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Abstract. This paper reports an evolutionary meta-heuristic incorporating fuzzy evaluation for some
large-scale set covering problems originating from the public transport industry. First, five factors
characterized by fuzzy membership functions are aggregated to evaluate the structure and generally
the goodness of a column. This evaluation function is incorporated into a refined greedy algorithm to
make column selection in the process of constructing a solution. Secondly, a self-evolving algorithm
is designed to guide the constructing heuristic to build an initial solution and then improve it. In each
generation an unfit portion of the working solution is removed. Broken solutions are repaired by
the constructing heuristic until stopping conditions are reached. Orthogonal experimental design is
used to set the system parameters efficiently, by making a small number of trials. Computational
results are presented and compared with a mathematical programming method and a GA-based
heuristic.
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1. Introduction

The Set Covering Problem (SCP) has been proven to be NP-complete [7], which
means that large problem instances become intractable for exact solution methods.
This problem has important applications in many fields such as resource allocation,
crew scheduling, pattern recognition and machine learning.

The SCP is to find a subset of the columns of an m × n zero-one matrix

A = {aij ∈ {0, 1}; i = 1, 2, . . . , m; j = 1, 2, . . . , n}

that covers all rows at a minimum cost, based on a set of costs {cj ; j = 1, 2, . . . , n}.
Defining xi = 1 if column j (with an associated cost cj > 0) is in the solution and
xj = 0 otherwise, the SCP is to
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Minimize
n∑

j=1

cjxj (1)

Subject to:
n∑

j=1

aij xj � 1, i ∈ I = {1, 2, . . . , m}, (2)

xj = 0 or 1, j ∈ J = {1, 2, . . . , n}. (3)

Constraint (2) ensures that each row is covered by at least one column, and (3)
requires that whole columns are used.

Integer Linear Programming (ILP) is the traditional exact method for the SCP,
which often encounters computational difficulty for large problems. Heuristic ap-
proaches are therefore popular in recent years, in an effort to solve the SCP near-
optimally within reasonable time. A number of attempts have been made by using
the Lagrangian-based heuristics [2, 3, 9, 5]. Sen [17] presents an approach based
on simulated annealing, and Ohlsson et al. [16] develop a mean field feedback
algorithm based on artificial neural network. Genetic algorithms (GAs) have also
been extensively studied to solve this problem. For example, Beasley and Chu [4]
present a GA-based heuristic with several modifications to the basic genetic pro-
cedures; Solar et al. [19] use a parallel GA to interchange information between
parallel searches; Aickelin [1] gives an indirect approach where the GA is used to
map the solution space, and a separate decoding routine then built solutions to the
original problem.

As an extension of our early work [13–15] on driver scheduling, this paper
presents a meta-heuristic for large-scale SCPs, which consists of three stages. In the
first stage, five factors characterized by fuzzy membership functions are aggregated
to evaluate the structure and generally the goodness of a column. This evaluation
function is incorporated into a refined greedy algorithm to evaluate all candidate
columns, and then to decide which column is going to be selected in the process of
constructing a solution.

In the second stage, a self-evolving algorithm is designed to guide the above
constructing heuristic to build an initial solution and then improve it further. In each
generation an unfit portion of the working solutions is removed. Broken solutions
are repaired by the constructing heuristic. By carrying out iterative improvement
and constructive perturbation, this algorithm has the ability to escape from local
minima.

The above two stages involve a number of evaluation weights and several other
parameters, which will influence the system performance significantly and are
difficult to determine. Therefore, the third stage is to set these influencing para-
meters efficiently by using the method of orthogonal experimental design [21].
This method uses orthogonal arrays to study the wide range of parameter space,
with a small number of experiments.

This paper is organized as follows: Section 2 describes the method of fuzzy
evaluation for the SCP; Section 3 presents a self-evolving algorithm to control the
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searching process; Section 4 introduces the method of orthogonal experimental
design in detail; Section 5 gives experimental results on real world problems, and
finally Section 6 gives some concluding remarks.

2. Fuzzy Evaluation for Set Covering

A building heuristic for a possible solution is inherently sequential. Among the
large number of columns to be chosen, it is difficult to judge which one is more
effective than others because the criteria bear some uncertainty. Fuzzy set the-
ory [23] is therefore used to assign each column a quantitative value according
to its structural state. The fitter the structure of a column, the larger its value is.

2.1. CONSTRUCTION OF THE FACTOR SET

The main factors concerning the column’s structure are the number of rows it
covers (u1), its cost (u2), the ratio of its number of covered rows to its cost (u3),
the average coverage number of all the rows covered by this column (u4), and the
fractional cover of the relaxed LP solution (u5).

2.1.1. Factor u1

The objective for set covering is to minimize the total cost of the solution. In many
real-world problems, the total cost is usually increased with the number of columns
in the solution. To reduce the number of columns used as much as possible, the
number of rows each column covers should be taken into account as a criterion.

Considering two columns that cover a different number of rows, one column
should be more efficient than another because it covers more rows and thus poten-
tially minimises the number of columns in the final solution. If every column in the
solution covers as many rows as possible, it can be concluded that, on average in
such a solution, the number of columns is fewer thus leading to a lower total cost.
Hence we assume that the goodness of a column j (j ∈ J ) generally increases
with the covering number of rows Rj .

