
Journal of Mathematical Modelling and Algorithms 3: 225–243, 2004.
© 2004 Kluwer Academic Publishers. Printed in the Netherlands.

225

A Tabu Search Heuristic for a Full-Load,
Multi-Terminal, Vehicle Scheduling Problem
with Backhauling and Time Windows �

R. H. CURRIE and S. SALHI
Management Mathematics Group, School of Mathematics and Statistics,
The University of Birmingham, U.K.

Abstract. The problem considered is the full-load pickup and delivery problem with time win-
dows (PDPTW), and heterogeneous products and vehicles, where the assignment of pickup points
to requests is not predetermined. Elements associated with tabu search, such as diversification by
reversion to ‘junctions’ and the use of soft aspiration criteria, are embedded into our tabu search
implementation. This metaheuristic is evaluated using random instances and selected data from a
construction company in the U.K. The obtained results are compared against lower bounds from LP
relaxation and also solutions from an existing multi-level heuristic.

Mathematics Subject Classification (2000): 90C10.

Key words: tabu search, heuristics, LP relaxation, distribution scheduling.

1. Introduction

This paper presents an efficient implementation of tabu search to address the prob-
lem of vehicle scheduling in a situation where goods have to be taken from a
number of depots (called “works”) to a large number of customers, each receiving
a full load. The problem arises from the delivery of road-making materials of a
large construction company in the U.K. The objective is to minimize the cost of
making deliveries. This is a new problem, albeit similar in some ways to several of
those tackled in the literature reviewed in this section.

Recently the authors tackled this problem using a constructive type heuristic
based on multi-level concepts which yielded encouraging results (see Currie and
Salhi [4]). As tabu search has shown, in the literature, to be among the best per-
formers within meta-heuristics for tackling complex combinatorial problems (see
for instance the recent work by Wassan and Osman [23], James and Salhi [9],
among others), we would like to investigate an implementation of this approach to
this difficult and practical scheduling problem.

� An earlier version of the paper was given at IFORS 2002 in Edinburgh. The first author is
currently working at the Inland Revenue, Telford, U.K.

226 R. H. CURRIE AND S. SALHI

The paper is organized as follows. This section describes the problem, with
an illustrative example, and briefly reviews relevant literature. The next section
presents our tabu search heuristic and some explanation of its main steps. Our
use of diversification strategies, including a new scheme which we propose, is
described in section three. In section four we present our computational results.
These are compared against solutions obtained by a recent multi-level constructive
heuristic and lower bounds, based on LP relaxation (see Currie and Salhi [4]).
Suggestions for further research conclude the paper.

1.1. PROBLEM DESCRIPTION

Works are locations from which a product may be collected for delivery. Journeys
are normally made between works and customers. Customers making multiple re-
quests are regarded as multiple customers. If an order is too large for one vehicle it
is divided into vehicle-loads, assumed known, as used by the company.

Loading times for a given works, and unloading times for a given customer,
are assumed constant. The set of products is partitioned into ‘product groups’. A
vehicle that has carried a member of one group may have to be cleaned, before
a member of another can be loaded onto it. If so, the delay thus incurred is also
assumed constant, and cleaning time included in the loading time of the next prod-
uct in the sequence. If a vehicle arrives early at a works or customer site, it waits
until the start of the time window to begin loading or unloading. In some instances,
time windows at customer sites are soft, so that if a vehicle arrives late, a penalty
is incurred, up to a limit of feasibility.

It is assumed that no vehicles could profitably be used, other than those in the
original solution. Usually each vehicle starts and finishes each day at its ‘home’
location (a works or a garage). Travelling cost is a function of the distance travelled
and the load carried, and varies from vehicle to vehicle, and from works to works.
Each vehicle used also incurs a fixed cost, which may vary depending on the size
and the type of the vehicle.

Each works has an associated list of products that are available from it. A cus-
tomer may insist on being supplied from a particular works. An unlimited supply
of each product is assumed to be available from every works that supplies that
product. All the works can accommodate a vehicle of any capacity, but a customer
may specify the maximum size of a vehicle that can unload at their site. Not all
vehicles can carry all products, and the fleet typically includes vehicles of different
capacities. For the purpoise of identifying a solution, each vehicle is regarded as
unique.

An Illustrative Example

Figure 1 represents an instance involving 3 requests, 2 works and 2 vehicles, of
which only 1 is needed. The dashed lines indicate empty travelling, the solid lines
full travelling. Times are shown as minutes past midnight. For example, vehicle 1

A TABU SEARCH HEURISTIC 227

Figure 1. Simple example of a route.

is available to start from v1 at 6 am (i.e. 6 × 60 = 360 mins from midnight). It
takes 8 minutes to travel to works w1 (hence arrival time is 368), 15 minutes to
load, and 15 minutes to travel to the site of request r1 (hence arrival time is 398).
The optimal route is the one shown in Figure 1, finishing at v1 at 8:57. This solution
was obtained by the LP-based model given in Currie and Salhi [4] and which uses
the software MP-XPRESS, available from Dash Associates for its implementation.
More details of the problem can be found in Currie and Salhi [4].

