
Journal of Mathematical Modelling and Algorithms 3: 323–347, 2004.
© 2004 Kluwer Academic Publishers. Printed in the Netherlands.

323

Helper-Objectives: Using Multi-Objective
Evolutionary Algorithms for Single-Objective
Optimisation

MIKKEL T. JENSEN
The EVALife Group, Department of Computer Science, University of Aarhus, Denmark

Abstract. This paper investigates the use of multi-objective methods to guide the search when solv-
ing single-objective optimisation problems with genetic algorithms. Using the job shop scheduling
and travelling salesman problems as examples, experiments demonstrate that the use of helper-
objectives (additional objectives guiding the search) significantly improves the average performance
of a standard GA. The helper-objectives guide the search towards solutions containing good building
blocks and help the algorithm escape local optima. The experiments reveal that the approach works
if the number of simultaneously used helper-objectives is low. However, a high number of helper-
objectives can be used in the same run by changing the helper-objectives dynamically. The experi-
ments reveal that for the majority of problem instances studied, the proposed approach significantly
outperforms a traditional GA.

The experiments also demonstrate that controlling the proportion of non-dominated solutions
in the population is very important when using helper-objectives, since the presence of too many
non-dominated solutions removes the selection pressure in the algorithm.

Mathematics Subject Classification (2000): 68T20.

Key words: multi-objective optimisation, helper-objectives, multi-objectivisation, genetic
algorithms, optimisation.

1. Introduction

Over the last decade, there has been intense research activity on evolutionary algo-
rithms (EAs) for multi-objective optimisation. Multi-objective EAs are algorithms
capable of optimising several different objectives at the same time, and can iden-
tify a set of solutions representing non-dominated trade-offs between conflicting
objectives. They return an approximation of the Pareto-optimal set, the truly non-
dominated solutions in the search-space. Well known multi-objective EAs include
NSGA-II [8], PESA-II [6] and SPEA [25]. The focus of multi-objective optimisa-
tion so far has been on developing new algorithms capable of getting closer to the
true Pareto-optimal set and achieving a better spread of the solutions returned.

Recent research [4, 17] indicates that methods from Pareto-based multi-objec-
tive optimisation may be helpful when solving single-objective optimisation prob-
lems. Important problems in single-objective optimisation include: (i) avoiding

324 MIKKEL T. JENSEN

local optima, (ii) keeping diversity at a reasonable level, and (iii) making the al-
gorithm identify good building blocks that can later be assembled by crossover.
The purpose of this paper is to further investigate if multi-objective methods can
be used to overcome these difficulties in single-objective optimisation.

Traditional single-objective optimisation methods focus on one objective exclu-
sively (denoted the primary objective in the following), but in this paper the notion
of helper-objectives will be introduced. The idea is that the simultaneous optimi-
sation of the primary objective and a number of helper-objectives may perform
better than an algorithm focusing on the primary objective alone. This can happen
if the helper-objective is chosen in such a way that it helps maintain diversity in
the population, guides the search away from local optima, or helps the creation
of good building blocks. Most multi-objective algorithms were designed to create
diverse non-dominated fronts. Hence population diversity should be increased if
the helper-objectives are in conflict with the primary objective.

The problems studied in this paper are the job shop scheduling problem using
a total flow-time primary objective and the travelling salesman problem. For both
problems, a number of helper-objectives and a multi-objective algorithm for mini-
mising the primary objective will be developed, and the results of this algorithm
will be compared to the results of a traditional genetic algorithm working only with
the primary objective. The experiments reveal that on average the multi-objective
algorithms perform significantly better than the traditional algorithms.

The outline of the paper is as follows. The next section discusses related work.
Section 3 introduces helper-objectives, using the job shop scheduling problem as
an example. The first subsection defines the helper-objectives for this problem and
discusses what helper-objectives are and how they can be applied. An algorithm
using helper-objectives as well as a traditional GA for the job shop scheduling
problem are developed in Section 3.2 and tested in Section 3.3. The experiments
demonstrate that the new approach outperforms the traditional algorithm, but that
keeping the proportion of non-dominated solutions at a low level by niching may
further enhance the performance. A few simple niching schemes are incorporated
into the algorithm and tested in Section 3.4. Section 4 discusses the work done
on the travelling salesman problem. The first subsection describes the local search
used by the algorithms, while Section 4.2 discusses helper-objectives for the TSP.
The algorithms are presented in Section 4.3, while experiments are presented in
Section 4.4. The last section concludes the paper and discusses future work.

2. Related Work

The idea of decomposing a single-objective problem into several objectives was
investigated as early as 1993 by Louis and Rawlins [19]. Their work demonstrated
that a deceptive problem could be solved more easily using Pareto-based selection
than standard selection in a GA.

MULTI-OBJECTIVE EVOLUTIONARY ALGORITHMS 325

Knowles et al. [17] proposed multi-objectivisation, a concept closely related to
the helper-objectives proposed in this paper. The idea in multi-objectivisation is to
decompose the optimisation problem into subcomponents by considering multiple
objectives. The authors study mutation-based evolutionary algorithms, and argue
that decomposition into several objectives will remove some of the local optima in
the search-space, since a solution has to be trapped in all objectives in order to be
truly “stuck”. The problems investigated are the hierarchical-if-and-only-if func-
tion (HIFF) and the travelling salesman problem. For both problems an objective
function of the form A+B is decomposed into two separate objectives A and B. In
experiments, the algorithms based on multi-objectivisation outperform comparable
algorithms based on the single objective.

The main difference between the study of Knowles et al. [17] and the present
one is in the details of how multi-objective methods are used to solve the single-
objective problem. Knowles et al. disregard the primary objective in their experi-
ments and use only what is referred to in this paper as helper-objectives.� Further-
more, they use only static objectives, whereas the objectives used in this paper are
changed dynamically.

The idea of using additional objectives to escape local optima has been used
in a different setup by Wright [24]. Wright studied a timetabling problem using
simulated annealing and threshold accepting algorithms. He introduced sub-costs,
an idea closely related to the helpers used in this paper. The algorithms would
accept moves degrading the objective provided at least one sub-cost was improved
sufficiently. The approach was found to significantly improve performance when
comparing to similar algorithms not using sub-costs.

In [5], Coello Coello and Aguirre develop a GA for the generation of logical
circuits. They decompose the objective function into a high number of objectives,
one objective corresponding to each of the outputs of the circuits. Their approach
is based on a VEGA-like algorithm in which a subpopulation is created for each
objective. The subpopulations cooperate to generate a solution that produces only
correct outputs. Additionally, the algorithm rewards solutions using a small number
of logical gates, provided that all outputs are correct. The algorithm is demon-
strated to produce better solutions than human designers and a previous GA-based
approach.

Another application of multi-objective methods in single-objective optimisation
is the reduction of bloat (uncontrolled growth of solution size) in genetic program-
ming [4, 7]. Bleuler et al. [4] and de Jong et al. [7] independently studied the effect
of using the size of the genetic program as an extra objective in genetic program-
ming. Both studies find that the additional objective both reduces the average size
of the solutions found and decreases the processing time needed to find an optimal
solution. A related study is [9], in which bloat in a GP solving a regression problem
is reduced with a multi-objective method.

� They remark that keeping the primary objective is also an option.

326 MIKKEL T. JENSEN

Scharnow et al. [20] present theoretical arguments that the single source shortest
path problem can be solved more efficiently by an EA when seen as multi-objec-
tive than as a single-objective problem. The authors show that the problem can be
solved in expected time O(n3) when cast as multi-objective, and argue that in some
cases seeing the problem as single-objective will be equivalent to a needle-in-a-
haystack problem, giving a much higher processing time. Scharnow et al. assume
that non-existing edges in the graph and infeasible solutions are represented as
infinite weights. However, non-existing edges and infeasible solutions can also be
represented using large (finite) weights. In this case the expected running time
of the single-objective algorithm will be identical to that of the multi-objective
algorithm.