Furthermore, since in large-scale SCP problems only a small proportion of the
columns will be used to build a solution, it is not desirable to have larger varia-
tions in the measure of goodness among these elite columns. On the contrary, for
columns that cover more rows, their goodness should increase as smoothly as pos-
sible, allowing more chances to be selected later. Based on this consideration, this
increase should be non-linear. Thus, an S-shape quadratic membership function µ1

(j ∈ J ) is applied to define factor u1 as

µ1 =




2

(
X1 − d1

b1 − d1

)2

, d1 � X1 <
b1 + d1

2
,

1 − 2

(
X1 − b1

b1 − d1

)2

,
b1 + d1

2
� X1 � b1,

(4)
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where X1 = Rj = ∑m
i=1 aij , ∀j ∈ J ; b1 = the maximum number of rows

contained in a column; d1 = the minimum number of rows contained in a column.

2.1.2. Factor u2

To achieve the objective of minimum total cost, the cost of an individual column
in the solution should be as small as possible. Therefore, factor u2 is based on the
assumption that the goodness of a column j (j ∈ J ) generally decreases with its
cost cj . In our experiments, a linear functions µ2 (j ∈ J ) is used to define factor
u2 as

µ2 = b2 − X2

b2 − d2
, ∀j ∈ J, (5)

where X2 = cj ; b2 = maximum cost; d2 = minimum cost.

2.1.3. Factor u3

According to the above analysis for factor u1 and factor u2, to achieve a satisfactory
solution, the ideal columns to be used would be those covering as many rows as
possible with the smallest possible cost. Unfortunately, in practice these two factors
are often contradictory because a column covering more rows usually has a larger
cost.

To get a balance between the number of covered rows and the cost for a column,
besides these absolute values, the relative ratio of the number of covered rows to
its cost can be regarded as a third important criterion. Based on the assumption
that the goodness of a column j (j ∈ J ) generally increases with the ratio of the
number of covered rows to its cost, denoted as Rj/cj , the membership function µ3

(j ∈ J ) for factor u3 is therefore defined as

µ3 =




2

(
X3 − d3

b3 − d3

)2

, d3 � X3 <
b3 + d3

2
,

1 − 2

(
X3 − b3

b3 − d3

)2

,
b3 + d3

2
� X3 � b3,

∀j ∈ J, (6)

where X3 = Rj/cj = ∑m
i=1 aij /cj ; b3 = maximum ratio; d3 = minimum ratio.

2.1.4. Factor u4

Considering all the columns with respect to all the rows to be covered, each row i

has an associated coverage list containing Li columns that are able to cover i,
where

Li =
n∑

j=1

aij , i ∈ I. (7)
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Normally, each column covers at least one row, and the number of rows contained
in column j is

∑m
i=1 aij . Therefore, for all the rows covered by column j , the

total coverage number is
∑m

i=1(aij × ∑n
j=1 aij ), and the average coverage number,

denoted as αj , is formulated as

αj =
m∑

i=1

(
aij ×

n∑
j=1

aij

)/ m∑
i=1

aij , j ∈ J. (8)

The average coverage number is an index whether the components in a column
are heavily covered by other columns in general. To find an economic cover, it
is reasonable to regard the columns whose rows are heavily covered by others to
be less important. Based on this assumption, the goodness of column j (j ∈ J )

generally decreases with the average coverage number of all the rows covered by
column j . Thus, the membership function µ4(j ∈ J ) for factors u4 is defined as

µ4 = b4 − X4

b4 − d4
, ∀j ∈ J, (9)

where X4 = αj ; b4 = maximum average coverage number; d4 = minimum average
coverage number.

2.1.5. Factor u5

The traditional method for column selection is ILP, which is NP-hard [7]. Large
problems would have to be divided into sub-problems, and in some cases the
ILP process may have difficulties in finding an integer solution. In contrast, the
relaxed fractional problem in which the solution vector is not required to be inte-
gral is much easier: the optimal solution for the relaxed problem can be found in
polynomial time [10]. In addition, Srinivasan [20] showed that the approximation
guarantee for the Randomised Rounding Algorithm (RRA) on fractional covers is

cRRA � cMin

(
ln

(
m

cMin

)
+ ln ln

(
m

cMin

)
+ O(1)

)
. (10)

Here cRRA is the number of sets in the subcover output by the RRA, and cMin is the
optimum value of the relaxed LP. Although Slavík [18] proved the performance
guarantee of the RRA was no better than that of the simple greedy algorithm, it
still can be concluded that the relaxed solution provides some useful information
about the distribution of the optimal integer solution. With the advantage of being
smooth and nonzero at all points, a Gaussian distribution function µ5 (j ∈ J ) is
applied to define the fractional cover factor as

µ5 =
{

e− (X5−α)2

β , if column j is in the fractional cover;

0, otherwise.
(11)
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Let µ5 = 1 when X5 = b5, and µ5 = 0.01 when X5 = d5, where X5 = fractional
value of column j in the relaxed LP solution; b5 = maximum value in fractional
cover; d5 = minimum value in fractional cover.

Therefore,


α = b5,

β = −(b5 − d5)
2

ln 0.01
.

(12)

2.2. FUZZY EVALUATION

Considering various factors that influence the structure of a column, fuzzy eval-
uation uses aggregation operators to evaluate the efficiency of this column. This
paper applies a commonly used arithmetic mean operator, by which the structural
coefficient f1(j) for column j can be formulated as

f1(j) =
5∑

k=1

(wk × µk), ∀j ∈ J, (13)

where wk (wk � 0) denotes the corresponding weights for factor uk (k = 1, 2, 3,

4, 5), satisfying

5∑
k=1

wk = 1. (14)

The main task in the above model is to find a suitable weight distribution among the
fuzzy membership functions. These five weights, along with two other parameters
to be given in Sections 3.3 and 3.4, are determined by the method of orthogonal
experimental design, which will be described in Section 4.