1.2. A BRIEF REVIEW

This scheduling problem is similar to the one formulated by Dumas et al. [5]
except here we have more additional specific constraints related to vehicles and
works. The modified 0-1 formulation which is used to generate lower bounds is
given in [4]. It is also important to observe that after some preprocessing this
problem may turn out to be a variant of vehicle routing and scheduling with time
windows with dependent arc costs. Mathematical properties may then be useful
to exploit. In this study, the primary purpose is to provide good solutions to this
practical scheduling problem. Heuristics are the best way forward to handle such
complex distribution problems. For this reason we only present some of the work
that describes related techniques used in this study. Applications of descent-based
heuristics are given in Van Der Bruggen et al. [22], Calvo [2], and Thangiah,
Potvin and Tong [20]. Renaud et al. [15] extend the method by the introduction of
perturbation. When a local optimum is reached, the search can be restarted using
modified data (Instance Perturbation), or a modified heuristic (Algorithm Perturba-
tion), or from a modified solution (Solution Perturbation). Glover and Laguna [7]
set out the principles of tabu search, and present a wide range of associated meth-
ods. Taillard et al. [19] and Potvin et al. [14] describe versions of the improving

228 R. H. CURRIE AND S. SALHI

moves that represent inter-route and intra-route improvements respectively. Bodin
et al. [1] develop heuristics to solve the related Rollon-Rolloff Problem, in which
tractors move trailers between locations and a disposal point. Savelsbergh and
Sol [18] introduce a branch-and-price algorithm based on approximation and in-
complete optimisation techniques to solve a practical pickup and delivery problem
faced by the largest transportation company in the Benelux. An application to the
Pickup and Delivery Problem Without Time Windows is presented by Gendreau,
Laporte and Vigo [6]. Very recently Currie and Salhi [4] derive an initial solution
and lower bounds to the problem studied in this paper, and propose a multi-level
heuristic using three constructive post-optimizers cyclically, in an attempt to escape
from local optima.

2. Methodology

A starting feasible solution is first generated and then refined using two descent
procedures namely the Or-Opt and the SHIFT which are briefly described later.
Tabu search is then used as a post-optimisation mechanism to improve the solution.
The neighbourhood on which tabu search is to be employed is then formed by a
combination of the CROSS and Or-Opt moves. That is to say, an exchange between
requests in vehicles v1 and v2 generates the neighbourhood of intra-route moves
within v1 and v2. This is a special case of λ-interchange mechanism introduced by
Osman [12] for the VRP. The computing time required to evaluate Or-Opt moves
of all possible chains in the two vehicles involved in each CROSS move would
be prohibitive for instances of realistic size. It is therefore proposed to consider as
eligible for membership of an Or-Opt chain only requests that have just entered
the route as a consequence of the CROSS move. A similar implementation strategy
for the case of VRP with Time Windows can be found in the paper by Taillard
et al. [19]. A careful use of this λ-interchange is implemented by Wassan and
Osman [23] where λ = 1 is used for intensification and λ = 2 for diversification.
The pseudo-code of our tabu search is shown in Figure 2. The main steps of the
heuristic are given in the next subsection.

2.1. EXPLANATION OF THE MAIN STEPS

In this section we present the way the initial solution is generated, the three types
of move, the tabu list size, the tabu definition, and how infeasibility is handled.
Data structures are also embedded into the search to speed up the process. Our
diversification strategies (Step 4.3) including a new scheme which we refer to as
junction, are covered in the next section.

Generation of the Initial Solution (Step 1). The initial solution is created by
means of a constructive heuristic. This is based on an adaptive heuristic using
greedy methods and regret costs. Requests were assigned to vehicles, one by one,

A TABU SEARCH HEURISTIC 229

Step 1 Obtain an initial solution using a constructive heuristic.
Step 2 Use SHIFT and Or-Opt to improve the solution and call the improved solution S1.
Step 3 Define tabu list size and stopping limit. Set C(best) and C(current) to the cost of S1.

Make all moves non-tabu.
Step 4 Do until the maximum number of diversifications is reached:

4.1 Initialise iteration number.
4.2 Do until stopping limit is reached:

4.2.1 Use CROSS and Or-Opt moves to search the neighbourhood.
4.2.2 If feasible moves exist for which solution cost < C(best), then

• Perform the move and set C(best) = C(current) = the least cost
of such neighbours.

• Make the reverse move tabu.
4.2.3 Else

• If non-tabu moves or moves that pass aspiration level exist, then
for infeasible moves, calculate the penalty. Perform move and set
C(current) to the least cost of such neighbours. Make the reverse
move tabu.

• Else indicate stopping level reached.
4.3 Apply diversification strategies

Figure 2. The tabu search heuristic.

and inserted in the best available time-slot (see Currie and Salhi [4] for more
details). Note that any other suitable heuristics could also be used for this purpose.

Or-Opt (Steps 2 and 4.2.1). Or-Opt (used by Potvin et al. [14]) is a somewhat
quicker version of a 3-opt move, so called because it involves 3 consecutive arcs.
The idea is to move a chain of requests within a route (that is, the entire sequence
of nodes served by a given vehicle), preserving the order of requests, and the works
visited strictly inside the chain. The works supplying the 1st request in the chain,
and the requests immediately following the old and new positions of the chain, are
re-optimized (i.e., checked and replaced if another works would create a cheaper
solution). In our version chains of 3 or fewer requests are considered eligible for
movement.

SHIFT (Step 2). SHIFT moves a chain of requests from the start or the end of
a route, and inserts it into another route. It may happen that a whole route can be
subsumed into another route, or that it can be split between two other routes. In
either case the fixed cost of a vehicle would be saved.