3. Helper-Objectives and Job Shop Scheduling

This section introduces helper-objectives using the job shop scheduling problem
(JSSP) [13] as an example. The JSSP is probably the most intensely studied schedul-
ing problem in literature. It is NP-hard. A job shop problem of size n × m consists
of n jobs J = {Ji} and m machines M = {Mj }. For each job Ji a sequence
of m operations (oi1, oi2, . . . , oim) describing the processing order of the opera-
tions of Ji is given. Each operation oij is to be processed on a certain machine
and has a processing time τij . The scheduler has to decide when to process each
of the operations, satisfying the constraints that no machine can process more than
one operation at a time and no job can have more than one operation processed at
at time. Furthermore, there can be no preemption; once an operation has started
processing, it must run until it is completed.

Several performance measures exist for job shop problems. The performance
measure used in this paper is the total flow-time

F� =
n∑

i=1

Fi, (1)

where Fi is the flow-time of job i, the time elapsed from the beginning of process-
ing until the last operation of Ji has completed processing.

3.1. HELPER-OBJECTIVES

When selecting helper-objectives for our problem, we should ensure that the helper-
objectives are in conflict with the primary objective, at least for some parts of the
search-space. Optimising the primary objective and a helper-objective simultane-
ously will be equivalent to simply optimising the primary objective if the objectives
are not conflicting. Furthermore, helper-objectives should reflect some aspect of
the problem that we expect could be helpful for the search. For the total flow-time
job shop problem, the flow-times of the individual jobs Fi are a natural choice
as helper-objectives. Minimising the flow-time of a particular job will often be in

MULTI-OBJECTIVE EVOLUTIONARY ALGORITHMS 327

Figure 1. Illustration of helper-objective for the total flow-time JSSP.

conflict with minimising the sum of flow-times. However, since a decrease in the
total flow-time can only happen if the flow-time is decreased for at least one of the
jobs, the minimisation of individual flow-times may improve the minimisation of
the total flow-time. Furthermore, the crossover operator may be able to combine a
schedule with a low flow-time for Ji but a high total flow-time with a schedule with
a low total flow-time to produce a schedule with an even lower total flow-time.

The effect of a helper-objective on the JSSP is illustrated on Figure 1. For
simplicity, the figure deals with a problem instance with only two jobs, meaning
the total flow-time can be calculated F� = F1 + F2. The plot has F1 and F2 along
the two main axes. Since F� is a linear function of F1 and F2, the F� value of a
given solution (point in the plot) can be found as a projection of the point onto
the third axis (the F�-axis). Consider the two solutions p1 and p2 in the plot,
and assume F1, F2 and F� to be the objectives of a Pareto-based GA. Since p1

has F� = 7, F1 = 2, F2 = 5 and p2 has F� = 8, F1 = 5, F2 = 3, neither
of the solutions Pareto-dominate the other.� If there are no more solutions in the
population, p1 and p2 will both be assigned the same fitness in a Pareto-based
EA. Consider the recombination of p1 and p2. Assuming the crossover-operator to
be respectful and preserve good building blocks (i.e. the flow-times of individual
jobs), the outcome of such a recombination could be the solution c. This solution
has the low F1 of p1 and the low F2 of p2, meaning a F� (the primary objective)
lower than both of the parents. Of course, other outcomes of such a recombination
are also possible.

In a job shop of n jobs, there are n different helper-objectives of the Fi kind.
The benchmarks used in this paper have between 10 and 50 jobs and potential
helper-objectives. Using that many helper-objectives simultaneously is probably
more harmful than beneficial, since most of the individuals in the population could

� Since p1 has the lowest F1 and F� -values, p2 does not dominate p1. p2 has the lowest F2-
value, so p1 does not dominate p2. Recall that solution a has to be no worse than solution b in all
objectives and better in at least one in order for a to Pareto-dominate b.

328 MIKKEL T. JENSEN

Figure 2. The use of dynamic helper-objectives.

be non-dominated very early in the program run, and the focus of the search will
be shifted away from the primary objective to an unacceptable degree.

A solution to this problem is to use only a subset of the helper-objectives at
any given time, and sometimes change the helper-objectives. The “slots” in the
program used to hold the current helper-objectives will be termed dynamic helper-
objectives. When the helper-objectives are changed during the program run, we
need to decide how to schedule the changes. Using h dynamic helper-objectives
and having a total of H helper-objectives to be used in a run of T CPU-seconds,
each helper-objective can be used for

D = hT

H

CPU-seconds, assuming all helper-objectives to be used for the same amount of
time. Potentially, the helper-objectives could be changed for every generation, but
since there will not be time for good building blocks to be formed during such
a short period, the opposite approach was taken in the experiments: each helper-
objective was used for one period of the maximal length possible. Every D gen-
erations the helper-objectives were changed to the next objectives in the helper-
objective sequence. The sequence in which the helper-objectives are used may have
an influence on the search, but since we have no way to know which order is the
best one, a random ordering of the helper-objectives was used. This is illustrated for
a six-job problem in Figure 2. The illustration uses two dynamic helper-objectives,
meaning that at any given time the primary objective and two of the six helper-
objectives are in use. At fixed time intervals, the dynamic helper-objectives are
changed to the next objectives from the helper-objective sequence.

The experiments with the multi-objective algorithm were conducted using one,
two and three dynamic helper-objectives and n static helper-objectives, where n

is the number of jobs in the problem instance in question. In the following, an
algorithm using x helper-objectives simultaneously will be called an x-helper al-
gorithm.

3.2. THE ALGORITHMS

The multi-objective algorithm used as a starting point for the algorithm used in the
experiments is the Non-dominated Sorting GA version II, NSGA-II, published by

MULTI-OBJECTIVE EVOLUTIONARY ALGORITHMS 329

Deb et al. [8]. This algorithm has been demonstrated to be among the most efficient
algorithms for multi-objective optimisation on a number of benchmarks.

When selecting a multi-objective algorithm for single-objective optimisation,
the running time of the algorithm is an important issue. A computational overhead
will be associated with using the helper-objectives, and it is important to minimise
this overhead as much as possible. A traditional single-objective GA runs in time
O(GN), where G is the number of generations and N is the population size. The
traditional implementation of the NSGA-II runs in time O(GMN2), where M is the
number of objectives [8]. However, recent research [15] shows that the algorithm
can be modified to run in time O(GN logM−1 N). The vast majority of multi-ob-
jective algorithms known today have running times no better than this.

A detailed description of the NSGA-II is outside the scope of this paper. The
interested reader is referred to [8, 15]. A very brief description of the algorithm
follows: (i) Fitness is assigned based on non-dominated sorting, (ii) All individuals
not dominated by any other individuals are assigned front number 1. All individuals
only dominated by individuals in front number 1 are assigned front number 2, etc.
Selection is made in size two tournaments. If the two individuals are from different
fronts, the individual with the lowest front number wins. If they are from the same
front, the individual with the highest crowding distance wins; in this way higher
fitness is assigned to individuals located on a sparsely populated part of the front.
In every generation N new individuals are generated. These compete with their
parents (also N individuals) for inclusion in the next generation.

Other multi-objective algorithms, such as SPEA [25], PDE [1] or PESA-II [6]
could have been used as a starting point for the helper-objective algorithm, but
note that in their basic forms all of these have longer processing times than the
improved NSGA-II. This may result in longer processing times (or conversely, less
fitness evaluations in the same processing time).

