ψ〉

and

〈ψ|Ĥ(q̂, p̂, t)|q′〉 = 〈ψ|q′〉H

q′, i~ ←
∂

∂q′
, t

 ,

in which |ψ〉 is an arbitrary state.
Writing down the von Neumann equation in the position basis, we have

∂

∂t
ρ(q, q′, t) +

i

~

[
H

(
q,

~
i

∂

∂q
, t

)
−H

(
q′, i~

∂

∂q′
, t

)]
ρ(q, q′, t) = 0. (4)

This equation is linear and of first order in time, so there exists a propagator, which we denote as
K(q, q′, s, s′, t), such that

ρ(q, q′, t) =
∫
K(q, q′, s, s′, t)ρ(s, s′, 0) ds ds′. (5)

Moreover, this propagator satisfies the differential equation (4) with the initial condition

K(q, q′, s, s′, 0) = δ(q − s) δ(q′ − s′).

In view of (2) and (3), the relation between propagators of the Schrödinger equation and the von Neumann
equation reads

K(q, q′, s, s′, t) = G(q, s, t)G∗(q′, s′, t), (6)

and this is valid for pure and mixed quantum states.

4. The Wigner-Function Formalism of Quantum Mechanics

The Weyl transformation of an operator Â by definition is

a(q, p) =
∫ 〈

q +
u

2
|Â|q − u

2

〉
exp

(
− ipu

~

)
du, (7)

where we use matrix elements of the operator Â in the position basis. The Weyl transformation of a
Hermitian operator is a real function but not everywhere positive. The operator Â can be reconstructed
from its Weyl transformation in the following way:

Â =
1

2π~

∫
a(q, p)∆̂(q, p) dq dp, (8)
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in which the operator ∆̂(q, p) is

∆̂(q, p) =
∫ ∣∣∣q − u

2

〉〈
q +

u

2

∣∣∣ exp
(
− ipu

~

)
du. (9)

In view of (7) and (9), one can find that the Weyl transformation of an operator is its symbol [10] with
respect to the class of operators ∆̂(q, p), i.e.,

a(q, p) = Tr
(
Â∆̂(q, p)

)
.

Operators ∆̂(q, p) satisfy the following orthogonallity relationship:

Tr
(
∆̂(q, p)∆̂(q′, p′)

)
= 2π~ δ(q − q′) δ(p− p′). (10)

The Wigner function is defined in terms of the density matrix as follows:

W (q, p) =
∫
ρ
(
q +

u

2
, q − u

2

)
exp

(
− ipu

~

)
du, (11)

so it is the Weyl transformation of the density operator. This relation is invertible and we have

ρ(q, q′) =
1

2π~

∫
W

(
q + q′

2
, p

)
exp

(
ip(q − q′)

~

)
dp. (12)

The Weyl transformations of Hermitian operators corresponding to observables and Wigner functions
associated with quantum states form an alternative classical-like approach to quantum mechanics. For
example, using (8) and (10), we can prove that the expectation value of an observable Â in a state ρ̂ is

〈Â〉 =
1

2π~

∫
a(q, p)W (q, p) dq dp, (13)

which (interpreting the Wigner function as the quasiprobability distribution) has a well-known classical-
like form.

Corresponding to a differential operator, which acts on density matrices, there is another operator,
which mimics its role for Wigner functions. In view of (12), one can derive the following correspondence
rule, which will be helpful later on,

qρ(q, q′)←→
(
q +

i~
2
∂

∂p

)
W (q, p),

∂

∂q
ρ(q, q′)←→

(
1
2
∂

∂q
+
ip

~

)
W (q, p),

(14)

q′ρ(q, q′)←→
(
q − i~

2
∂

∂p

)
W (q, p),

∂

∂q′
ρ(q, q′)←→

(
1
2
∂

∂q
− ip

~

)
W (q, p).