The works visited at either end of a chain are re-optimized, while those visited
strictly inside the chain are preserved, as is the order of requests within the chain.

The computing time needed can be reduced by maintaining an array that holds
details of each possible SHIFT move, including the routes involved, the size and
position of the chain, and the change in cost that would result from the move,
ignoring the effect of any other move. Similar data structures were successfully
used for the vehicle routing problem with mixed fleet by Osman and Salhi [13].

230 R. H. CURRIE AND S. SALHI

After each SHIFT move, only those elements that are affected by it need be
updated. Furthermore, since the change in cost resulting from each possible shift
is recorded, it is possible to start with a chain length of 1 and increase, stopping as
soon as there are no feasible shifts for a given length.

CROSS (Step 4.2.1). CROSS swaps chains of requests from any part of two dif-
ferent routes. Each chain may consist of 1, 2 or 3 consecutive requests, the order of
which is preserved, as are the works visited strictly inside each chain. Again, the
works visited at either end of each chain are re-optimized. In this way all possible
SHIFT moves can be examined.

To speed up the process when searching for a suitable CROSS exchange, a
4-dimensional array XXDEL is constructed. The dimensions represent the two ve-
hicles involved in the exchange, the maximum number of possible moves that it
is decided to hold for each pair of vehicles, and the number of data items needed
to define a chain within a vehicle. Thus at each iteration after the first, the only
moves that need to be evaluated are those that involve either or both of the vehicles
between which an exchange was effected at the previous iteration.

For similar reasons the sequence in which the possible CROSS moves between
any given pair of vehicles are evaluated is important. The calculation of arrival
times in the CROSS exchange is nested as shown in Figure 3. The variables S1
to S14 signify nodes, the vector ETA represents a set of earliest times of arrival
at a node, t (i, j) denotes the travelling time between nodes i and j . The ETA()
are compared with the later end of the corresponding time window to calculate
the penalty for lateness. This is similar to the scheme described by Taillard et
al. [19], which is used to cut down on the computing time for the calculation
of expected times of arrival at each node. This is particularly significant for the
instances having soft time windows, for which the costs include a penalty for late
arrival at each customer site. This procedure allows the examination of all possible
CROSS moves.

Tabu List Size (Step 3)

In this study the tabu list size, ls, reflects the size of the instance, being calculated
at the outset as

ls = min(lsmax, max(lsmin, int(nr/nrdiv))), (1)

where lsmin and lsmax are respectively the minimum and maximum tabu list size
allowed. nr denotes the number of requests and nrdiv is a constant. Experimentally,
ls was calculated using Equation (1), with lsmin = 5, lsmax = 30, and nrdiv
set to 6, 8, 10 and 12, or generated randomly in [6, 12] at each iteration. In our
preliminary but limited experiments we found that nrdiv = 10 produced marginally
better results. The idea of relating tabu list size to the size of the problem was also
used successfully by Osman and Salhi [13].

A TABU SEARCH HEURISTIC 231

1. INITIALISATION PHASE

Set ETA(1) and ETA(2) to the earliest departure times of the 1st and 2nd
vehicles respectively.
Set S1 and S2 to the starting points of the 1st and 2nd vehicles
respectively.
Set S3 and S5 to the 1st request in the 1st vehicle
Set S4 and S6 to the 1st request in the 2nd vehicle
Set S7 to S14 to zero
Set maxch to the maximum length of a chain

2. MAIN LOOP

While S3 exists
If S3 is not the 1st request, set ETA(1)=ETA(1)+t(S9,S1)
While S4 exists

If S4 is not the 1st request, set ETA(2)=ETA(2)+t(S10,S2)
Set ETA(3)=ETA(5)=ETA(1)+t(S1,S4) and ETA(4)=ETA(6)=ETA(2)+t(S2,S3)
For m=1 to maxch, provided S5 exists

If S5 is not S3, set ETA(6)=ETA(6)+t(S11,S5)
For n=1 to maxch, provided S6 exists

If S6 is not S4, set ETA(5)=ETA(5)+t(S12,S6)
Set S7 to the request after S5 in vehicle 1 (∗)
Set S8 to the request after S6 in vehicle 1 (∗)
Set ETA(5)=ETA(5)+t(S6,S7) and ETA(6)=ETA(6)+t(S5,S8)
While S7 exists (+)
Set ETA(5)=ETA(5)+t(S13,S7) (+)
Set S13 to S7
Set S7 to the request after S7 in vehicle 1 (∗+)

End While
While S8 exists (+)
Set ETA(6)=ETA(6)+t(S14,S8) (+)
Set S14 to S8
Set S8 to the request after S8 in vehicle 2 (∗+)

End While
Set S12 to S6, S6 to the request after S6 in vehicle 2

Set S11 to S5
Set S5 to the request after S5 in vehicle 1

Set S10 to S2, S2 to S4 and S4 to the request after S4 in vehicle 2
End While
Set S9 to S1, S1 to S3 and S3 to the request after S3 in vehicle 1

End While

(∗) After the last request in the route of a vehicle, S7 and S8 are set to
the finishing points of vehicles 1 and 2 respectively.

(+) The approximation method described by Taillard et al could have been
used instead of propagating arrival times to the end of the route.

Figure 3. Calculation of arrival times in CROSS exchanges.