The traditional stopping criterion used when working with GAs is the number
of fitness evaluations used. This stopping criterion was used in a previous study of
helper-objectives [14]. However, the multi-objective part of the helper-objective al-
gorithm requires more processing time than a standard single-objective algorithm,
and it can be argued that comparing a helper-objective algorithm and a standard
algorithm on the basis of a fixed number of fitness evaluations is not entirely fair.
Using the same amount of processing time, the single-objective algorithm may be
able to perform more fitness evaluations than the helper-algorithm. In this study,
the processing time used by the program is used as a stopping criterion. For the
experiments on job shop scheduling, the programs were allowed to spend 0.02
CPU-seconds per operation in the problem instance.� Thus for a 200 operation
instance, the programs were allowed to run for 4 CPU-seconds. The computers
used in the experiments were 1.7 GHz pentium 4 PCs running Linux. The programs
where implemented in C++ and compiled using the gnu compiler.

� Since the stopping criterion is only tested at the end of each generation, the programs may
actually run for one generation more than this.

330 MIKKEL T. JENSEN

3.2.1. Multi-Objective GA for the JSSP

The genetic representation used in the algorithm was the permutation with rep-
etition representation widely used for the job shop problem, see, e.g., [13]. In
this representation, a schedule is represented by a sequence of job numbers, e.g.,
(1, 3, 1, 2, . . .). If job Ji consists of k operations, then there will be k instances of i

in the sequence. Decoding is done using the Giffler–Thompson schedule
builder [11]. This decoder builds the schedule from left to right, adding one op-
eration at a time. The sequence of the gene is interpreted as a list of priorities on
the operations. The gene (1, 3, 1, 2, . . .) gives the highest possible priority to the
first operation of job 1, followed by the first operation of job 3, the second operation
of job 1, etc. The permutation with repetition representation has the advantage that
it cannot represent infeasible solutions. All active schedules can be represented,
which guarantees that the optimal schedule is in the search-space.

The algorithm uses the Generalised Order crossover operator (GOX) and the
position based mutation operator (PBM), both widely used in scheduling research.
The GOX operator selects a substring in one parent, deletes the operations cor-
responding to the substring in the other parent, and inserts the substring at the
position of the first deleted operation. The PBM operator moves an operation
picked from a random position in the string to another position. For more detailed
descriptions on GOX and PBM, see [13].

The crossover rate was set to 1.0 and mutation was performed on offspring after
crossover. These choices were made after experiments with two different ways
of doing crossover: (i) GOX followed by PBM and (ii) GOX alone.� Experiments
were conducted using one dynamic helper-objective on the la26 instance for cross-
over rates 0.0, 0.1, 0.2, . . . , 1.0. For each crossover rate 500 runs of the algorithms
were performed, and the best performing parameter setting was selected. Using a
resampling test (see Appendix A) the parameter setting of crossover rate 1.0 and
mutation after crossover was found to perform significantly better than all the other
parameter settings tested. After fixing the crossover rate, an experiment to select the
population size was performed. The population sizes 10, 20, . . . , 500 were tested,
again running the algorithm 500 times on the la26 instance for each parameter
setting. A population size in the range 90–120 gave the best performance, so the
setting 100 was used in the rest of the experiments.

3.2.2. Traditional GA for the JSSP

A traditional GA for solving the JSSP was created. It used the same representation,
decoding and genetic operators as the multi-objective algorithm. The algorithm
used an elite of one. As in the multi-objective algorithm, selection was done in
two-tournaments. Since the algorithm is fundamentally different from the multi-

� In an earlier study, [14], the possibility of using the PPX crossover operator was investigated as
well. It was found to be inferior to GOX and was not used in this study.

MULTI-OBJECTIVE EVOLUTIONARY ALGORITHMS 331

objective algorithm, it was deemed inadequate to simply use the parameter settings
found for that algorithm.

Experiments were conducted to identify good settings of the crossover rate and
population size. The method used to identify these parameters was identical to the
one used for identifying parameters for the helper-algorithm. For the traditional
GA, a crossover rate of 0.8, no mutation after crossover and a population size of
120 were observed to be the best choices.

3.3. EXPERIMENTS

The multi-objective algorithm was run with 1, 2 and 3 dynamic helper-objectives,
and with static helper-objectives using all n helper-objectives at the same time.
Experiments were performed on the 24 problem instances listed in Table I. The
instances prefixed by ft are from [10], the instances prefixed by la are from [18],
and the instances prefixed by swv are from [23].

Each experiment consisted of 500 runs, from which the average best perfor-
mance was calculated. Similar experiments were conducted for the traditional GA,
the results are shown in Table II. The table holds one row for every problem in-
stance. The five rightmost columns correspond to the five algorithms tested, while
the leftmost column reports the lowest known total flow-time for the problem in-
stance.� The five rightmost columns report the average best total flow-time F�

in percent above the best known value. Resampling tests have been performed
to compare the averages statistically. Performances marked ‘+’ are significantly
better (i.e. have a lower average) than the performance produced by the traditional
algorithm, while numbers marked ‘−’ are significantly worse (i.e. have a higher
average) than the performance produced by the traditional algorithm. For every
problem instance, the best performance has been printed in bold, and this number
is significantly lower than numbers not marked ‘∗’. The last row holds the total
flow-time for each algorithm averaged over all the instances.

Table I. The benchmarks used in the experiments

Size Instances Size Instances

10 × 5 la01,la02 20 × 10 la26,la27,swv01,swv02

15 × 5 la06,la07 30 × 10 la31,la32

20 × 5 la11,la12,ft20 15 × 15 la36,la37

10 × 10 la16,la17,ft10 20 × 15 swv06,swv07

15 × 10 la21,la22 50 × 10 swv11,swv12

� Since the author is unaware of any other results on the lowest total flow-times for the problems
used, the best known values are the best results achieved in the experiments.

332 MIKKEL T. JENSEN

Table II. Average best total flow-times in percent above the best known value. In each row,
the lowest number has been printed in bold. For brevity, standard deviations are not included
in the table. For all of the experiments the standard deviation lies between 1.0% and 3.0% of
the average best performance, the average value being 1.8%

Best Traditional 1-helper 2-helper 3-helper n-helper

known GA

la01 4832 4.0232 2.9180+ 2.4731∗+ 4.1805 8.9963−
la02 4468 4.2346 3.1513∗+ 3.5698+ 5.3850− 12.0636−
la06 8694 7.4350 5.7672∗+ 7.7835− 10.8259− 16.4125−
la07 8219 7.6530 5.7829∗+ 7.6396 10.8103− 17.1177−
la11 14801 6.8259 5.1969∗+ 7.9332− 11.2087− 18.3096−
la12 12490 7.4516 5.8799∗+ 8.7790− 12.4980− 22.1041−
la16 7393 5.8569 4.9317+ 4.3879∗+ 5.3280+ 9.0248−
la17 6555 4.0153 3.3822∗+ 3.2006∗+ 4.0641 7.1960−
la21 12990 5.8052∗ 5.6120∗ 6.5050− 9.3002− 14.1901−
la22 12106 5.6030 5.3825∗+ 5.8351− 8.3727− 14.3780−
la26 20538 5.7401 5.3827∗+ 6.7928− 9.2662− 13.8285−
la27 20992 6.3577∗ 6.2671∗ 7.8792− 10.2720− 14.7066−
la31 39929 6.0485 5.6130∗+ 6.9476− 8.9737− 14.2711−
la32 42951 6.4017∗ 6.2394∗ 7.8096− 9.5779− 14.0160−
la36 17073 5.4765 5.5655 5.2334∗+ 6.8477− 10.9705−
la37 17886 5.3869∗ 5.8716− 6.2965− 8.5782− 12.9459−
ft10 7557 8.2572 7.1602+ 6.1493∗+ 7.1232+ 10.5624−
ft20 14350 9.2397 7.8321∗+ 11.0704− 15.5986− 27.8753−
swv01 21444 9.3094∗ 9.0841∗ 10.5960− 13.7516− 21.7306−
swv02 22082 9.3302 8.7202∗+ 10.1458− 13.3339− 21.4854−
swv06 29051 8.6537∗ 9.3332− 9.9081− 12.2237− 18.2754−
swv07 27839 8.5391∗ 9.3527− 9.7633− 12.1086− 18.0326−
swv11 111890 9.3836∗ 9.3082∗ 9.8221− 13.0585− 29.7921−
swv12 110183 11.7348 11.1930∗+ 12.2730− 15.6204− 32.4346−
Average – 7.0318 6.4553 7.4497 9.9295 16.6967

Considering the average over all the instances, on average the traditional GA is
7.03% above the best known value, while for the 1-helper algorithm this number is
6.45%. This difference corresponds to an average difference of total flow-times of
81.7. When considering the total averages, the two-, three- and n-helper algorithms
all produce averages higher than the traditional algorithm.