3. A Self-evolving Algorithm

In this section, a self-evolving algorithm is used to mimic generations of evolu-
tion of a single solution. Inspired by the idea of Kling and Banerjee [11] for the
placement problem in electronic circuit design, this approach has been tailored to
the bus and train driver scheduling problem successfully [13]. It executes a se-
quence of Reconstruction, Evaluation, Selection and Mutation steps in a loop until
a stopping condition is reached or no improvement has been achieved for a number
of iterations. Throughout the evolution, the currently best solution is retained and
finally returned as the final solution. Let us explain these four steps in detail.

3.1. RECONSTRUCTION

The Reconstruction step takes a partial solution as the input, and produces a com-
plete solution as the output. While the existing columns in the partial solution
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remain unaffected, the Reconstruction step is to assign columns to all the uncovered
rows to complete a partial solution. Note that in the first iteration of the loop, the
partial solution is empty.

Considering all columns with respect to all rows to be covered, each of the
remaining unassigned rows i has a coverage list of length Li , i.e. containing Li

possible columns that can cover it. The greedy-based constructor assumes that the
desirability of adding column j (j ∈ J ) into the partial solution generally increases
with its function value F ′(j), formulated as

F ′(j) = f1(j) ×
∑
i∈I ′

aij , ∀j ∈ J, (15)

where f1(j) is the structural coefficient defined as formula 13), and I ′ is the set
of rows to be covered. However, to introduce diversification, one of the candidates,
not necessarily the top candidate, is randomly selected from a Restricted Candidate
List (RCL) consisting of columns with r largest function values F ′(j). In our
experiment, r is set to be 3.

Let J ∗ = {1, 2, . . . , t} the set of columns in a partial solution, and Sj =
{i | aij = 1, i ∈ I } the set of rows covered by column j , the steps to generate
a complete solution are:

Step 1 Set I ′ = I − ⋃
(Sj∗ : j ∗ ∈ J ∗).

Step 2 If I ′ = φ then stop: J ∗ is a complete solution and C(J ∗) = ∑
(cj∗ : j ∗ ∈

J ∗). Otherwise locate a row t ′ ∈ I ′ having Lt ′ = min(Li′ : i′ ∈ I ′), and
then randomly select a column Sk, k ∈ {1, . . . , r}, within RCL from the
coverage list of row t ′. Proceed to Step 3.

Step 3 Add k to J ∗, set I ′ = I ′ − Sk, and return to Step 2.

Before the Reconstruction, some rows may already be over-covered, i.e. covered
more than once by the existing columns in the partial solution. The other columns
added by the Reconstruction step are each chosen to cover at least one currently
uncovered row, but they increase the amount of over-cover as well. Thus, some
columns might become redundant later, causing all their rows covered by other
columns. In the Selection step, these redundant columns will be removed automat-
ically because of their zero goodness.

3.2. EVALUATION

The overall evaluation function F(j ∗) consists of two parts: structural coefficient
f1(j

∗) ∈ [0, 1] and over-cover penalty f2(j
∗) ∈ [0, 1], which is formulated as

F(j ∗) = f1(j
∗) × f2(j

∗), ∀j ∗ ∈ J ∗, (16)

where is the ratio of the non-overlapped number of rows to total number of rows in
j ∗ (j ∗ ∈ J ∗), which is formulated as

f2(j
∗) =

m∑
i=1

bij∗

/ m∑
i=1

aij∗ , ∀j ∗ ∈ J ∗, (17)
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where

bij∗ =



0,
∑

j∗∈J ∗
aij∗ > 1;

1, otherwise.

(18)

If every row in j ∗ has been covered by one or more other columns in J ∗ as well,
then f2(j

∗) = 0; conversely if none of the rows in j ∗ is over-covered, f2(j
∗) = 1.

3.3. SELECTION

This step is to determine whether a column j ∗ (j ∗ ∈ J ∗) is retained for the next
generation, or discarded and placed in a queue for the new allocation. This is done
by comparing its goodness F(j ∗) to (ps − ks), where ps is a random number
generated for each generation in the range [0, 1], and ks is a value smaller than 1.0.
If F(j ∗) > (ps − ks) then j ∗ will survive in its present position; otherwise j∗
will be removed from the current evolutionary solution. The rows it covers, except
those also covered by other columns in the solution, are then released for the next
Reconstruction. By using this Selection process, column j∗ with larger goodness
F(j ∗) have a higher probability of survival in the current solution.

The purpose of subtracting ks ∈ [0, 1] from ps is to improve the SE’s conver-
gence capability. Without it, in the case of ps close to 1, nearly all the columns will
be removed from the solution, which is obviously undesirable. A suitable setting
of the selection value ks is important for the algorithm’s performance.

3.4. MUTATION

Following the Selection step, each retained column j∗ (j ∗ ∈ J ∗) still has a chance
to be mutated, i.e. randomly discarded from the partial solution at a given rate
of pm, and releases its covered rows, except those also covered by other retained
columns, for the next generation. The mutation rate pm should be much smaller
than the selection rate to guarantee convergence. Like the selection valve ks , pm is
also an influencing parameter.