232 R. H. CURRIE AND S. SALHI

Tabu Definition (Steps 4.2.2 and 4.2.3)

The tabu tenure of a move should take account of both the vehicles involved and
the request. For this purpose a 2-dimensional array REC is maintained, of size
nr × nv (where nv is the number of vehicles). Let S and S ′ denote respectively
the sets of requests that move from v1 to v2, and from v2 to v1 at iteration i1, then
REC(s ∈ S , v1) and (REC(s ∈ S ′, v2) are set to i1.

Let maxch be the maximum length of a chain, 1 � m � maxch and 1 � n �
maxch. Let ti2 be the tabu tenure at iteration i2 of a CROSS that moves requests
sj | 1 � j � m to vehicle v1 and requests sk | m + 1 � k � n to vehicle v2 so that
a total of n requests is involved in the move. Then

ti = 1

n

{ m∑
j=1

max(0, ls − i + REC(sj , v1)) +

+
n∑

j=m+1

max(0, ls − i + REC(sj , v2))

}
. (2)

The aspiration level is set to the cost of the best solution. That is to say, the tabu
status of a move is disregarded if the cost of the resulting solution is lower than
that of the best solution hitherto found.

If all moves are tabu and none improves on the best solution, then the move
having the smallest tabu tenure is chosen, provided this is not greater than lsmin.

Termination Rules (Steps 3 and 4.2)

We have opted for two types of stopping criteria; one is based on the number of
iterations and the other on the number of diversifications whichever materialise
first.

(i) The maximum number of iterations, denoted by lim, is defined as

lim = min(maxlim, max(minlim, int(nr/10))), (3)

where minlim and maxlim are set to 10 and 30 respectively. Then diversification is
triggered after lim consecutive iterations without an improvement over the previ-
ous solution, or 2lim consecutive iterations without an improvement over the best,
whichever happens first.

(ii) The search terminates if the number of times diversification occurs without
improvement, divmax, is reached. In addition, the process also stops if the overall
limit on the number of diversifications, divlim, is attempted. In our experiments we
set divmax = 5 and divlim = 20.

Allowing Infeasibility (Step 4.2.3)

To facilitate escape from local optima, lateness at the customer site is allowed, but
is penalized at rates that increase stepwise with lateness. In the instances having

A TABU SEARCH HEURISTIC 233

soft time windows, lateness is defined, for this purpose, as the time elapsing from
the later end of the hard time window to the arrival at the customer site. Let b(i)

and f (i) be step functions of i such that 1 � i � npen. Then the penalty (£p), for
lateness (l) in minutes is given by

p =
npen∑
i=1

f (i) × max(0, l − b(i)) (4)

subject to a maximum lateness (in minutes) of m say. For example, with m =
180, npen = 6, b = (0, 30, 60, 90, 120, 150), f = (1, 1, 1, 1, 1, 1), a move that
resulted in lateness of 165 minutes would be penalized by the addition of £540 to
the cost, whereas if the lateness were 190 minutes, the move would be disallowed
and considered as infeasible. This function reflects the fact that loss of goodwill
increases more quickly with lateness when delivery is very late than when the time
window is only marginally violated.

Variable Penalty Rates. The penalty rate for lateness varies with the number of
iterations since the last move to a feasible solution. This is introduced to encourage
a return to feasibility when a run of infeasible solutions has been found. In this
implementation, Equation (4) is modified to

p = 10

d

(
npen∑
i=1

f (i) × max(0, l − b(i))

)
, (5)

where d is initialised to 10, reduced by 1 after every move that yields an infeasible
solution (subject to a minimum of 1), and increased by 1 after every move that
yields a feasible solution. d is reset to 10 at each diversification, and whenever a
new best solution is discovered.

Choice of the Move (Steps 4.2.2 and 4.2.3)

There are several ways of selecting the best move. The cheapest non-tabu move
could be chosen, or probabilistic criteria (see Lokketangen and Glover [11]) could
be used. In this study, we opt for a method that takes account of the proximity to
the best, of the costs of tabu solutions.

Soft Aspiration Criterion. Salhi [17] identifies those moves that are only mar-
ginally tabu, and only marginally non-improving, and so would normally be ex-
cluded. Let q represent the best non-tabu move, tj the tabu tenure of move j , �j the
excess cost of move j over that of the best solution, and LS0 the critical value for
which the aspiration criteria will be evaluated. Let β and c be parameters in [0, 1].
Then the moves considered are those for which tj � LS0 and �j � β × �q . From
this set, the move chosen is the one that maximizes the function (�q − �j)/(tj)

c.

234 R. H. CURRIE AND S. SALHI

Clearly the lower the settings of β and the LS0, the more restricted is the set
of moves considered. The higher the setting of c, the more significant is the tabu
tenure of a move relative to its excess cost.

Tests indicate that the best results are obtained by using the initial solution
refined by SHIFT and Or-Opt, penalizing infeasibility at the variable rates shown
above and using the formula given for soft aspiration, with LS0 = 5, β = .8 and
c = .5. Similar values for the parameters β and c were also experimentally found
to be promising in James and Salhi [9].

3. Diversification Strategies (Step 4.3)

We used three diversification strategies two of which already exist and are the
frequency-based and the return to the best. The third one is our new scheme which
we shall refer to as ‘junction’. Other diversification strategies could be found in
Rochat and Taillard [16], Cordeau et al. [3] and in the book of Glover and La-
guna [7].