Focusing on the individual problem instances, the experiments reveal that in
most cases the multi-objective algorithm using one helper-objective performs bet-
ter than the traditional algorithm. For this parameter setting, the multi-objective

MULTI-OBJECTIVE EVOLUTIONARY ALGORITHMS 333

Table III. Average number of fitness evaluations for each type of algorithm.
The last row reports the number of fitness evaluations relative to the traditional
algorithm

Algorithm Traditional 1-helper 2-helper 3-helper n-helper

Fitness evals 21373 20408 18937 17839 15932

Relative fitness evals 100% 95.5% 88.6% 83.5% 74.5%

Figure 3. Average best total flow-time as a function of the processing time for the la01 (left)
and la06 (right) instances.

algorithm produces a lower average best F� than the traditional algorithm for 20
out of the 24 problem instances. In 16 of these cases, a permutation test revealed the
difference to be statistically significant. For four instances (la36, la37, swv06, and
swv07), the traditional algorithm performed better than the one-helper algorithm,
the difference being statistically significant in three of these cases.

Regarding the two-helper algorithm, in most cases it is inferior to the one-helper
and the traditional algorithm. However, there are a number of cases (la01, la16,
la17, la36 and ft10) for which this algorithm outperforms all the other algo-
rithms. The algorithm using the maximal number of helper-objectives performs
much worse than the other algorithms for every single problem instance, while the
three-helper algorithm is always inferior to the one- and two-helper algorithms.

The average number of fitness evaluations used in each algorithm has been
printed in Table III. The averages have been taken over all the problems. The table
reveals that the overhead associated with using the helper-objectives increases as
the number of helper-objectives increases. For one helper-objective, the algorithm
has time to do 95.5% of the fitness evaluations done in the traditional GA, but as
the number of helper-objectives increases, this percentage drops to 74.5% when
using the maximal number of helpers.

The performances of the traditional algorithm and multi-objective algorithm
using one and two dynamic helper-objectives are shown on Figure 3. The plots
show the average best total flow-time as a function of the processing time for the

334 MIKKEL T. JENSEN

la01 and la06 problem instances. Comparing the algorithm using one dynamic
helper-objective to the traditional algorithm, it is evident that both algorithms start
off at the same level of performance, but after a few generations the multi-objec-
tive algorithm has a lower average best total flow-time. For both instances, the
difference between the two algorithms slowly gets larger as time progresses. This
behaviour was observed for all of the instances except la27, la36, la37, swv06
and swv07.

Considering the two-helper algorithm, it performs worse than both of the other
algorithms in the early stages of the run of both diagrams. For la01 in the late
stages of the run, the two-helper algorithm decreases the flow-time faster than the
other algorithms, and ends up with a slightly better performance than the one-
helper algorithm. For la06 the one-helper algorithm clearly beats the two-helper
algorithm.

The plot for la01 is typical for the instances for which the two-helper algorithm
has the best performance. The progression of this algorithm is slow during the early
stages of the run, but in the later stages it overtakes the other algorithms.

3.3.1. Investigating the Size of the Non-Dominated Set

The mediocre performance of the multi-objective algorithm for many dynamic
helper-objectives may be caused by too large non-dominated sets when the algo-
rithm is running. If most of the population belongs to the first non-dominated front,
most of the population will be assigned the same fitness (disregarding crowding),
and the selection pressure will be very low. Theoretical investigations reveal that
for random solutions the proportion of non-dominated solutions can be expected to
grow with the number of objectives [3]. The average size of the first non-dominated
front was investigated for all of the instances. Since the size of the front cannot be
expected to be constant during the run, the dependency on the CPU-time spent
was also investigated. Experiments were made for each combination of problem
instance and multi-objective algorithm of Table II.

The average size of the first non-dominated front is shown in Figure 4 for the
instances la01 and la06. In each diagram, the average front-size is plotted for
the algorithms using 1, 2 and 3 dynamic helper-objectives. The front-size for the
algorithm using all n helper-objectives is not plotted, since the average front-size
was always equal to the population size (100). This was the case for all the in-
stances, and accounts for the poor performance of this algorithm. The sudden drops
in average front-sizes on the plots is caused by the changes of helper-objectives;
every time the helper-objectives are changed, there is a decrease in the average
front-size. The front-size then gradually increases until the helper-objectives are
changed again. Comparing the algorithms to each other, it is evident that the aver-
age front-size is always large for the algorithm using three helper-objectives. This
was found to be the case for all of the instances, and the low selection pressure
resulting from the large front-size probably explains the poor performance for the
three-helper algorithm.

MULTI-OBJECTIVE EVOLUTIONARY ALGORITHMS 335

Figure 4. Average size of the non-dominated front as a function of processing time for the
la01 (left) and la06 (right) instances.

Considering the one-helper algorithm, the front-size at the beginning of the run
is low in both cases, which is also the case for all other problem instances. For
the la06 instance, the front-size stays at a relatively low level during the entire
run, while for la01 it increases and almost becomes equal to the population size
at the end of the run. Compared to the two-helper algorithm, the front-size starts
at a lower level, but it increases much more. For the la01 instance, the front-size
of the one-helper algorithm becomes larger than that of the two-helper algorithm
after approximately 0.35 CPU-seconds.

Behaviour similar to this was found in all the instances for which the two-
helper algorithm performed better than the one-helper algorithm. For all of these
instances, the average front-size of the one-helper algorithm was larger than in the
two-helper algorithm after around one third of the processing time or earlier. For
the other instances, the front-size of the one-helper algorithm stayed below that
of the two-helper algorithm during most of the run. This strongly indicates that
keeping the size of the first non-dominated front small is an important element in
tuning this kind of algorithm.

Another reason for the mediocre performance of the algorithms using many
helper-objectives could be that as the number of helper-objectives increases, the
proportion of non-dominated solutions with a low primary objective decreases.
This can be seen by investigating moves in the search-space as perceived by a
search-algorithm. When considering only the primary objective, moves that do not
degrade the primary objective will be seen as acceptable. When a helper-objective
is added, moves that are incomparable (i.e. none of the solutions dominate each
other) will be seen as acceptable. This allows the algorithm to escape local op-
tima in the primary objective by making seemingly ‘bad’ moves. Judging from the
experiments with one dynamic helper-objective, the ability to escape local optima
more than compensates for these bad moves. However, when more dynamic helper-
objectives are added, more bad moves are allowed. The experiments indicate that
when many helper-objectives are used simultaneously, the disadvantage of the bad
moves outweighs the advantage of escaping local optima.