4. Orthogonal Experimental Design

We have set up the membership functions and heuristic framework, in which seven
parameters will influence the system performance significantly. These parameters
are weight wk for criteria uk (k = 1, 2, 3, 4, 5) in the fuzzy evaluation model,
selection value ks in the Selection step and mutation rate pm in the Mutation step.
Common approaches for parameter design lead either to a long time span for trying
out all combinations, or to a premature termination of the design process with
results far from optimal in most cases.
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Each trial with a specific parameter setting is a process of iterative improvement
and thus is quite time-consuming. The time to conduct full combinations of all
possible parameter values for the optimal solution is impractical. To reduce the
number of experiments and still achieve satisfactory solutions, Taguchi’s method
of orthogonal experimental design can be applied [21].

4.1. PRELIMINARIES

Orthogonal experimental design for parameter optimization provides a systematic
and efficient approach to determine near optimal parameter settings. It applies or-
thogonal arrays to study a large number of variables with a relatively small number
of trials, significantly reducing the number of experimental configurations.

4.1.1. Orthogonal Array

Orthogonal arrays are a special set of Latin squares [6], constructed by Taguchi to
lay out the experimental design. In this array, the columns are mutually orthogonal
or balanced. That is, for any pair of columns, all combinations of factor levels occur
an equal number of times. Consider an example shown in Table I.

The array is designated by the symbol L9(34), involving four factors A, B, C,
and D, each at three levels one (1), two (2), and three (3). The array has a size of
nine rows and four columns. The numbers (1/2/3) in the rows indicate the factor
levels and each row represents specific test characteristics of each experiment. The
vertical columns represent the experimental factors to be studied using that array.
Each of the columns contains three assignments at each levels (1, 2, or 3) for the
corresponding factors. These conditions combine in nine possible ways (i.e. (1, 1),
(1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)) for two factors, with 34

possible combinations of levels for all the four factors.

Table I. Orthogonal array L9(3
4)

A B C D

1 1 1 1 1

2 1 2 2 2

3 1 3 3 3

4 2 1 2 3

5 2 2 3 1

6 2 3 1 2

7 3 1 3 2

8 3 2 1 3

9 3 3 2 1
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The orthogonal array facilitates the experimental design process by assigning
factors to the appropriate columns. In this case, referring to Table I, factors A,
B, C, and D are arbitrarily assigned to columns 1, 2, 3, and 4 respectively. From
the table, nine trials of experiments are needed, with the level of each factor for
each trial-run as indicated in the array. The experimental descriptions are reflected
through the condition level. The experimenter may use different designators for
the columns, but the nine trial-runs will cover all combinations, independent of
column definition. In this way, the orthogonal array assures consistency of the
design carried out by different experimenters.

4.1.2. Comparison to the Traditional Method of Factorial Design

The traditional method of factorial design is to investigate all possible combina-
tions and conditions in an experiment that involves multiple factors. For example,
if the factorial design is implemented for the four 3-level factors in Table I, the total
number of trials needed would be a full combination of 81 (34) trials, rather than 9
trials by the orthogonal array L9(34).

The reason why using orthogonal arrays could find superior parameter config-
urations with a small number of experiments is its mutual balance. For example,
in Table I, each column contains three ones, three twos, and three threes; and any
pair of columns contain all combinations of levels (i.e. (1, 1), (1, 2), (1, 3), (2, 1),
(2, 2), (2, 3), (3, 1), (3, 2), (3, 3)) exactly once. It is the characteristic of mutual
balance that guarantees the choice of combinations producing elite solutions.

In summary, in case that the parameter-interaction space is relatively smooth,
compared with the traditional method of factorial design, Taguchi’s orthogonal
array is superior since:

• It is efficient in handling larger numbers of factor variables;
• It can produce similar and consistent results, even though the experiments

may be carried out by different experimenters;
• It can determine the contribution of each quality-influencing factor.

4.2. THE METHOD OF ORTHOGONAL EXPERIMENTAL DESIGN

Due to of the characteristic of mutual balance in orthogonal arrays, Taguchi’s ap-
proach can explore the solution space as extensively as possible. Moreover, due to
the ANOVA process to be introduced later, Taguchi’s approach can also exploit the
solution space as much as possible.

To carry out orthogonal experimental designs, the choice of the factors is cru-
cial. Since the seven parameters in the proposed algorithm will influence the system
performance greatly, they are regarded as the control factors currently investigated
in this paper. Basically, this approach consists of the three steps of defining the
parameter space, determining the factor levels, and analysis of variance.



A META-HEURISTIC WITH ORTHOGONAL EXPERIMENT 273

4.2.1. Definition of the Parameter Ranges

The first step is to define the ranges of the seven control factors in the proposed
algorithm. Without any pre-knowledge about the influence of the weights wk (k =
1, 2, 3, 4, 5) on the algorithm, the levels of wk are evenly set over the full applicable
range of [0, 1]. However, the range for the selection value ks and the mutation
rate ps should be much narrower, since according to our past experience, the self-
evolving algorithm usually yields better solutions with ks ∈ [0.20, 0.30] and ps ∈
[0.05, 0.06] respectively, and these two parameters are relatively independent of
wk.

4.2.2. Determination of the Factor Levels

This step is to define the initial levels of the control factors, and sequentially choose
the most suitable orthogonal array. In order to facilitate the description of this step,
three definitions are given as follows:

DEFINITION 1. A factor-level table is a tableau, where each row represents a
control factor and each column represents an individual level.

DEFINITION 2. In a factor-level table, degrees of freedom for a factor are the
number of levels of this factor minus one, and degrees of freedom for the table are
the sum of degrees of freedom for all factors.

DEFINITION 3. Degrees of freedom for an orthogonal array are the number of
trials minus one. For example, the orthogonal array L9(34) in Table I has eight
degrees of freedom.