3.1. FREQUENCY-BASED PERTURBATION

Kelly et al. [10] indicate some uses of frequency-based memory in diversification
strategies. In the current problem, the frequency with which each request has been
involved in a CROSS move can be measured. The most static requests can then be
forced to move. In this way the search can be restarted from a (possibly infeasible)
solution in a hitherto unexplored region. This is similar to the notion of Solution
Perturbation described by Renaud et al. [15], except that, in the present study, the
solution from which the search is restarted may be infeasible with regard to time
windows.

A vector FREQ is maintained as a simple count of the number of times each
request is involved in a CROSS exchange. At diversification, a list is compiled,
in ascending order of frequency of movement, of the 20% least mobile requests,
excluding any that could not be served by any other vehicle. Each request in the
list, together with the arc from the works supplying it, is moved, in turn, to the
cheapest possible slot in the route of another vehicle that can service it. Thus a new
solution is generated, which respects all constraints, and which can be used as the
starting point of a new search.

3.2. REVERSION TO THE BEST SOLUTION

The move that immediately preceded the best solution, and the two that followed
it, are added to a special list of moves to be made tabu at this and any subse-
quent diversification. The best solution is made current, and the search restarted.
Thomas and Salhi [21] implemented such a scheme successfully when addressing
the problem of resource constrained project scheduling.

A TABU SEARCH HEURISTIC 235

Figure 4. Eligibility of alternative moves.

3.2.1. Junctions

This is an extension to the previous strategies. The idea is to revert, not neces-
sarily to the best solution, but to a ‘junction’, that is, a solution from which two
or more moves are available to solutions having roughly similar costs to the one
taken on the first pass. As this strategy is, to our knowledge, new we describe it
here.

Let si , i � 0 be the solution reached at iteration i, having cost C(si), s0 being
the initial solution. Suppose that, from si , m moves (to si+1 and aij , 1 � j < m)
are available to solutions such that Csi+1 � Cai1 � · · · � Caij

� · · · � Caim−1. Let
δj = Caij

−Csi , δ0 = Csi+1 −Csi . Let α ∈ [0, 1] be a parameter. If the move to si+1

is an improving move, then δ0 < 0, and, for aij to be eligible as an alternative, we
require that δ0 � δj � α ×|δ0|. Otherwise, we require that δ0 � δj � δ0 × (1+α).
The two cases are illustrated in Figure 4. Furthermore, the tabu tenure must be
less than lsmin, and moves for which δ0 = δj are assumed to be equivalent and
disregarded.

The number of moves stored for each junction, and the number stored in total,
are limited to juncmax (=3) and junctot (=40) respectively.

Suppose several junctions have been visited, and the stopping criterion is re-
ached, at iteration i, say. We pick the junction having the highest number of alter-
natives, subject to an overriding requirement that it was encountered at or before
iteration i−ilim, where ilim denotes the number of moves preceding the iteration at
which diversification is activated. The idea is to distance the starting point from the
current solution. In this experiment we set ilim to 5. In the event of a tie, we pick
the first junction encountered. The alternative move is the one that finds the best
solution from that junction, other than that found on the first pass, and is therefore
chosen by setting j = 1. If no junctions have been found, we revert to the best
solution.

Figure 5 represents part of the solution space. As an example, suppose s1, s4

and s6 are junctions having, respectively, 1, 2 and 2 alternatives. If the stopping

236 R. H. CURRIE AND S. SALHI

Figure 5. Diversifying from junctions.

criterion is reached after, say, solution s5+ilim, then solution s4 is the junction to be
revisited, since the overriding requirement of at least ilim iterations rules out the
choice of s6, and s1 has fewer alternatives. Solution a41 would therefore be chosen.

As at present, the move that led to the junction on the first pass, and the two
moves that led away from it, are made tabu, to avoid the risk that the sequence
of moves after a diversification could replicate a previous sequence. Thus, in the
example shown in Figure 5, if at iteration i solution s4 were revisited, the elements
of REC corresponding to the requests involved in the moves from s3 to s4, s4 to s5

and s5 to s6 would be set to i.
This method presents a number of alternative starting points. If no move can be

made from one of these, the next should be tried, up to the maximum number of
diversifications. This contrasts with the strategy of reversion to the best solution.
In that case, if no move can be found, the process terminates.

3.3. IMPLEMENTATION OF THE DIVERSIFICATION STRATEGIES

We investigated two ways of combining the above three strategies.

3.3.1. Randomised Choice of Strategy

At each diversification a random binary number is generated, which determines
whether the method of junctions (which embraces, by default, reversion to the best
solution) or of frequency-based perturbation is used.

3.3.2. Rule-Based Choice of Strategy

For the first divmax diversifications, and thereafter, if the best solution has im-
proved during any of the most recent divmax diversifications, the current solution

A TABU SEARCH HEURISTIC 237

Table I. Rule-based diversification

Previous diversification Current diversification

Reversion to best Junctions

junctions Frequency-based perturbation

Frequency-based perturbation Reversion to best

reverts to the best. Otherwise the method depends on the previous diversification,
as shown in the sequence of Table I.