Using (4) and the above correspondence rule, we can obtain the Moyal equation

∂

∂t
W (q, p, t) = − p

m

∂

∂q
W (q, p, t) +

2
~

Im
[
V

(
q +

i~
2

∂

∂p

)]
W (q, p, t), (15)
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which describes the time evolution of the Wigner function. Just like the von Neumann equation, the
Moyal equation is linear and of first order in time, so one can write down

W (q, p, t) =
∫

Γ(q, p, q′, p′, t)W (q′, p′, 0) dq′ dp′. (16)

The propagator Γ(q, p, q′, p′, t) satisfies the same differential equation as the Wigner function, i.e.,

∂

∂t
Γ(q, p, q′, p′, t) = − p

m

∂

∂q
Γ(q, p, q′, p′, t) +

2
~

Im
[
V

(
q +

i~
2

∂

∂p

)]
Γ(q, p, q′, p′, t), (17)

with the following initial condition:

Γ(q, p, q′, p′, 0) = δ(q − q′) δ(p− p′). (18)

Propagators of the von Neumann equation and the Moyal equation are correlated. In view of (5),
(16), (11), and (12), the following relationships are straightforward:

Γ(q, p, q′, p′, t) =
1

2π~

∫
K

(
q +

u

2
, q − u

2
, q′ +

u′

2
, q′ − u′

2
, t

)
e−i(pu−p

′u′)/~ du du′ (19)

and

K(q, q′, r, r′, t) =
1

2π~

∫
Γ
(
q + q′

2
, p,

r + r′

2
, p′, t

)
ei[p(q−q

′)−p′(r−r′)]/~ dp dp′. (20)

5. The Tomographic-Symbol Formalism of Quantum Mechanics

The tomographic symbol of a quantum state can be defined in terms of the Wigner function as follows:

w(X,µ, ν) =
1

2π~

∫
W (q, p) δ(X − µq − νp) dq dp. (21)

This formula has the same form as (13). Indeed, one can show that

Tr
[
δ(X − µq̂ − νp̂)∆̂(q, p)

]
= δ(X − µq − νp),

where q̂ and p̂ are the coordinate and momentum operators and

[q̂, p̂] = i~.

Thus the tomographic symbol of a quantum state is

w(X,µ, ν) = 〈δ(X − µq̂ − νp̂)〉ρ̂ = Tr
[
δ(X − µq̂ − νp̂)ρ̂

]
. (22)

There is another (more physical) definition of the tomographic symbol of a quantum state. We
introduce the Hermitian operator

X̂µ,ν = µq̂ + νp̂,
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in which µ and ν are real numbers. This operator has a normalized set of eigenvectors |X〉, −∞ < X <∞,
such that

X̂µ,ν |X〉 = X|X〉.

These eigenvectors form an orthonormal and complete set of basis vectors, i.e.,

〈X|X ′〉 = δ(X −X ′),
∫
|X〉〈X| dX = 1̂.

We can show that
δ(X − µq̂ − νp̂) = |X〉〈X|,

so, in view of (22), we have
w(X,µ, ν) = 〈X|ρ̂|X〉.

This formula shows that the tomographic symbol of a quantum state takes real and positive values.
Furthermore, from (21) we can prove that the tomographic symbol is a homogeneous function of order
(−1), i.e.,

w(λX, λµ, λν) =
1
|λ|

w(X,µ, ν). (23)

Relation (21) defines a linear map, which assigns to an arbitrary Wigner function a tomographic symbol.
We denote this map by φ, i.e.,

W (q, p)
φ7−→ w(X,µ, ν).

Indeed, there is not any one-to-one map between the set of two-variable functions and the set of three-
variable functions. This means that map φ does not have an inverse map. Nevertheless, one can find a
left inverse φ̃ such that

w(X,µ, ν)
φ̃7−→W (q, p) and φ̃φ = 1.

As one can verify, there is not only one but also a set of left inverse maps φ̃k0 , which can be defined by
the following formula:

W (q, p) =
~
2π

∫
k2

0 exp
(
ik0[X − µq − νp]

)
w(X,µ, ν) dX dµdν, (24)

where k0 is any nonzero real number. Since the tomographic symbol w of a quantum state is a homoge-
neous function of order (−1), then [φ̃k0w](q, p) is independent of k0. We will derive this formula in the
next section using the Fourier transform of the tomographic symbol.