336 MIKKEL T. JENSEN

3.4. CONTROLLING THE SIZE OF THE NON-DOMINATED SET

When the size of the non-dominated set increases, it is often because there is a high
number of identical individuals in the non-dominated set. The presence of many
identical individuals is self-perpetuating, since once many identical individuals are
present, there is a high probability of two identical individuals mating, creating
even more indviduals of this kind. The presence of many identical individuals is
a sign that the crowding scheme used is not powerful enough, so a method that
will be termed niche enforcement was tested. In niche enforcement, after the non-
dominated sorting of the population, all individuals that share the same objective
values are identified, and if more individuals than a prespecified value (called
the maximum niche-count) are present, excess individuals are removed at random
until only the allowed number of individuals share the same objective values. Pre-
liminary experiments revealed that the performance of the algorithm using niche
enforcement was quite sensitive to the value of the maximal niche count, and that
a maximal niche-count of 2 was a good value.

Instead of improving the crowding mechanism a simpler scheme was also tested.
Prior to the crossover operation, the two parents were compared. If they turned out
to have the same objective values (primary and helpers), they were deemed too sim-
ilar, and one parent was replaced by the best of two randomly chosen individuals
from the population. The test was not carried out a second time; crossover would
be performed if the new parent was similar to the old parent. In the following, this
scheme will be referred to as in-breeding control.

Experiments with the one-helper algorithm using niche enforcement only, in-
breeding control only, and niche enforcement and in-breeding control simultane-
ously were carried out, the results are in Table IV. The table has been constructed
in the same way as Table II, except that the ‘+’ now means “statistically better
than the standard one-helper algorithm”, while ‘−’ means “statistically worse
than the standard one-helper algorithm”. By inspecting the averages of the last
row we realize that on average all of the methods for controlling the size of the
non-dominated set improve performance when comparing to the standard one-
helper algorithm. The best overall algorithm uses niche enforcement as well as
in-breeding control, on average it is 6.07% above the best known total flow-time.
Averaged over all the problem instances, this algorithm has a total flow-time which
is 82.0 better than the standard one-helper algorithm and 163.7 better than the tradi-
tional algorithm. However, inspecting the table reveals that for individual problem
instances the pure in-breeding control and niche enforcement algorithms achieve
the best performance for a number of instances. Comparing the standard one-helper
algorithm to the algorithms controlling the size of the non-dominated set reveals
that there is only a single case (swv07) in which the standard algorithm significantly
outperforms the improved algorithms, but that the opposite is the case for 21 of the
instances.

Comparing the performance of the improved algorithms to the performance of
the two-helper algorithm from Table II reveals that in the cases for which the two-

MULTI-OBJECTIVE EVOLUTIONARY ALGORITHMS 337

Table IV. Average best total flow-times in percent above the best known value for the experi-
ments on controlling the size of the non-dominated set. For all of the experiments the standard
deviation lies between 1.1% and 3.0% of the average best performance, the average value
being 1.9%

Traditional Standard In-breed Niche In-breed cntr.

GA 1-helper control enforcement +niche enf.

la01 4.0232− 2.9180 2.6635+ 2.1275∗+ 2.1006∗+
la02 4.2346− 3.1513 3.0394 2.6365∗+ 2.6432∗+
la06 7.4350− 5.7672∗ 5.7787∗ 5.6407∗ 5.8270∗
la07 7.6530− 5.7829∗ 5.5518∗ 5.5931∗ 5.7087∗
la11 6.8259− 5.1969∗ 5.1875∗ 5.2888∗ 5.3625∗
la12 7.4516− 5.8799∗ 5.7766∗ 6.1017 6.0865

la16 5.8569− 4.9317 4.9317 3.8996∗+ 3.8374∗+
la17 4.0153− 3.3822 3.3425 2.4119∗+ 2.3570∗+
la21 5.8052 5.6120 5.4527 5.2386∗+ 5.4257∗
la22 5.6030− 5.3825 5.2007∗ 5.0355∗+ 5.0438∗+
la26 5.7401− 5.3827∗ 5.1889∗ 5.3106∗ 5.2206∗
la27 6.3577 6.2671 5.8194∗+ 6.2143 6.0604

la31 6.0485− 5.6130 5.3976∗+ 5.6082 5.5160∗
la32 6.4017 6.2394 5.9139∗+ 6.2210 6.0827∗
la36 5.4765 15.5655 5.2873+ 4.9113∗+ 4.8468∗+
la37 5.3869∗+ 5.8716 5.6374+ 5.3964∗+ 5.4093∗+
ft10 8.2572− 7.1602 6.7739+ 5.5366∗+ 5.6200∗+
ft20 9.2397− 7.8321∗ 7.8523∗ 7.7937∗ 7.8105∗
swv01 9.3094 9.0841∗ 8.7428∗ 9.2455 8.9582∗
swv02 9.3302 8.7202∗ 8.4032∗ 8.6500∗ 8.4127∗
swv06 8.6537∗ 9.3332 8.9746∗+ 9.2038 8.7205∗+
swv07 8.5391∗ 9.3527 9.0628 8.9730+ 9.0125

swv11 9.3836 9.3082 8.6956∗+ 9.0870+ 8.7101∗+
swv12 11.7348 11.1930∗ 11.2163∗ 11.3044∗ 11.0134∗
Average 7.0318 6.4553 6.2455 6.1429 6.0744

helper algorithm outperformed the one-helper algorithm (la01, la16, la17, la36
and ft10), the two-helper algorithm is outperformed by the algorithms using niche-
enforcement. The in-breeding control and niche enforcement methods were also
tested on the two-helper algorithm, but it was inferior to the one-helper algorithms
using the same methods.

The average size of the non-dominated sets were investigated as a function of
the processing time. This revealed that the size of the first non-dominated front
was substantially reduced by niche-enforcement. Typically, the size of the non-
dominated front stayed below 10 during the entire program run. The in-breeding

338 MIKKEL T. JENSEN

control scheme delayed the growth of the non-dominated set, but for instances such
as la01, most of the population would still be non-dominated at the end of the run.

4. The Travelling Salesman Problem

The travelling salesman problem (TSP) is a classical combinatorial optimisation
problem. It consists of a set of N cities c1, . . . , cN and an associated N×N distance
matrix M. The entries in M represent the distances between the cities, so M(c1, c2)

is the distance from c1 to c2. The objective is to find a Hamiltonian path (a circular
path visiting each city exactly once) with the smallest possible total distance. If
π = (π1, π2, . . . , πN) is a permutation of (1, 2, . . . , N) representing the tour of
the cities, then the distance associated with the tour can be calculated as

D(π) =
N∑

i=1

M(cπ[i], cπ[i⊕1]), (2)

where i ⊕ 1 =
{

i + 1 if i < N ,
1 if i = N .

For a good introduction to the TSP see [16]. The problem instances used in this
paper are all Euclidean instances in the plane. They are all available for download
at the TSPLIB website� or the travelling salesman website at Princeton.�� Each
instance is identified by one to three letters, followed by the number of cities. The
problem instances have between 99 and 2103 cities.

4.1. LOCAL SEARCH

There has been substantial work on solving the TSP using a number of heuristics,
including GAs. Current research indicates that if a GA solving the TSP is to be
competitive, it should be hybridised with specialised TSP methods, such as the
Lin–Kernighan algorithm [16].

The GAs used in this paper employ a simple local search heuristic called
2-opt [16, 2]. The 2-opt heuristic works by repeatedly applying moves of the kind
illustrated on Figure 5. In one move, the endpoints of the edges (c1, c2) and (c3, c4)

are interchanged so the edges (c1, c3) and (c2, c4) appear instead. The move is only
carried out if it improves the tour. This is repeated until no more improving moves
can be made.