The initial levels of the individual control factors can be set arbitrarily, and the
associated orthogonal array can be chosen flexibly. However, in practice the two
principles below are normally complied with [21]:

(1) The degrees of freedom for the factor-level table should be no larger than the
degrees of freedom for the orthogonal array to be used;

(2) The number of factors in the factor-level table should be no larger than the
number of columns in the orthogonal array.

In theory, there should be as many levels for each factor as possible. However, in
this situation, the number of trials needed would be too large. The most suitable
orthogonal array is the one that maintains the best balance. Since the number of
factors investigated has been fixed at seven, the task for the orthogonal experimen-
tal design is to determine the largest practically feasible number of levels for each
factor, and the number of rows (trials) in the associated orthogonal array.

Let A be the number of levels for each factor, and L be the number of rows
(trials) in the orthogonal array. Normally L is the square of an integer, denoted as

L = k2, k ∈ {2, 3, . . . , n}. (19)
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According to the principle above,

7 × (A − 1) � L − 1 ⇔ A � L − 1

7
+ 1 ⇔ A � k2 − 1

7
+ 1

⇒ if k = 6, then A � 6, where k is the smallest integer to be satisfied
⇔ if L = 36, then A � 6. (20)

Therefore the largest number of levels for each factor is 6, the smallest number
of trials is 36, and the most ideal orthogonal is array L36(67). Unfortunately, the
authors had difficulty in finding a readily available L36(67) from related literature.
Therefore, the second largest array L25(56) from [21] is applied, which is the
optimal design to handle six 5-level factors.

By studying the proposed algorithm, we believe that the seventh factor ps is
relatively less important than the others due to the relatively minor role of the
mutation step. To maintain a balance between necessary precision and number of
experiments, factors wk (k = 1, 2, 3, 4, 5) and ks are finally defined to be 5 lev-
els, and ps to be 2 levels respectively (shown in Table II). These seven factors
are assigned to the L50(21 × 56) orthogonal array shown in Table III. This is an
economical and efficient design for dealing with these seven factors using only 50
trials, rather than 31,250 (21 × 56) experimental trials.

Table II. Control factors and their levels

Control factors Levels

1 2 3 4 5

1. Weight w1 0.1 0.3 0.5 0.7 0.9
2. Weight w2 0.1 0.3 0.5 0.7 0.9
3. Weight w3 0.1 0.3 0.5 0.7 0.9
4. Weight w4 0.1 0.3 0.5 0.7 0.9
5. Weight w5 0.1 0.3 0.5 0.7 0.9
6. Selection valve ks 0.22 0.24 0.26 0.28 0.30
7. Mutation rate pm 0.05 0.06 – – –

Table III. L50(2
1 × 56) orthogonal array (the values in parenthesis represent the

factor levels)

Trial Control factors
No.

1. w1 2. w2 3. w3 4. w4 5. w5 6. ks 7. pm

1 0.1(1) 0.1(1) 0.1(1) 0.1(1) 0.1(1) 0.22(1) 0.05(1)
2 0.1(1) 0.3(2) 0.3(2) 0.3(2) 0.3(2) 0.24(2) 0.05(1)
3 0.1(1) 0.5(3) 0.5(3) 0.5(3) 0.5(3) 0.26(3) 0.05(1)
4 0.1(1) 0.7(4) 0.7(4) 0.7(4) 0.7(4) 0.28(4) 0.05(1)
5 0.1(1) 0.9(5) 0.9(5) 0.9(5) 0.9(5) 0.30(5) 0.05(1)
6 0.3(2) 0.1(1) 0.3(2) 0.5(3) 0.7(4) 0.30(5) 0.05(1)
7 0.3(2) 0.3(2) 0.5(3) 0.7(4) 0.9(5) 0.22(1) 0.05(1)
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Table III. (Continued)

Trial Control factors
No.

1. w1 2. w2 3. w3 4. w4 5. w5 6. ks 7. pm

8 0.3(2) 0.5(3) 0.7(4) 0.9(5) 0.1(1) 0.24(2) 0.05(1)
9 0.3(2) 0.7(4) 0.9(5) 0.1(1) 0.3(2) 0.26(3) 0.05(1)

