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1. Introduction

An instance of the Constraint Satisfaction Problem (CSP) [19, 23] is defined by a
triplet (X,D,C) where:

• X = {x1, . . . , xn} is a finite set of n variables.
• D = {Dx1, . . . ,Dxn

} is a set of associated domains. Each domain Dxi
speci-

fies the finite set of possible values of the variable xi .
• C = {C1, . . . , Cp} is a finite set of p constraint. Each constraint is defined on

a set of variables and specifies which combinations of values are compatible
for these variables.

Given such a triplet, the problem consists in finding a complete assignment of
the values to the variables that satisfies all the constraints. Such an assignment is
then said to be consistent. Since the set of all assignments (not necessarily consis-
tent) is defined by the Cartesian product Dx1 × · · · × Dxn

of the domains, solving a
CSP means to determine a particular assignment among a potentially huge search
spaces. The CSP is known to be an NP-hard problem in the general case. Related
to the CSP is the MAX-CSP problem where one seeks an assignment such that a
maximum number of constraints is satisfied.

The CSP is a very general formalism able to model a large number of combina-
torial search problems. The CSP can be used to formulate conveniently many well-
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known problems such as graph k-coloring, satisfiability (SAT), as well as many
practical applications related to resource assignments, planning or timetabling. One
classical approach for solving a CSP is the systematic tree search strategy com-
bined with various domain reduction techniques [23]. This approach is largely used
by constraint programming (CP) systems. In practice, complete methods based on
systematic tree search may fail to solve large CSP instances, because the computing
time required may become prohibitive.

Another powerful and popular strategy for solving large CSPs is the repair, or
Local Search approach [1]. With local search,� an initial configuration (conflicting
assignment) is first built. Then one iterates a series of moves, each one consisting
in modifying the value of a variable. The goal is then to minimize gradually con-
straint violation until a solution is eventually found. Although the principle of local
search is very simple, it has proved to be very effective for dealing with many hard
combinatorial problems. Indeed, this approach has been used to solve several well-
known problems with elementary constraints such as k-colouring, SAT, frequency
assignment problems and random instances of binary CSPs. Local search has also
found solutions for combinatorial search problems involving much more complex
constraints like the progressive party problem.

However, local search is often applied on a case-by-case basis, leading to the
situation of one problem one algorithm. Algorithms developed in such a way are
rarely reusable across several different, even similar problems. In this paper, we
propose a general local search approach which may be used to solve various CSPs
(and MAX-CSPs). At a very high level, the proposed system can be divided into
two large parts: a general formalism for problem modeling and a general search
engine for problem resolution. Problem modeling is achieved by using a set of
high-level constraint primitives, like in constraint programming. Problem solving
is ensured by an embedded Tabu Search engine. Now solving a particular constraint
problem consists simply in modeling the problem with constraint primitives. The
embedded Tabu Search is then directly used to search for a solution.

The remaining of the paper is organized as follows. Section 2 reviews the related
works. Section 3 presents our general approach for constraint solving by local
search. Section 4 shows examples of modeling combinatorial problems with the
proposed approach. Section 5 presents experimental results on selected problems.
The last section gives some conclusions.

2. Brief Review of Related Work

One finds in the literature several attempts of building repair-based systems for
solving CSPs. Systems reported in [7, 5, 20, 6] are particularly relevant to our work.

� Notice that traditionally the term “local search” is the synonym of the descent or the iterative
improvement. In this paper, we use the term to include the wider class of neighborhood search
methods such as Tabu Search and Simulated Annealing.
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These systems differ according to the types of constraints effectively allowed, the
way of handling the constraints and the resolution techniques used.

In the work of [20], each CSP variable Xi with value domain Di is replaced
by a set of |Di| binary variables xij : xij = 1 if variable Xi takes value j ∈ Dj , 0
otherwise. In this 0-1 encoding of the CSP, the possible constraints are the linear
inequalities. Penalties are employed for the purpose of constraint satisfaction. The
basic resolution method is based on a tabu search algorithm. Another example is
Genet and its variants [7, 5]. This system proposes a rich language of constraints
that includes both binary and non-binary constraints. The resolution methods used
in this system are based on repair heuristics called Min-Conflicts (MC) and Break-
out. While MC may be considered as a very simple pure LS method (i.e. a descent),
the Breakout heuristic gives a way to adapt dynamically penalties for escaping from
local optima. Very recently, a similar system was also reported in [6].

In addition to these CSP-based systems, general heuristic approaches have also
been proposed for combinatorial problems based on other models. For instance, in
[21], a general formalism based on the list data structure is proposed for problem
formulation and a simulated annealing algorithm is used for problem resolution.
Similarly, in [25], the central formulation model is the so-called over-constrained
integer program (OIP) (equivalent to the general ILP model) which is solved by a
repair heuristic called Wsat(OIP). One also finds in the literature studies of building
reusable software components for heuristic search. Typically, these systems are
defined by a library of predefined functions which are implemented with the object-
oriented programming technology. One finds several examples of such systems in
[8] and in the recent book [24]. Finally, let us mention that local search techniques
have been recently added into some commercial constraint programming systems
such as Ilog optimization tools and the ECLiPSe platform. For example, ECLiPSe
supports using both constraint propagation and repairs [4].