6. Properties of the Fourier Transform of Tomographic Symbol

We introduce the Fourier transform of the tomographic symbol with respect to the variable X as
follows:

w̃(k, µ, ν) =
∫
w(X,µ, ν) exp(ikX) dX, (25)

so inversely we have

w(X,µ, ν) =
1
2π

∫
w̃(k, µ, ν) exp(−ikX) dk. (26)
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Taking the Fourier transform of both sides of Eq. (21) we find

w̃(k, µ, ν) =
1

2π~

∫
W (q, p) exp

[
ik(µq + νp)

]
dq dp. (27)

Relation (27) defines the map ψ

W (q, p)
ψ7−→ w̃(k, µ, ν).

From (27) we find that w̃(k, µ, ν) satisfies the following condition:

w̃(k, µ, ν) = w̃(1, kµ, kν), (28)

which, in view of (25) and (26), is a necessary and sufficient condition for homogeneity of tomographic
symbol (23). From (28) we understand that for a fixed but arbitrary value of k, say k0, the function
w̃(k0, µ, ν) contains all the physically significant information contained in the tomographic symbol and
its Fourier transform. Indeed, it is a direct consequence of homogeneity of the tomographic symbol.

For k = k0, we can obtain the inverse of relation (27)

W (q, p) =
~k2

0

2π

∫
exp

[
− ik0(µq + νp)

]
w̃(k0, µ, ν) dµ dν. (29)

As a consequence of the homogeneity condition (28), this relation gives a unique result for all values of
k0. Also relation (29) suggests introducing a set of maps ψ̃k0 as follows:

[ψ̃k0w̃](q, p) =
~k2

0

2π

∫
exp

[
− ik0(µq + νp)

]
δ(k − k0)w̃(k, µ, ν) dk dµ dν. (30)

Evidently for all real values k0 6= 0, we have

ψ̃k0ψ = 1Wigner,

so the ψ̃k0 ’s form a set of left inverses of ψ. In view of (25), we can write w̃(k, µ, ν) in terms of the
tomographic symbol and find relation (24). This relation defines a set of left inverse maps φ̃k0 .

For the special case where w̃(k, µ, ν) is obtained by (27) and satisfies homogeneity condition (28),

P̃k0 = ψψ̃k0

acts as a unit operator. But if in (30) we consider w̃(k, µ, ν) as an arbitrary three-variable function, one
can show that

P̃k0 = ψψ̃k0 6= 1.

In view of (30) and (27), we can obtain the kernel of map

P̃k0 = ψψ̃k0 ,

as follows:
KP̃k0

(k, µ, ν, k′, µ′, ν ′) = k2
0 δ(k

′ − k0) δ(µk − µ′k0) δ(νk − ν ′k0). (31)

Using this kernel we can show that
[P̃k0 ]

2 = P̃k0 ,
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which means that P̃k0 is a projection operator.
For a fixed value of k0 and a given Wigner function W , there exists a class of three-variable functions

CW,k0 = {η(k, µ, ν)|ψ̃k0η = W}.

Evidently, for an arbitrary value of k0,
w̃ = ψ[W ]

is an unique element of this class, which satisfies the homogeneity condition (28). Also for an arbitrary
element η ∈ CW,k0 , we find that

P̃k0 [η] = ψ[W ] = w̃,

which means that P̃k0 projects every element of CW,k0 into

ψ[W ] = w̃.

7. Map of Operators

Let ` = ` (q, p, ∂/∂q, ∂/∂p) denote an operator that acts on the Wigner functions, and
L = L (k, µ, ν, ∂/∂k, ∂/∂µ, ∂/∂ν) be another operator that acts on the Fourier transform of tomographic
symbols. For a given Wigner function W and fixed value of k0, there are many operators such as L which
satisfy the relationship

`[W ] = ψ̃k0L[w̃]. (32)

Only one of these operators, say L, gives the Fourier transform of the tomographic symbol corresponding
to `[W ], i.e.,

[Lw̃](k, µ, ν) = [ψ`W ](k, µ, ν).