In order to obtain an efficient implementation of the 2-opt local search, assume a
fixed orientation of the tour. Each possible 2-opt move can be represented as a four-
tuple [c1, c2, c3, c4], where (c1, c2), (c3, c4) are the edges deleted from the original
tour, and (c1, c3), (c2, c4) are the edges added to the new tour. Observe that for
symmetric problem instances the same move can also be represented by the tuple
[c3, c4, c1, c2]. Clearly, a move cannot improve the tour unless at least one of the

� www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/
�� http://www.math.princeton.edu/tsp/

MULTI-OBJECTIVE EVOLUTIONARY ALGORITHMS 339

Figure 5. The 2-opt move used by the local search procedure.

deleted edges is replaced by a shorter edge. Thus, when considering tuples of the
form [c1, c2, c3, c4], we need only consider c3 and c4 that satisfy the condition

M(c1, c2) > M(c1, c3) ∨ M(c1, c2) > M(c2, c4).

This will allow moves that replace the (c1, c2) edge by a shorter edge. Moves that
replace the (c3, c4) edge by a shorter edge can be allowed if we also consider moves
represented by the tuple [c3, c4, c1, c2].

When running the 2-opt local search, the algorithm starts by selecting an edge
(c1, c2). It then tests all possible moves [c1, c2, c3, c4] that satisfy the condition
above, implementing the first improving move it finds. It then goes on to the next
edge (c′

1, c
′
2) and implements the first improving move it finds. This process con-

tinues until there are no more improving moves and the solution is locally optimal.
Note that given the cities c1 and c2, we need not consider all possible choices of c3

and c4. For each city c, we keep a list Lc = (ca, cb, . . .) of other cities, sorted on
the distance to c. When considering moves of the form [c1, c2, c3, c4] with c1 and
c2 fixed, we find the choices of c3 and c4 that satisfy the condition by traversing Lc1

until we find a c3 for which M(c1, c2) > M(c1, c3) does not hold, and by traversing
Lc2 until we find a c4 for which M(c1, c2) > M(c2, c4) does not hold.

For solutions close to optimality, M(c1, c2) can be expected to be low, meaning
that few choices of (c3, c4) need to be tested.

4.2. HELPER-OBJECTIVES

We need to identify helper-objectives for the TSP. Knowles et al. [17] previously
studied the TSP in their work on multi-objectivisation. They decomposed the TSP
objective function (2) into two terms

D(π) = f1(π, a, b) + f2(π, a, b),

f1(π, a, b) =
π−1[b]−1∑

i=π−1[a]
M(cπ[i], cπ[i⊕1]),

f2(π, a, b) =
N∑

i=π−1[b]
M(cπ[i], cπ[i⊕1]) +

π−1[a]−1∑
i=1

M(cπ[i], cπ[i⊕1]),

340 MIKKEL T. JENSEN

where π−1[x] denotes the position of x in π and a and b are parameters (cities)
defining f1 and f2. Knowles et al. found f1 and f2 to be helpful for optimisation,
but these objectives have a weakness for symmetric problems. Given two cities a

and b defining f1 and f2, two different representations of the same tour can be
Pareto-incomparable, with two different values for f1 and f2.

As an example, consider the choices a = c3 and b = c4. Now consider the two
solutions π1 = (c1, c2, c3, c4) and π2 = (c3, c2, c1, c4). For a symmetric problem,
π1 and π2 represent the same tour. Calculating the objectives f1 and f2 for π1 and
π2 reveals that

f1(π1, 3, 4) = M(c3, c4),

f2(π1, 3, 4) = M(c4, c1) + M(c1, c2) + M(c2, c3),

f1(π2, 3, 4) = M(c3, c2) + M(c2, c1) + M(c1, c4) = f2(π1, 3, 4),

f2(π2, 3, 4) = M(c4, c3) = f1(π1, 3, 4).

Thus, despite representing the same tour, generally π1 and π2 will be given different
objectives, and will be non-identical, and incomparable in the Pareto-sense. For
algorithms employing niching this is not a good property, since niching relies on
being able to recognise identical solutions.

A helper objective without this problem is the following:

h(π, p) =
|p|∑
i=1

M(cπ[π−1[p[i]]�1], cp[i]) + M(cp[i], cπ[π−1[p[i]]⊕1]), (3)

where p is a subset of {1, 2, . . . , N} and �1 is the reverse of ⊕1. The helper-
objective h(π, p) is the sum of distances in the path incident on the cities in p.
This helper-objective has the property that all solutions representing the same tour
will share the same objective value.

Any number of helpers h1(π, p1), h2(π, p2), . . . , hH (π, pH) can be used. The
helper-objectives were generated by creating a number of random sets p1, p2,

. . . , pH , where each city had a 50% probability of being in a given set.

4.3. THE ALGORITHMS

The same algorithmic templates used for the JSSP were used for the TSP. The only
differences were in the representation, decoding, local search and operators. The
representation used was the permutation encoding often used for the TSP [22].

The recombination used in the algorithms was the improved edge recombination
operator (ER) published by Starkweather et al. [22]. This operator was constructed
to convey adjacency information present in both parents to the offspring. If the edge
(ca, cb) is present in both parents, it will also be present in the child. Starkweather
et al. found the ER operator to be superior to a number of other crossover operators
for the TSP. The interested reader is referred to [22] for detailed information on
how the operator works.

MULTI-OBJECTIVE EVOLUTIONARY ALGORITHMS 341

Figure 6. The mutation used by the TSP algorithms.

The mutation operator picks a random city in the tour, removes it and inserts it
at a random position in the tour, see Figure 6 for an illustration. The local search
of Section 4.1 was applied to all solutions produced by crossover or mutation.

In preliminary experiments, the time spent on local search to produce a locally
optimal solution was found to be roughly proportional to N3/2, where N is the num-
ber of cities. This can be justified by the fact that implementing a successful 2-opt
move takes time proportional to N . Moreover, more moves are made on solutions
with many cities before local optimality is achieved. Following this observation,
the time allowed in a single GA run was made proportional to N3/2. The CPU-time
allowed for a run was set to 0.002N3/2 CPU-seconds.

4.3.1. Multi-Objective GA for the TSP

Since the experiments on the JSSP revealed that the algorithms using more than one
dynamic helper-objective were inferior to the one-helper algorithm and its variants
using control of the non-dominated set, only variants of the one-helper algorithm
were tested for the TSP.

A set of experiments were conducted to identify the best number of helper-
objectives. The experiments were made on the pr439 problem instance, and the
numbers 2, 4, 6, 8, 10, 12, 16, 20 and 40 were tested. For every parameter setting,
500 runs were made of the algorithm. The experiments revealed that the best set-
ting was in the range 8–12, and 10 helper-objectives were used in the rest of the
experiments.

The algorithm used a crossover rate of 0.7, with no mutation applied after
crossover. Individuals not produced by crossover were created using the mutation
operator. This choice was made after testing the crossover rates 0.0, 0.1, . . . , 1.0 on
the pr439 instance. The experiments revealed that the algorithm using a crossover
rate of 0.7 showed the best performance, being significantly better than algorithms
with crossover rates in the ranges 0.0 to 0.4 and 0.9 to 1.0.

The population sizes 10, 20, . . . , 300 were tested using 500 repetitions of the
algorithm. The best performances was achieved with a population size of 100. This
setting was found to be significantly better than population sizes in the ranges 10
to 70 and 170–300.

342 MIKKEL T. JENSEN

4.3.2. Traditional GA for the TSP

Experiments identical to the ones performed on the multi-objective algorithm were
made for the traditional algorithm to set the crossover rate and population size.
For this algorithm a crossover rate of 0.4 showed the best performance, being
significantly better than algorithms with crossover rates in the ranges 0.0–0.1 and
0.5–1.0. A population size of 140 showed the best performance, being significantly
better than population sizes in the ranges 10–70 and 150–300.

4.4. EXPERIMENTS

Experiments were conducted with the traditional GA, the standard one-helper al-
gorithm, and three variants of the one-helper algorithm using control of the non-
dominated set: only in-breeding control, only niche enforcement (using a maxi-
mum niche count of 2), and both. Each algorithm was run 500 times on every
problem instance.