4. Computational Results

All the heuristics presented in this paper are coded in Fortran 90 and run on a 600
MHz Pentium III PC computer. All the tabu search variants are part of this paper
except the constructive heuristic which is previously given in Currie and Salhi [4].
The proposed TS heuristics are tested on a set of instances that are summarised
in Table II, which specifies the numbers of requests, available vehicles, works and
product groups, and whether Cartesian coordinates or inter-nodal distances were
used. Instances F1–F2 and G1–G2 were taken from real data based on a large
construction company in the U.K. Other instances are either variants of these or
independently generated at random. In particular, Instances B1–B5 are arbitrary
subsets of the real data from the Midlands in the U.K. Instances C1, D1 and E1
have respectively 50, 100 and 200 customer sites whose coordinates were randomly
generated in a 20 × 20 grid. Instance H1 was formed by replicating Midlands data
to inflate, artificially, the size. Instances C2–C6, D2–D6, E2–E6 and H2–H6 are
perturbations of Instances C1, D1, E1 and H1 respectively. The data files are also
accessible on the following Web site: http://web.mat.bham.ac.uk/S.Salhi/others.

Based on these 33 instances, the means of the percentage deviation of each
heuristic’s cost from the best obtained for each instance are shown at the foot of
each column. Also shown, for each heuristic, are its maximum percentage deviation
from the best, and the number of instances for which it yields the best solution.
Table III shows the effect of the various types of strategy described here. The re-
sults generated by reversion to best (BEST), frequency-based perturbation (FREQ),
junctions (JUNC), the mean results obtained from 5 runs of the randomised choice
(RAND), and the results of the rule-based choice (RULE) respectively, are given.
The final column (d1, d2, d3) shows the number of occurrences of each of the
1st three types of diversification used by RULE (i.e. best, junction, frequency-
based). Reversion to the best appears to be the dominant strategy, especially in
the larger instances. Lower bounds, as denoted in the second column by LB, are
also shown where available. Alternative lower bounds are found by relaxing the
integrality constraints of the formulation of either the problem as a MILP, or the

238 R. H. CURRIE AND S. SALHI

Table II. Main characteristics of instances

Instance Requests Vehicles Works Product Remarks

Groups

B1–B5 25 (6, 6, 13, 8, 20) 4 3 Cartesian

C1–C6 50 (6, 6, 6, 6, 6, 6) 4 3 Cartesian

D1–D6 100 (10, 10, 10, 10, 10, 10) 12 3 Cartesian

E1–E6 200 (8, 8, 8, 8, 8, 8) 12 3 Cartesian

F1 208 67 5 3 Distances, North-West data

F2 208 67 5 3 Distances, North-West data,

Cleaning delay

G1 205 18 14 2 Cartesian, Midlands data

G2 205 18 14 2 Cartesian, Midlands data,

Cleaning delay

H1–H6 500 (20, 20, 20, 20, 20, 20) 14 2 Cartesian

problem without time windows. The second type of bound is looser, but tends to
converge more quickly when integrality is reimposed. In each instance the tightest
lower bound obtained has been used for comparison. The generation of these lower
bounds is given in Currie and Salhi [4].

Table IV provides the results of the rule-based strategy (RULE), the solution of
the 3-phase heuristic of Currie and Salhi [4] (CYCLE), and the basic tabu search
without refinement (TABU). CYCLE consists of the cyclical use of SHIFT, CROSS
and Or-Opt, to escape from local optima. That is, each one is used in turn as a
descent-based heuristic until no further improvement is found. The cycle of this 3-
phase heuristic continues until there is no improvement in two consecutive phases.
We would like to note that CYCLE is deterministic in the sense that it terminates on
reaching a given condition, whereas RULE could be specified for either a number
of diversifications (as in our experiment) or for a fixed CPU time. The obtained
solutions by RULE are found to be superior to both the ones generate by CYCLE
and the basic TABU. Note that where the several heuristics result in the use of
the same number of vehicles, the difference between their costs, expressed as a
% of total costs, is therefore very small. In conclusion, though these deviations are
rather small these values would be significant if the fixed costs were ignored and the
calculations were computed using operating (mileage) costs only. The percentage
by which the cost of the rule-based strategy exceeds the lower bounds where these
exist, is also shown. Also reported are the corresponding CPU times in seconds.
Though RULE seems to require a much larger amount of CPU, it is observed
that such time could be reduced if the stopping criterion regarding the number
of diversifications was more restrictive. In this implementation for simplicity, we
allow up to 20 diversifications, though we observe that the best is often found

A TABU SEARCH HEURISTIC 239

Table III. Alternative types of diversification

Instance LB BEST FREQ JUNC RAND RULE (d1)(d2)(d3)

|R| = 25

B1 9875 10023 9999 9999 10015 10019 (12)(4)(4)

B2 9684 9780 9762 9792 9781 9780 (11)(4)(5)

B3 1402 1475 1474 1474 1474 1473 (17)(1)(2)

B4 828 830 830 830 830 830 (9)(5)(6)

B5 2048 2196 2196 2196 2196 2196 (9)(5)(6)

|R| = 50

C1 19542 19653 19653 19635 19665 19653 (11)(4)(5)

C2 19542 19656 19656 19678 19668 19656 (14)(3)(3)

C3 22461 22825 22793 22959 22852 22825 (17)(1)(2)

C4 19563 20241 20241 20297 20301 20241 (13)(3)(4)

C5 19066 19203 19193 19213 19201 19187 (14)(3)(3)

C6 19687 19842 19842 19824 19854 19842 (11)(4)(5)

|R| = 100

D1 29637 31766 31784 31844 31824 31766 (20)(0)(0)