To find L, we use the following method.
First find an arbitrary operator L that satisfies the condition (32). Then evidently L[w̃] ∈ C`W,k0 , so

using the projection operator P̃k0 , we can write

Lw̃ = P̃k0Lw̃. (33)

As an example, we work out the operator L corresponding to

`W (q, p) = qW (q, p).

Setting k0 = 1 in (29) we have

W (q, p) =
~
2π

∫
w̃(1, µ, ν) exp

[
− i(µq + νp)

]
dµ dν.

Mulitplying both sides by q and integrating the right-hand side by parts, we obtain

qW (q, p) =
~
2π

∫ (
−i ∂
∂µ
w̃(1, µ, ν)

)
exp

[
− i(µq + νp)

]
dµ dν.

This equation shows that

Lw̃(k, µ, ν) = −i ∂
∂µ
w̃(1, µ, ν)
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satisfies the condition (32). Now, in view of (33) and using the projection operator with k0 = 1, we can
write

Lw̃(k, µ, ν) = −i
∫
KP̃1

(k, µ, ν, k′, µ′, ν ′)
∂

∂µ′
w̃(1, µ′, ν ′) dk′ dµ′ dν ′.

Finally, we will find that

Lw̃(k, µ, ν) = − i
k

∂

∂µ
w̃(k, µ, ν),

which evidently satisfies the homogeneity condition (28).
The right-hand side of the last formula is just the Fourier transform of the function

−
(
∂
∂X

)−1 ∂
∂µw(X,µ, ν). This function is obviously homogeneous of order (−1) and indeed is the to-

mographic symbol of qW (q, p). Taking the inverse Fourier transform of both sides of the last equation,
we find that

−
(
∂

∂X

)−1 ∂

∂µ
w(X,µ, ν) =

1
2π

∫
qW (q, p) δ(X − µq − νp) dq dp. (34)

By a similar method, we find the following correspondence relations between operators that act on the
Wigner functions and those that mimic their roles for the tomographic symbols,

q ←→ −
(
∂

∂X

)−1 ∂

∂µ
,

∂

∂q
←→ µ

∂

∂X
,

(35)

p←→ −
(
∂

∂X

)−1 ∂

∂ν
,

∂

∂p
←→ ν

∂

∂X
.

Using these relations and the Moyal equation, one can find the differential equation for the time evolution
of tomographic symbols, i.e., the Schrödinger (von Neumann) equation in the tomographic representation

∂w(X,µ, ν)
∂t

=
µ

m

∂w(X,µ, ν)
∂ν

+
2
~

Im

{
V

[
−
(
∂

∂X

)−1 ∂

∂µ
+ i

~ν
2

∂

∂X

]}
w(X,µ, ν). (36)

8. Propagators

Since Eq. (36) is linear and of first order in time, then there exists at least one propagator such that

w(X,µ, ν, t) =
∫

Π(X,µ, ν,X ′, µ′, ν ′, t)w(X ′, µ′, ν ′, 0) dX dµdν. (37)

Indeed, we can show that there is a class of such propagators and all of them satisfy the above equation.
This is because the tomographic symbol of a quantum state contains overcomplete information on the
quantum state. We will show that there is a propagator for Eq. (36) called the classical propagator
Πcl(X,µ, ν,X ′, µ′, ν ′, t) that not only holds in (37) but also satisfies the following initial condition:

Πcl(X,µ, ν,X ′, µ′, ν ′, 0) = δ(X −X ′) δ(µ− µ′) δ(ν − ν ′). (38)

It is remarkable that this relation cannot be derived from (37) at the initial time t = 0, because tomo-
graphic symbols are restricted to homogeneous functions of order (−1).
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Let W (q, p, t) represent the Wigner function of a quantum state at time t; then we can rewrite relation
(16) in matrix-like notation as follows:

W (t) = Γ(t)W (0).