For each combination of algorithm and problem instance, the average best tour
length as a percentage over the optimal tour length is given in Table V. Experiments
were also conducted on the instances pr144, pr226, pr264 and rat99, but since
all of the algorithms found the optimal solution in all of the runs, these problems
are not shown.

For brevity, standard deviations are not included in the table. However, for all of
the experiments the standard deviation lies between 0.0% and 0.6% of the average
best tour length, the average being 0.2%. Resampling tests have been performed
to compare the numbers. In each row, numbers marked ‘+’ are significantly lower
than the traditional algorithm, while numbers marked ‘−’ are significantly higher
than the traditional algorithm. For each problem instance, the smallest number
has been printed bold, and this number is significantly lower than numbers not
marked ‘∗’.

The numbers in the table clearly indicate that the traditional algorithm is inferior
to the multi-objective algorithms. The traditional algorithm does not produce the
lowest average best for any of the problem instances, and is significantly worse
than at least one of the other algorithms for all of the problem instances except
pr299. Considering the averages over all the problems, the best performer is the
standard one-helper algorithm, achieving an average of 0.86% above the optimal
solution. Considering the average standard deviation of 0.2%, this is much better
than the average of 1.44% achieved by the traditional GA. When comparing the
four variants of the one-helper algorithm to each other, it is evident that the choice
of algorithm is dependent on the problem instance. The standard one-helper algo-
rithm produces the best performance for the majority of the problem instances, but
is inferior to the two algorithms using niche enforcement when considering some
of the small and medium problem instances.

MULTI-OBJECTIVE EVOLUTIONARY ALGORITHMS 343

Table V. Average best tour lengths in percent above the optimal tour length for the experiments on
the TSP. In each row, the lowest number has been printed bold

Optimal Traditional Standard In-breed Niche In-breed cntr.

GA 1-helper control enforcement +niche enf.

pr107 440303 0.0102 0.0124 0.0115 0.0053∗+ 0.0039∗+
pr124 59030 0.0023 0.0081− 0.0117− 0.0000∗+ 0.0000∗+
pr136 96772 0.0695 0.0527∗+ 0.0624 0.0530∗+ 0.0561∗+
pr152 73682 0.0048 0.0037∗ 0.0093− 0.0022∗ 0.0015∗+
pr299 48191 0.1601∗ 0.1555∗ 0.1580∗ 0.1548∗ 0.1601∗
pr439 107217 0.0546 0.0501+ 0.0489+ 0.0396∗+ 0.0411∗+
pr1002 259045 3.3346 2.2969∗+ 2.3872+ 2.5308+ 2.5795+
rat195 2323 0.2217 0.2174 0.2238 0.1502∗+ 0.1533∗+
rat575 6773 2.1276 1.0075∗+ 1.0837+ 1.1094+ 1.1279+
rat783 8806 2.6488 1.3761∗+ 1.4833+ 1.6169+ 1.6167+
d198 15780 0.4089 0.2437∗+ 0.2454∗+ 0.2444∗+ 0.2413+
d493 35002 1.3294 0.8313∗+ 0.8661∗+ 0.9419+ 0.9632+
d657 48912 1.6217 0.7695∗+ 0.8318+ 0.9008+ 0.9005+
d1291 50801 1.3771 1.0695∗+ 1.0738∗+ 1.1250+ 1.1264+
d1655 62128 4.0644 3.4054∗+ 3.5005+ 3.5939+ 3.6198+
d2103 80450 1.3115 0.7216∗+ 0.7910+ 0.8873+ 0.9423+
xqf131 564 0.0213 0.0266 0.0248 0.0142∗+ 0.0124∗+
xqg237 1019 0.3837 0.3886 0.3925 0.3553∗+ 0.3660∗
pma343 1368 0.9664 0.1462∗+ 0.1520∗+ 0.1382∗+ 0.1389∗+
pka379 1332 1.3011 0.3423∗+ 0.3611∗+ 0.3949+ 0.3911+
bcl380 1621 0.1246 0.1487− 0.1474− 0.0993∗+ 0.0913+
pbl395 1281 0.2311 0.2287 0.2334 0.1483∗+ 0.1655∗+
pbk411 1343 1.8139 0.3232+ 0.3038+ 0.2331∗+ 0.2472∗+
pbn423 1365 0.1656 0.1612 0.1378∗+ 0.1253∗+ 0.1216∗+
pbm436 1443 0.7346 0.7048∗+ 0.6979∗+ 0.6868∗+ 0.6849∗+
xql662 2513 0.7310 0.5324∗+ 0.5487∗+ 0.5487∗+ 0.5273∗+
rbx711 3115 1.0417 0.6199∗+ 0.6456∗+ 0.6594+ 0.6616+
rbu737 3314 2.1919 1.0202∗+ 1.0278∗+ 1.0905+ 1.0763+
dkg813 3199 2.0791 0.9500∗+ 1.0328+ 1.1382+ 1.1513+
lim963 2789 2.4077 1.1671∗+ 1.2402+ 1.3557+ 1.3926+
pbd984 2797 2.2317 1.0240∗+ 1.0955+ 1.1984+ 1.5316+
xit1083 3558 3.2532 1.6526∗+ 1.8527+ 1.9753+ 1.9938+
dka1376 4666 3.2634 2.1192∗+ 2.2220+ 2.4106+ 2.4535+
dca1389 5085 3.1526 2.1780∗+ 2.2401+ 2.4124+ 2.4895+
dja1436 5257 3.9855 2.8516∗+ 2.9873+ 3.1413+ 3.2277+
icw1483 4416 3.4823 2.2431∗+ 2.6046+ 2.7446+ 2.8306+
Average – 1.4447 0.8622 0.9093 0.9507 0.9747

344 MIKKEL T. JENSEN

5. Conclusion

This paper has demonstrated that multi-objective methods can be used for improv-
ing performance in single-objective optimisation. The notion of helper-objectives
has been introduced, a helper-objective being an additional objective conflicting
with the primary objective, but helpful for diversifying the population and forming
good building blocks.

Experiments have demonstrated that for the total flow-time job shop scheduling
problem, the performance of a traditional GA can be significantly improved by
using helper-objectives. Using one dynamic helper-objective is the most promising
approach, since using too many helper-objectives at the same time removes the
selection pressure in the algorithm. Experiments revealed that controlling the size
of the non-dominated set through niching is important in this kind of algorithm,
and two kinds of control were investigated. They both improved performance sig-
nificantly, but the method termed niche enforcement (removing identical solutions)
is the most promising.

The idea was also tested on the travelling salesman problem. The experiments
revealed that also for this problem performance could be improved significantly
by using helper-objectives. The methods for control of the non-dominated set were
tested on this problem, but the results were ambiguous; for some problem instances
the use of niche enforcement improved performance, while for others the algorithm
not using any kind of improved niching had the best performance.

The helper-objectives used on the JSSP and the TSP in this paper were found us-
ing clever guesswork and intuition. There is currently no methodology for finding
good helper-objectives for a given problem. The objectives used on the TSP in [17]
demonstrate that several different types of helpers can be efficient for the same
problem. However, other problems may exist for which no helper-objectives can be
found. In a preliminary study, the helpers used on the total flow-time JSSP in this
paper were tested on a JSSP using makespan as the primary objective. This study
revealed no beneficial impact from using the helpers. A methodology for determin-
ing a priori if a potential helper-objective is efficient is needed if helper-objectives
are to be applied in a wider setting.

Scheduling the use of dynamic helper-objectives is the subject of future re-
search. The experiments of this paper indicate that using one dynamic helper-ob-
jective is the best approach, but the question of when to change the helper-objective
is still open. Adaptive selection of helpers, perhaps based on monitoring the helpers
or the size of the non-dominated set could be an interesting direction of research.