D2 29637 31823 31816 31929 31860 31823 (12)(4)(4)

D3 38528 40876 40876 40988 40949 40810 (16)(2)(2)

D4 29232 33456 33498 33584 33560 33456 (13)(3)(4)

D5 29046 31230 31178 31324 31224 31230 (12)(4)(4)

D6 64664 78566 78584 78644 78624 78566 (20)(0)(0)

|R| = 200

E1 52814 52886 52984 52910 52814 (20)(0)(0)

E2 53149 53138 53217 53046 53071 (16)(2)(2)

E3 77038 76874 77078 76909 76766 (18)(1)(1)

E4 56974 56902 57192 57084 56974 (20)(0)(0)

E5 51078 51250 51320 51270 51078 (20)(0)(0)

E6 92486 92558 92656 92582 92486 (20)(0)(0)

|R| = 500

F1 32143 32125 32180 32151 32143 (20)(0)(0)

F2 32287 32260 32341 32273 32287 (14)(3)(3)

F3 36828 36826 36841 36808 36828 (20)(0)(0)

F4 32752 32753 32796 32784 32752 (20)(0)(0)

F5 31193 31185 31212 31203 31193 (20)(0)(0)

F6 104070 104108 104149 104123 104070 (20)(0)(0)

Widnes

G1 12571 12495 12588 12511 12483 (18)(1)(1)

G2 12826 12826 12827 12826 12825 (14)(3)(3)

240 R. H. CURRIE AND S. SALHI

Table III. (Continued).

Instance LB BEST FREQ JUNC RAND RULE (d1)(d2)(d3)

Oldbury

H1 12525 12523 12525 12524 12525 (12)(4)(4)

H2 12686 12680 12689 12686 12679 (16)(2)(2)

Mean % dev 0.09 0.05 0.23 0.13 0.04

Max % dev 0.70 0.34 0.84 0.38 0.20

No. best 12 14 5 4 19

several diversifications earlier. The diversification that first yielded the best result
in our tests is shown in Table IV, in brackets with the method RULE and under the
heading “CPU seconds”.

5. Conclusions and Suggestions for Further Research

In this study some of the techniques associated with tabu search have been ex-
plored to solve this particular vehicle scheduling problem. The results have been
compared, and a version of the heuristic, which includes the techniques of allowing
infeasibility, soft aspiration, and a diversification strategy chosen dynamically by
a simple rule, has been found to achieve good quality solutions without exces-
sive computing time though much larger than the other variants. The multi-level
heuristic CYCLE appears to perform impressively as it consumes a small amount
of cpu while maintaining the quality of the solutions generated. Nonetheless, in the
proposed TS implementation further improvement may be possible by researching
issues such as different functional forms for soft aspiration, and alternative methods
of penalizing infeasibility. It may also be desirable to look at the efficiency of this
TS method by enhancing its speed through identifying the bottleneck aspects of
the method. In addition, it is also useful to introduce hashing functions to speed up
the search by avoiding to re-evaluate solutions already detected.

The research done so far has focussed on the development of a schedule to
meet demands, and in a production environment, that are fixed in advance. In
some practical circumstances, last-minute changes occur, either to demand (for
example, a customer changes or cancels an order) or supply (a works goes out of
production, or a vehicle breaks down). Some research into real time routing may
be worth investigating. For example, Ichoua et al. [8] attempt such a problem. The
possibilities of last-minute changes to the schedule may be investigated.

A TABU SEARCH HEURISTIC 241

Table IV. Performances: Rule-based tabu vs basic tabu and CYCLE

Costs CPU seconds

Instance LB TABU RULE CYCLE % RULE vs LB TABU RULE CYCLE

|R| = 25

B1 9875 10089 10019 10023 1.45 1 24 (10) 0

B2 9684 9869 9780 9822 0.99 1 55 (2) 0

B3 1402 1771 1473 1479 5.06 2 56 (15) 4

B4 828 853 830 830 0.24 4 15 (0) 0

B5 2048 2355 2196 2196 7.22 3 55 (0) 1

|R| = 50

C1 19542 19731 19653 19707 0.56 1 41 (2) 0

C2 19542 19764 19656 19845 0.58 3 60 (7) 2

C3 22461 22959 22825 22995 1.62 1 39 (11) 0

C4 19563 20345 20241 20345 3.46 0 58 (5) 0

C5 19066 19283 19187 19261 0.63 1 43 (15) 1

C6 19687 19920 19842 19896 0.78 1 40 (2) 0

|R| = 100

D1 29637 32208 31766 31980 7.18 5 269 (20) 5

D2 29637 32229 31823 32008 7.37 20 336 (4) 7

D3 38528 41056 40810 41094 5.92 6 237 (19) 6

D4 29232 33750 33456 33738 14.44 3 407 (5) 9

D5 29046 31658 31230 31336 7.51 6 327 (4) 7

D6 64664 81708 78566 78780 21.49 5 265 (20) 6

|R| = 200

E1 53276 52814 53332 44 1927 (20) 38

E2 53329 53071 53096 71 2081 (20) 38

E3 77196 76766 77226 64 1643 (17) 46

E4 57270 56974 57188 13 2804 (17) 59

E5 51406 51078 51348 65 2405 (15) 29

E6 92948 92486 93004 43 1929 (20) 32

|R| = 500

F1 32203 32143 32117 255 5158 (18) 996

F2 32341 32287 32249 551 6765 (7) 1196

F3 36820 36828 36612 433 4010 (17) 1384

F4 32820 32752 32647 514 6761 (18) 1581

F5 31239 31193 30659 288 5412 (18) 1369

F6 104145 104070 104080 352 5987 (17) 975

Widnes

G1 12591 12483 12656 71 1956 (19) 75

G2 12846 12825 12899 75 1705 (15) 81

242 R. H. CURRIE AND S. SALHI

Table IV. (Continued).