Also considering relations (27) and (30) in the matrix-like notation, from the last equation we can write

w̃(t) = ψW (t) = ψΓ(t)W (0) = ψΓ(t)ψ̃k1w̃(0),

in which k1 is an arbitrary constant or a function of some unknown parameters. We can rewrite the last
equation as follows:

w̃(k, µ, ν, t) = [ψΓ(t)ψ̃k1w̃(0)](k, µ, ν)

=
∫
dk′ dµ′ dν ′ w̃(k′, µ′, ν ′, 0)

(
1

4π2

∫
dq dp dq′ dp′ k2

1 δ(k
′ − k1)

×eik(µq+νp) Γ(q, p, q′, p′, t) e−ik1(µ′q′+ν′p′)
)
. (39)

So we have found a set of propagators Π̃k1(k, µ, ν, k
′, µ′, ν ′, t) such that

w̃(k, µ, ν, t) =
∫
dk′ dµ′ dν ′ Π̃k1(k, µ, ν, k

′, µ′, ν ′, t) w̃(k′, µ′, ν ′, 0),

in which

Π̃k1(k, µ, ν, k
′, µ′, ν ′, t) =

1
4π2

∫
dq dp dq dp′ k2

1δ(k
′ − k1)

×eik(µq+νp) Γ(q, p, q′, p′, t) e−ik1(µ′q′+ν′p′). (40)

All the propagators corresponding to different choices of k1 can equivalently describe the time evolution
of the Fourier transform of the tomographic symbol. In view of the initial condition (18), we obtain

Π̃k1(k, µ, ν, k
′, µ′, ν ′, 0) = k2

1 δ(k
′ − k1) δ(µk − µ′k1) δ(νk − ν ′k1),

which shows that only the choice k1 = k1(k) = k leads to a propagator that satisfies the initial condition
(38), i.e.,

Π̃cl(k, µ, ν, k′, µ′, ν ′, t) =
k2

4π2
δ(k − k′)

∫
dq dp dq′ dp′ eik(µq+νp) Γ(q, p, q′, p′, t) e−ik(µ

′q′+ν′p′). (41)

From (25) and (26) one can verify that

Πcl(X,µ, ν,X ′, µ′, ν ′, t) =
1
2π

∫
Π̃cl(k, µ, ν, k′, µ′, ν ′, t) exp

[
i(k′X ′ − kX)

]
dk dk′,

so we can write the classical propagator of the Schrödinger equation in the tomographic representation
in terms of the propagator of the Moyal equation as follows:

Πcl(X,µ, ν,X ′, µ′, ν ′, t) =
1

(2π)3

∫
k2 exp

[
ik(X ′ −X + µq + νp− µ′q′ − ν ′p′)

]
×Γ(q, p, q′, p′, t) dq dp dq′ dp′ dk. (42)
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Invoking (35) and (17) we can show that the classical propagator satisfies the Schrödinger equation in
the tomographic representation, i.e.,

∂Πcl(X,µ, ν,X ′, µ′, ν ′, t)
∂t

=
µ

m

∂Πcl(X,µ, ν,X ′, µ′, ν ′, t)
∂ν

+
2
~

Im

(
V

[
−
(
∂

∂X

)−1 ∂

∂µ
+ i

~ν
2

∂

∂X

])
Πcl(X,µ, ν,X ′, µ′, ν ′, t),

with the initial condition (38). Also the classical propagator, being a function of X,µ, ν and X ′, µ′, ν ′,
is a homogeneous function of order (−3). For the sake of completeness, we find the propagator of the
Moyal equation in terms of the classical propagator. Using (24) with an arbitrary k0, say k0 = 1, and
(21) and (37), we obtain

Γ(q, p, q′, p′, t) =
1

(2π)2

∫
exp

[
i(X − µq − νp)

]
×Πcl(X,µ, ν,X ′, µ′, ν ′, t) δ(X ′ − µ′q′ − ν ′p′) dX dµdν dX ′ dµ′ dν ′. (43)

9. Some Examples

As an example, we study a quantum system with the quadratic Hamiltonian

Ĥ =
1
2
Q̃BQ+ C̃Q,

in which B is a 2×2 symmetric real matrix.The matrices C and Q are as follows:

C =

[
c1

c2

]
, Q =

[
p̂

q̂

]
,

where c1 and c2 are real numbers and p̂ and q̂ are well-known momentum-like and position-like operators
with [q̂, p̂] = i.