Another direction of future research is applying the methods of this paper to
other kinds of problems. In order for the methods to work on a problem, reasonable
helper-objectives must be found. Combinatorial problems in which the objective
consists of a sum or product of many terms can probably be solved using the same
approach used in this paper; a helper-objective can be defined for each term or as a
sum terms.

MULTI-OBJECTIVE EVOLUTIONARY ALGORITHMS 345

Acknowledgement

The author wishes to thank his colleagues at EVALife and the anonymous review-
ers for helpful comments.

Appendix A. Comparing Averages Using Resampling

Traditional statistical testing relies on the data tested to conform to certain well-
known distributions. However, it is often necessary to perform statistical testing
on data that does not follow any of the standard distributions. Often researchers
ignore the fact that data does not comply with the assumptions of traditional tests
and apply tests such as ANOVA [21] anyway.

A viable alternative to traditional statistics is non-parametric tests such permu-
tation tests or resampling [12]. These tests do not rely on the data to follow specific
distributions. Furthermore, they are asymptotically just as powerful as traditional
tests.

The averages produced by the experiments in this paper were compared using a
permutation test as described in [12, pp. 36–38]. This test assumes the observations
to come from two distributions that only differ by their means (that is FA(x) =
FB(x + µ) for some µ, where FA and FB are the distribution functions of the
observations), but this assumption is weaker than, e.g., the Gaussian assumption
of ANOVA, and the test is robust to deviations from it. In this test, two series of
observations A and B of equal sizes are compared by creating one large series of
observations C = A ∪ B. The observations in C are then randomly split into two
series A′

i and B ′
i = C \A′

i a large number of times i = 1, . . . , N . For every A′
i and

B ′
i created, the test statistic zi = z(A′

i , B
′
i) is calculated. Assuming the observations

in A and B to have the same mean, the test statistic z0 = z(A,B) should not be
extremal compared to z1, . . . , zN . If z0 is more extremal than (1 − α)N of the zi ,
where α is the significance level of the test, then the hypothesis of equal means is
rejected.

The test statistic used was the difference in averages between the two series of
observations. Since a priori we have no reason to expect either of the two series to
produce a lower average than the other one, the test was two-sided; both low and
high values of the statistic were considered critical to the hypothesis of identical
averages. The significance level was chosen to be α = 0.05, and in each test N =
20000 random permutations were created.

References

1. Abbass, H. A., Sarker, R., and Newton, C.: PDE: A Pareto-frontier differential evolution ap-
proach for multi-objective optimization problems, in Proceedings of CEC 2001, Vol. 2, 2001,
pp. 971–976.

2. Bentley, J. L.: Fast algorithms for geometric traveling salesman problems, ORSA J. Comput.
4(4) (1992), 387–411.

346 MIKKEL T. JENSEN

3. Bentley, J. L., Kung, H. T., Schkolnick, M., and Thompson, C. D.: On the average number of
maxima in a set of vectors and applications, J. ACM 25 (1978), 536–543.

4. Bleuler, S., Brack, M., Thiele, L., and Zitzler, C.: Multiobjective genetic programming:
Reducing bloat using SPEA2, in Proceedings of CEC’2001, 2001, pp. 536–543.

5. Coello, C. A. C. and Aguirre, A. H.: Design of combinatorial logic circuits through an evolu-
tionary multiobjective optimization approach, Artificial Intelligence for Engineering, Design,
Analysis and Manufacture 16 (2002), 39–53.

6. Corne, D., Jerram, N., Knowles, J., and Oates, M.: PESA-II: Region-based selection in evolu-
tionary multiobjective optimization, in L. Spector et al. (eds), Proceedings of GECCO 2001:
Genetic and Evolutionary Computation Conference, 2001, pp. 283–290.

7. de Jong, E. D., Watson, R. A., and Pollack, J. B.: Reducing bloat and promoting diversity
using multi-objective methods, in L. Spector et al. (eds), Proceedings of GECCO 2001, 2001,
pp. 11–18.

8. Deb, K., Pratab, A., Agarwal, S., and Meyarivan, T.: A fast and elitist multiobjective genetic
algorithm: NSGA-II, IEEE Trans. Evolut. Comput. 6(2) (2002), 182–197.

9. Ekárt, A. and Németh, S. Z.: Selection based on the Pareto nondomination critierion for con-
trolling code growth in genetic programming, Genetic Programming and Evolvable Machines
2 (2001), 61–73.

10. Fisher, H. and Thompson, G. L.: Probabilistic learning combinations of local job-shop schedul-
ing rules, in J. F. Muth and G. L. Thompson (eds), Industrial Scheduling, Prentice-Hall, 1963,
pp. 225–251.

11. Giffler, B. and Thompson, G. L.: Algorithms for solving production scheduling problems, Oper.
Res. 8 (1960), 487–503.

12. Good, P.: Permutation Tests, Springer, New York, 2000.
13. Jensen, M. T.: Robust and flexible scheduling with evolutionary computation, Ph.D. thesis,

Department of Computer Science, University of Aarhus, 2001.
14. Jensen, M. T.: Guiding single-objective optimization using multi-objective methods, in G. Raidl

et al. (eds), Applications of Evolutionary Computation, Lecture Notes in Comput. Sci. 2611,
2003, pp. 268–279.

15. Jensen, M. T.: Reducing the run-time complexity of multi-objective EAs: The NSGA-II and
other algorithms, IEEE Trans. Evolut. Comput. 7(5) (2003), 503–515.

16. Johnson, D. S. and McGeoch, L. A.: The travelling salesman problem: A case study, in E. Aarts
and J. K. Lenstra (eds), Local Search in Combinatorial Optimization, Wiley, 1997, Chapt. 8.

17. Knowles, J. D., Watson, R. A., and Corne, D. W.: Reducing local optima in single-objective
problems by multi-objectivization, in E. Zitzler et al. (eds), Proceedings of the First Interna-
tional Conference on Evolutionary Multi-criterion Optimization (EMO’01), 2001, pp. 269–283.

18. Lawrence, S.: Resource Constrained Project Scheduling: An Experimental Investigation of
Heuristic Scheduling Techniques (Supplement), Graduate School of Industrial Administration,
Carnegie-Mellon University, 1984.

19. Louis, S. J. and Rawlins, G. J. E.: Pareto optimality, GA-easiness and deception, in S. Forrest
(ed.), Proceedings of ICGA-5, 1993, pp. 118–123.

20. Scharnow, J. S., Tinnefeld, K., and Wegener, I.: Fitness landscapes based on sorting and shortest
paths problems, in J. J. M. Guervós et al. (eds), Proceedings of PPSN VII, Lecture Notes in
Comput. Sci. 2439, 2002, pp. 54–63.

21. Sokal, R. R. and Rohlf, F. J.: Biometry, W. H. Freeman and Company, 1995.
22. Starkweather, T., McDaniel, S., Mathias, K., Whitley, D., and Whitley, C.: A comparison

of genetic sequencing operators, in R. Belew and L. Booker (eds), Proceedings of the 4th
International Conference on Genetic Algorithms, 1991, pp. 69–76.

23. Storer, R. H., Wu, S. D., and Vaccari, R.: New search spaces for sequencing problems with
applications to job shop scheduling, Management Sci. 38(10) (1992), 1495–1509.

MULTI-OBJECTIVE EVOLUTIONARY ALGORITHMS 347

24. Wright, M.: Subcost-guided search – Experiments with timetabling problems, J. Heuristics 7
(2001), 251–260.

25. Zitzler, E. and Thiele, L.: Multiobjective evolutionary algorithms: A comparative case study
and the strength pareto approach, IEEE Trans. Evolut. Comput. 3(4) (1999), 257–271.