10 0.3(2) 0.9(5) 0.1(1) 0.3(2) 0.5(3) 0.28(4) 0.05(1)
11 0.5(3) 0.1(1) 0.5(3) 0.9(5) 0.3(2) 0.28(4) 0.05(1)
12 0.5(3) 0.3(2) 0.7(4) 0.1(1) 0.5(3) 0.30(5) 0.05(1)
13 0.5(3) 0.5(3) 0.9(5) 0.3(2) 0.7(4) 0.22(1) 0.05(1)
14 0.5(3) 0.7(4) 0.1(1) 0.5(3) 0.9(5) 0.24(2) 0.05(1)
15 0.5(3) 0.9(5) 0.3(2) 0.7(4) 0.1(1) 0.26(3) 0.05(1)
16 0.7(4) 0.1(1) 0.7(4) 0.3(2) 0.9(5) 0.26(3) 0.05(1)
17 0.7(4) 0.3(2) 0.9(5) 0.5(3) 0.1(1) 0.28(4) 0.05(1)
18 0.7(4) 0.5(3) 0.1(1) 0.7(4) 0.3(2) 0.30(5) 0.05(1)
19 0.7(4) 0.7(4) 0.3(2) 0.9(5) 0.5(3) 0.22(1) 0.05(1)
20 0.7(4) 0.9(5) 0.5(3) 0.1(1) 0.7(4) 0.24(2) 0.05(1)
21 0.9(5) 0.1(1) 0.9(5) 0.7(4) 0.5(3) 0.24(2) 0.05(1)
22 0.9(5) 0.3(2) 0.1(1) 0.9(5) 0.7(4) 0.26(3) 0.05(1)
23 0.9(5) 0.5(3) 0.3(2) 0.1(1) 0.9(5) 0.28(4) 0.05(1)
24 0.9(5) 0.7(4) 0.5(3) 0.3(2) 0.1(1) 0.30(5) 0.05(1)
25 0.9(5) 0.9(5) 0.7(4) 0.5(3) 0.3(2) 0.22(1) 0.05(1)
26 0.1(1) 0.1(1) 0.1(1) 0.1(1) 0.1(1) 0.22(1) 0.06(2)
27 0.1(1) 0.3(2) 0.3(2) 0.3(2) 0.3(2) 0.24(2) 0.06(2)
28 0.1(1) 0.5(3) 0.5(3) 0.5(3) 0.5(3) 0.26(3) 0.06(2)
29 0.1(1) 0.7(4) 0.7(4) 0.7(4) 0.7(4) 0.28(4) 0.06(2)
30 0.1(1) 0.9(5) 0.9(5) 0.9(5) 0.9(5) 0.30(5) 0.06(2)
31 0.3(2) 0.1(1) 0.3(2) 0.5(3) 0.7(4) 0.30(5) 0.06(2)
32 0.3(2) 0.3(2) 0.5(3) 0.7(4) 0.9(5) 0.22(1) 0.06(2)
33 0.3(2) 0.5(3) 0.7(4) 0.9(5) 0.1(1) 0.24(2) 0.06(2)
34 0.3(2) 0.7(4) 0.9(5) 0.1(1) 0.3(2) 0.26(3) 0.06(2)
35 0.3(2) 0.9(5) 0.1(1) 0.3(2) 0.5(3) 0.28(4) 0.06(2)
36 0.5(3) 0.1(1) 0.5(3) 0.9(5) 0.3(2) 0.28(4) 0.06(2)
37 0.5(3) 0.3(2) 0.7(4) 0.1(1) 0.5(3) 0.30(5) 0.06(2)
38 0.5(3) 0.5(3) 0.9(5) 0.3(2) 0.7(4) 0.22(1) 0.06(2)
39 0.5(3) 0.7(4) 0.1(1) 0.5(3) 0.9(5) 0.24(2) 0.06(2)
40 0.5(3) 0.9(5) 0.3(2) 0.7(4) 0.1(1) 0.26(3) 0.06(2)
41 0.7(4) 0.1(1) 0.7(4) 0.3(2) 0.9(5) 0.26(3) 0.06(2)
42 0.7(4) 0.3(2) 0.9(5) 0.5(3) 0.1(1) 0.28(4) 0.06(2)
43 0.7(4) 0.5(3) 0.1(1) 0.7(4) 0.3(2) 0.30(5) 0.06(2)
44 0.7(4) 0.7(4) 0.3(2) 0.9(5) 0.5(3) 0.22(1) 0.06(2)
45 0.7(4) 0.9(5) 0.5(3) 0.1(1) 0.7(4) 0.24(2) 0.06(2)
46 0.9(5) 0.1(1) 0.9(5) 0.7(4) 0.5(3) 0.24(2) 0.06(2)
47 0.9(5) 0.3(2) 0.1(1) 0.9(5) 0.7(4) 0.26(3) 0.06(2)
48 0.9(5) 0.5(3) 0.3(2) 0.1(1) 0.9(5) 0.28(4) 0.06(2)
49 0.9(5) 0.7(4) 0.5(3) 0.3(2) 0.1(1) 0.30(5) 0.06(2)
50 0.9(5) 0.9(5) 0.7(4) 0.5(3) 0.3(2) 0.22(1) 0.06(2)
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It is interesting to know how good the results derived from the above 50 trials
are, when compared to all other possible combinations. Because of its mutual
balance of orthogonal arrays, this performance ratio can be guaranteed by the
following theorem in non-parametric statistics [22].

THEOREM 1. Suppose random variable X is subject to a probabilistically con-
tinuous distribution F(X), and x1, x2, . . . , xn are simple samples (or random ob-
servation values) of X. If x1, x2, . . . , xn are sorted in ascending order, denoted as
x1 � x2 � · · · � xn, then the performance ratio for xi (i = 1, 2, . . . , n) is

E[F(xi)] = i

n + 1
. (21)

In particular,

E[F(xn)] = n

n + 1
. (22)

Formula (22) means that the best experimental result in these simple samples
is probabilistically better than n

n+1 % of all possible results defined in the whole
discrete solution space. In this case, the best result by L50(21 × 56) is better than
98.04% (= 50/51) results of all 31,250 trials.

4.2.3. Analysis of Variance

The contribution of individual quality-influencing factors is crucial to the control
enforced on the experimental design. A statistical method, Analysis of Variance
(ANOVA), is commonly used to analyse the results of the orthogonal experimental
design, and to determine how much variation each factor has contributed. By study-
ing the main effects of each factor, the general tendencies of the influencing factors
can be characterized. The characteristics can be controlled, such that a lower, or a
higher, value in a particular factor produces the preferred result. Thus, the levels of
influencing factors to produce the best results can be predicted [21].

Since the main purpose of this paper is to test the suitability of the proposed
approach for the set covering problem, the authors only perform an initial investiga-
tion about the wide range of parameter settings, and uses orthogonal experimental
design to find a suitable, but coarse, range of the control factors. Therefore, the
current research simply chooses the parameter configuration from Table III that
leads to the best results, and skips the follow-on process of ANOVA and further
experiments.