In this section, we are working using units such that ~ = 1.
This system has two integrals of motion Î1 and Î2 [13, 14], which are linear in q̂ and p̂[

Î1

Î2

]
=

[
λ11(t) λ12(t)
λ21(t) λ22(t)

][
p̂

q̂

]
+

[
d1(t)
d2(t)

]
.

Here Λ = [λij(t)] is a real and symmetric matrix and ∆ = [di(t)] is a real vector. They satisfy the
following system of differential equations with the given initial condition:

d

dt
Λ = iΛBσy, Λ(0) = 1,

(44)
d

dt
∆ = iΛσyC, ∆(0) = 0,

in which σy is the second Pauli matrix.
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We know that the Wigner function changes with time as follows [15]:

W (q, p, t) = W (I1, I2, 0),

so the propagator of the Moyal equation reads

Γ(Q,Q′, t) = δ2(ΛQ+ ∆−Q′).

We used here the two-dimensional Dirac delta-function.
Employing (42) one can work out the propagator of the Schrödinger equation in the tomographic

representation Πcl(X,µ, ν,X ′, µ′, ν ′, t) in terms of the above propagator of the Moyal equation Γ(Q,Q′, t),
i.e.,

Πcl(X,µ, ν,X ′, µ′, ν ′, t) =
1

(2π)3

∫
k2 exp

(
ik[(X ′ −X) + ÑQ− Ñ ′Q′]

)
×δ2(ΛQ+ ∆−Q′) dq dp dq′ dp′ dk, (45)

where

N =

[
ν

µ

]
, N ′ =

[
ν ′

µ′

]
.

Integrating first in dq′ dp′, then in dq dp, and finally in dk results in

Πcl(X,µ, ν,X ′, µ′, ν ′, t) = δ(X −X ′ + Ñ ′∆) δ2(Ñ − Ñ ′Λ). (46)

As a special case, let us derive the free-particle propagator for the tomogram. The Hamiltonian
operator of a free particle with unit mass reads

Ĥ =
p̂2

2
.

One can solve the system of equations (44) for the Hamiltonian of a free particle and find the matrices

Λ = [λij(t)] and ∆ = [di(t)].

These matrices will be

Λfree =

[
1 0
−t 1

]
, ∆free =

[
0
0

]
.

Setting these matrices in formula (46) we have

Πfree(X,µ, ν,X ′, µ′, ν ′, t) = δ(X −X ′) δ(ν ′ − ν − µt) δ(µ− µ′), (47)

which is in agreement with the result obtained in [16].
Another known problem with a well-known answer is finding the classical propagator for the harmonic

oscillator. Working in units such that ~ = m = ω0 = 1, the Hamiltonian operator is

Ĥ =
p̂2

2
+
q̂2

2
.
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Solving the system of differential equations (44) for this Hamiltonian, we can obtain the following matri-
ces:

Λosc =

[
cos t sin t
− sin t cos t

]
, ∆osc =

[
0
0

]
.

Consequently, in view of formula (46), the classical propagator for the harmonic oscillator reads

Πosc(X,µ, ν,X ′, µ′, ν ′, t) = δ(X −X ′) δ(ν cos t+ µ sin t− ν ′)
×δ(µ cos t+ ν sin t− µ′),

which is also derived in [16, 17].

10. Conclusions

The state of a quantum system can be equivalently described by the ket-vector, density operator,
Wigner function, or tomographic symbol. The density operator and Wigner function are related by an
invertible map. But the map relating Wigner functions and tomographic symbols is not one-to-one and
does not have an inverse.

In view of the homogeneity of tomographic symbols, it is possible to find a set of left inverses for this
map. All of these left inverses acting on a tomogram consistently give a unique Wigner function.

Since the tomographic symbol of a quantum state contains redundant information on the quantum
state, there are many propagators that give the time evolution of tomograms.

The classical propagator is the one that at the initial time has a three-dimensional delta-function form.
Also we showed that the classical propagator is a homogeneous function and satisfies the Schrödinger
equation in the tomographic representation.

There are invertible maps between propagators of the von Neumann equation, the Moyal equation,
and the Schrödinger equation in the tomographic representation.
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