Costs CPU seconds

Instance LB TABU RULE CYCLE % RULE vs LB TABU RULE CYCLE

Oldbury

H1 12552 12525 12532 38 964 (3) 77

H2 12703 12679 12686 37 1117 (12) 65

Mean % dev 1.60 0.09 0.38

No. best 0 28 7

Average cpu 56 1602 245

Acknowledgments

We would like to thank all the referees for their constructive comments and we are
also grateful to both the EPSRC and RMC Aggregates Ltd for sponsoring the first
author.

References

1. Bodin, L., Mingozzi, A., Baldacci, R. and Ball, M.: The rollon-rolloff vehicle routing problem,
Transport. Sci. 34(3) (2000), 271–288.

2. Calvo, R.: A new heuristic for the travelling salesman problem with time windows, Transport.
Sci. 34(1) (2000), 113–124.

3. Cordeau, J.-F., Laporte, G. and Mercier, A.: A unified tabu search heuristic for vehicle routing
problems with time windows, J. Oper. Res. Soc. 52(8) (2001), 928–936.

4. Currie, R. and Salhi, S.: Exact and heuristic methods for a full-load, multi-terminal, vehicle
scheduling problem with backhauling and time windows, J. Oper. Res. Soc. 54 (2003), 390–
400.

5. Dumas, Y., Desrosiers, J. and Soumis, F.: The pickup and delivery problem with time windows,
European J. Oper. Res. 54 (1991), 7–22.

6. Gendreau, M., Laporte, G. and Vigo, D.: Heuristics for the travelling salesman problem with
pickup and delivery, Comput. Oper. Res. 26 (1999), 699–714.

7. Glover, F. and Laguna, M.: Tabu Search, Kluwer Acad. Publ., Boston, 1997.
8. Ichoua, S., Gendreau, M. and Potvin, J.-Y.: Diversion issues in real-time vehicle dispatching,

Transport. Sci. 34(4) (2000), 426–438.
9. James, J. C. and Salhi, S.: A tabu search heuristic for the location of multi-type protection

devices on electrical supply tree networks, J. Combin. Optim. 6 (2002), 81–98.
10. Kelly, J., Laguna, M. and Glover, F.: A study of diversification strategies for the quadratic

assignment problem, Comput. Oper. Res. 29 (1994), 665–695.
11. Lokketangen, A. and Glover, F.: Solving zero-one mixed integer programming problems using

tabu search, European J. Oper. Res. 106 (1998), 624–658.
12. Osman, I. H.: Metastrategy simulated annealing and tabu search algorithms for the vehicle

routing problem, Ann. Oper. Res. 41 (1993).

A TABU SEARCH HEURISTIC 243

13. Osman, I. H. and Salhi, S.: Local search strategies for the vehilce fleet mix problem, in
V. J. Rayward-Smith, I. H. Osman, C. R. Reeves and G. D. Smith (eds), Modern Heuristic
Search Methods, Wiley, Chichester, 1996, Chapter 8, pp. 131–154.

14. Potvin, J.-Y., Kervahut, T., Garcia, B.-L. and Rousseau, J.-M.: The vehicle routing problem
with time windows. Part 1: Tabu search, INFORMS J. Comput. 8(2) (1995), 158–184.

15. Renaud, J., Boctor, F. and Laporte, G.: Perturbation heuristics for the pickup and delivery
travelling salesman problem, Comput. Oper. Res. 29 (2002), 1129–1141.

16. Rochat, Y. and Taillard, E.: Probabilistic diversification and intensification in local search for
vehicle routing, J. Heuristics 1 (1995), 147–167.

17. Salhi, S.: Defining tabu list size and aspiration criterion within tabu search methods, Comput.
Oper. Res. 29 (2002), 67–86.

18. Savelsbergh, M. and Sol, M.: Drive: Dynamic routing of independent vehicles, Oper. Res. 46(4)
(1998), 474–490.

19. Taillard, E., Badeau, P., Gendreau, M., Guertin, F. and Potvin, J.-Y.: A tabu search heuristic for
the vehicle routing problem with soft time windows, Transport. Sci. 31(2) (1997), 170–186.

20. Thangiah, S. R., Potvin, J.-Y. and Tong, S.: Heuristic approaches to vehicle routing with
backhauls and time windows, Comput. Oper. Res. 23(11) (1996), 1043–1058.

21. Thomas, P. and Salhi, S.: A tabu search approach for the resource constrained project
management problem, J. Heuristics 4 (1998), 123–139.

22. Van Der Bruggen, L. J. J., Lenstra, J. K. and Schuur, P. C.: Variable-depth search for the single-
vehicle pickup and delivery problem with time windows, Transport. Sci. 27(3) (1993), 298–
310.

23. Wassan, N. A. and Osman, I. H.: Tabu search variants for the mix fleet vehicle routing problem,
J. Oper. Res. Soc. 53(7) (2002), 768–782.