5. Computational Results

The proposed approach was coded in Borland C++, and runs on a Pentium II
400 MHz machine using the Windows 98 operating system. Eight large size prob-
lems originating from the public transport industry are used as test problems [12].
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Table IV. Details of the test problems and related best known solutions

Data Rows Columns Density Best known solutions

(%)
Cover Cost Elapsed time

size (seconds)

T1* 340 29380 1.90 62 509.25 955

T2 437 25099 1.26 116 1003.55 69

T3 546 43743 1.80 64 562.22 >40000

T4* 613 22568 1.58 75 851.09 452

T5 707 144339 0.51 242 2247.52 >80000

T6 1164 29465 0.36 276 2083.15 >80000

T7 1495 28639 0.30 349 2661.12 >80000

T8 1873 50000 0.27 395 3137.20 >80000

Details of these problems, including the number of rows, number of columns, and
density (percentage of ones in the aij matrix), are given in Table IV.

The best results are mostly obtained by a commercial ILP solver called
TRACS II [8]. In those cases (marked by asterisk) that TRACS II has difficulty
in finding solutions, results achieved by a hybrid GA incorporating strong domain
knowledge [12] are cited.

To give fair comparisons, each test problem was run using the same pseudo
random number seed at the beginning of the program. The best parameters are those
producing the smallest solution cost among the 50 trials of orthogonal experimental
design.

To speed up the process of orthogonal experimental design, the iteration number
of the self-evolving algorithm is set to be a moderate constant of 200 for each
experiment of all problems. The parameter sets that produce the smallest cost are
used to carry out further searches and obtain the final solutions. If no improvement
has been achieved for 1000 iterations, the program will be terminated.

5.1. EXPERIMENT 1

The indices of Maximum, Minimum, Mean, and Standard Deviation in statistics
are applied to study the distribution of the experimental results in terms of solution
cost. The Mean is a measure to evaluate the average performance of the proposed
algorithm, while the Standard Deviation is a summary measure of the differences
of each result from the mean. Let ti be the variable of solution cost, then

Minimum = min{t1, . . . , t50}, (23)

Maximum = max{t1, . . . , t50}, (24)
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Table V. Summary results of 50 trials using L50(2
1 × 56)

Data Minimum Maximum Mean Standard

Deviation

Cost RPD (%) Cost RPD (%) Cost RPD (%) Cost

T1 529.28 3.93 571.52 12.23 549.13 7.83 10.97

T2 1004.55 0.10 1074.17 7.04 1026.12 2.25 15.23

T3 586.68 4.35 663.72 18.05 628.42 11.77 17.34

T4 850.60 −0.06 924.45 8.62 889.45 4.51 18.26

T5 2269.07 0.96 2490.70 10.82 2329.33 3.64 56.83

T6 2158.53 3.62 2322.77 11.50 2222.58 6.69 37.46

T7 2764.55 3.89 2989.70 12.35 2855.26 7.30 46.13

T8 3321.70 5.88 3636.07 15.90 3514.04 12.01 64.76

Avg. 2.83% 12.06% 7.00% 33.37

Table VI. Summary results of 50 trials using randomised parameter sets

Data Minimum Maximum Mean Standard

Deviation

Cost RPD (%) Cost RPD (%) Cost RPD (%) Cost

T1 535.73 5.20 570.72 12.07 547.45 7.50 10.19

T2 1017.68 1.41 1070.13 6.63 1024.04 2.04 12.72

T3 594.35 5.71 660.48 17.48 627.38 11.59 16.02

T4 869.33 2.14 912.33 7.20 883.68 3.83 16.96

T5 2291.73 1.97 2461.62 9.53 2325.59 3.47 49.34

T6 2160.42 3.71 2292.80 10.06 2219.40 6.54 30.42

T7 2798.55 5.16 2952.35 10.94 2854.21 7.26 42.15

T8 3460.3 9.98 3606.45 14.95 3502.40 11.64 63.60

Avg. 4.41% 11.10% 6.73% 30.18

Mean t̄ =
50∑
i=1

ti/50, (25)

Standard Deviation =
√√√√ 50∑

i=1

(ti − t̄ )2/49. (26)

Table V shows the summary results of 50 trials by parameters associated with the
orthogonal array L50(21 × 56), and Table VI shows the summary results of 50
trials by parameter sets produced randomly. According to the Relative Percentage
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Figure 1. RPD of solution cost versus trial number.

Table VII. Comparative results

Data Final solution

Cover RPD Cost RPD Elapsed time

size (%) (hours) (%) (seconds)

T1 65 4.84 507.53 −0.34 520

T2 118 1.72 994.90 −0.86 161

T3 66 3.13 565.38 0.56 730

T4 75 0.00 819.68 −3.69 168

T5 243 0.41 2246.32 −0.05 1398

T6 273 −1.09 2082.77 0.68 286

T7 345 −1.15 2674.18 0.49 316

T8 393 −0.51 3243.11 3.38 2482

Ave. 0.92% 0.02%

Deviation (RPD) results in Table V and Table VI, the average RPD of Minimum,
Maximum, and Standard Deviation of L50(21 × 56) are 2.83%, 12.06%, and 33.37
respectively, while those produced with random parameters are 4.41%, 11.10%,
and 30.18 respectively.

Compared with results achieved with randomised parameters, on average re-
sults using orthogonal arrays have better Minimum, worse Maximum, and larger
Standard Deviation. This demonstrates that the results achieved by the orthogonal
array are more evenly scattered throughout the solution space, some of which are
thus inevitably elite. Therefore, it is not necessary to study the full parameter so-
lution space for a near-optimal solution. Figure 1 gives a full demonstration of the
variation of solutions for the 50 trial-runs using L50(21 × 56) for the T4 instance.

The final results of the test problems are compiled in Table VII. Computational
results show that the solutions derived by the proposed approach are very close
or even better than to those of the previous best known solutions. The negative



280 JINGPENG LI AND RAYMOND S. K. KWAN

percentage deviation indicates the percentage improvement over the previous best
known solution. In terms of solution cost, our results are only 0.02% larger on
average: in 4 out of the 8 test problems, our results are better. In term of the
executing time, it is obvious that in general our results are obtained at much faster
speed, particularly for larger instances.

5.2. EXPERIMENT 2

In addition to finding the best solutions, another task for the first orthogonal experi-
mental design is to explore whether there exists a generally good pattern of parame-
ter settings. According to the experiments, using the orthogonal array L50(21 ×56),
we find that out of 50 different parameter sets, one set (0.3, 0.9, 0.1, 0.3, 0.5,
0.28, 0.06) gives the best results for all data instances. Naturally, one might be
interested to know whether those results in Table VII could be improved further by
simply implementing another orthogonal experimental design, which uses the same
orthogonal array, but is carried out in narrower ranges of values for the factors.

Table VIII shows the definition of the control factors and their levels in the
narrower ranges, which are centred respectively on the parameter configuration of
(0.3, 0.9, 0.1, 0.3, 0.5, 0.28, 0.06) found above. These seven factors are assigned to
the same L50(21 × 56) orthogonal array as shown in Table III.

The final results of the test problems are compiled in Table IX. It shows that
compared with results by the parameters defined in the larger ranges, the solutions
derived by the refined parameter settings have been slightly improved. On average,
the solution cost of the proposed approach is 0.33% lower. At this stage, there is
no ‘general’ parameter set that works for all instances.

With respect to the variation of solution costs for individual cases, Figure 2
depicts the improvement of the cost versus the number of iterations for instance
T1. Although the actual values may differ among various cases, the characteristic
shapes of the curves are similar.

Table VIII. Control factors and their levels in the narrower ranges

Control factors Levels

1 2 3 4 5

1. Weight w1 0.20 0.25 0.30 0.35 0.40

2. Weight w2 0.80 0.85 0.90 0.95 1.00

3. Weight w3 0.00 0.05 0.10 0.15 0.20

4. Weight w4 0.20 0.25 0.30 0.35 0.40

5. Weight w5 0.40 0.45 0.50 0.55 0.60

6. Selection valve ks 0.270 0.275 0.280 0.285 0.290

7. Mutation rate pm 0.055 0.060 – – –
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Table IX. Comparative results by the refined parameter settings

Data Final solution

Cover RPD Cost RPD Elapsed time

size (%) (hours) (%) (seconds)

T1 64 3.23 504.13 −1.01 384

T2 118 1.72 993.35 −1.01 161

T3 66 3.13 565.38 0.56 730

T4 74 −1.33 814.53 −4.30 668

T5 243 0.41 2246.32 −0.05 1398

T6 275 −0.36 2073.36 −0.47 468

T7 348 −0.29 2670.57 0.36 420

T8 391 −1.01 3239.23 3.25 962

Ave. 0.69% −0.33%

Figure 2. RPD of solution cost (in current and best solution respectively) versus iteration
number.

6. Conclusions and Future Work

This paper presents a meta-heuristic to solve the SCP. First, a function is designed
to evaluate the structure of each column using fuzzy factors. This function is em-
bedded into the proposed self-evolving algorithm, which mimics generations of
evolution on a single solution. In each generation an unfit portion of the work-
ing solution is removed. Any infeasible solution is repaired by a greedy building
process.

There are seven investigated control factors in the proposed approach. Using
the “change-one-factor-at-a-time” method of experimentation, a prohibitively large
number of 31,250 experiments needs to be carried out. This paper applies orthog-
onal experimental design to reduce the number of experiments to 50.
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Taken as a whole, our approach has a number of advantages. First, it is simple
to carry out because it uses greedy algorithms and local heuristics. Secondly, due
to its characteristic of maintaining only a single solution at each generation and
discarding inferior columns from this solution, this approach converges fast com-
pared with other meta-heuristics. Thirdly, combined with iterative improvement
and constructive perturbation, the approach has the ability to achieve superior so-
lutions by effective exploration of the solution space. Computational results have
demonstrated its potential.

However, it needs to be mentioned that at this stage we only test our approach
based on our data instances originating from real-world driver scheduling prob-
lems, which is a specialised set covering problem. In terms of ILP, the columns
correspond to shifts and the rows correspond to pieces of work that are used to
compose individual shifts. Therefore, in this kind of set covering problems, each
shift must satisfy conditions in the Labour Agreement between management and
unions, not just any possible combination of pieces of work. Our next step in the
future work is to test the performance of the proposed approach on randomly gen-
erated problems obtained from the OR-Library [2, 3], and compare our approach
with others based on the same test problems.

Another future research direction is to study the interaction of individual para-
meters and to improve the solution quality further. According to the experimental
results there is no significant improvement in general even if the refined parameter
settings have been used. The reason might be that it is only the relative levels of
two or three parameters that are important, or that some weights are much more
sensitive than others. An advanced ANOVA process therefore needs to be carried
out to analyse the results of the orthogonal experimental design, and to determine
how much variation each factor has contributed.
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