3. A General LS Approach for Constraint Solving

As indicated previously, the CSP is a very general model for formulating various
combinatorial search problems. In our system, we provide a set of constraint prim-
itives (or constraint types, or simply constraints in short) which may be used to
model the given problem as a CSP. For resolution purpose, we use a search engine
based on Tabu Search. In this section, we describe the set of constraint primitives
as well as the different components of our Tabu Search engine.

3.1. CONSTRAINT PRIMITIVES AND THEIR SEMANTICS

Constraint primitives are introduced for the purpose of problem formulation. The
expression power is clearly conditioned by both the number and the nature of the
available primitives. The primitives introduced in this section are chosen essen-
tially for their generality. Although this set of primitives is far from complete to
encompass all the CSPs, they are sufficient to illustrate the main concepts of the
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proposed approach. Each primitive involves a list of variables [y1..yp] and possibly
other parameters. We denote by RC ⊆ Dy1 × .. × Dyn

the set of tuples for which
constraint C is satisfied.

• Constraint tuple([y1..yp], [a1..ap]) forbids the tuple [a1..ap]. We have: s ∈
RC ⇔ s(y1) �= a1 ∨ · · · ∨ s(yp) �= ap .

• Constraint binary([x, y], [a1
x , a

1
y ..a

p
x , a

p
y ]) is a binary constraint defined in

extension by the list (a1
x, a

1
y), . . . , (a

p
x , a

p
y ) of forbidden couples.� We have:

s ∈ RC ⇔ (s(x) �= a1
x ∨ s(y) �= a1

y) ∧ · · · ∧ (s(x) �= a
p
x ∨ s(y) �= a

p
y ).

• Constraint different([x, y]): We have: s ∈ RC ⇔ s(x) �= s(y).
• Constraint distance([x, y],D): We have: s ∈ RC ⇔ |s(x) − s(y)| > D.
• Constraint alldifferent([y1..yp]) checks that all variables y1, . . . , yp receive

different values. Let Ns represent the number of pairs of variables having the
same value in the tuple s. We have: s ∈ RC ⇔ Ns = 0.

• Constraint atmost([y1..yp], a, P ) checks that the number of variables yi tak-
ing the value a is inferior or equal to P . Let Ns represent the number of
variables having the value a in the tuple s: Ns = |{i/s(yi) = a}|. We have:
s ∈ RC ⇔ Ns � P.

• Constraint atleast([y1..yp], a, P ) checks that the number of variables yi tak-
ing the value a is superior or equal to P . Let Ns represent the number of
variables having the value a in the tuple s: Ns = |{i/s(yi) = a}|. We have:
s ∈ RC ⇔ Ns � P.

• In constraint capa([y1..yp], a, [w1..wp],W ), a weight wi > 0 is assigned to
each variable yi and the constraint checks that the sum of the weights of the
variables taking the value a is inferior or equal to W . Let σs = ∑

i/s(yi)=a w(i).
We have: s ∈ RC ⇔ σs � W.

• Constraint nbdifferences([x1, y1, . . . , xp, yp], P ) involves a set of pairs of
variables (xi, yi), 1 � i � p and checks that the number of pairs of vari-
ables having the same value is inferior or equal to P . Let Ns represent the
number of pairs of variables having the same value in the tuple s: Ns =
|{i/s(xi) = s(yi )}|. We have: s ∈ RC ⇔ Ns � P.

These constraints make it possible to represent a number of constraint problems
(see Section 4). Moreover, other constraint primitives may be added if necessary al-
lowing a higher expressiveness. However, notice that incremental algorithms must
be designed for all the constraint primitives to ensure an efficient resolution by
local search (see Section 3.4).

3.2. PENALTY FUNCTIONS ASSOCIATED TO PRIMITIVES

Our Tabu Search engine relies heavily on a penalty-based evaluation function to
guide its search (see Section 3.3). Therefore, this function must be carefully de-

� Although the constraint is given here by extension, it would be possible to generate the tuples
with a “for”-like structure.



CONSTRAINT SOLVING BY LOCAL SEARCH 77

signed. The basic idea is to assign a penalty to any violated constraint, the penalty
being defined according to the degree of constraint violation. For some constraints,
the penalty may be simply defined as a 0/1 value depending on whether the con-
straint is satisfied or not. For other constraints, more subtle penalties must be
devised. More formally, the penalty function fC: Dy1 × ..×Dyn

→ R of constraint
C associates to each tuple s ∈ Dy1 × .. × Dyn

a real value fC(s) � 0. If the
constraint is satisfied then this value is 0: s ∈ RC ⇔ fC(s) = 0; otherwise it is a
strictly positive number: s /∈ RC ⇔ fC(s) > 0.

• tuple([y1..yp]): fC(s) = 0/1,
• binary([x, y], [a1

x , a
1
y ..a

p
x , a

p
y ]): fC(s) = 0/1,

• different(x, y): fC(s) = 0/1,
• distance(x, y,D): fC(s) = 0/1.

For the following constraints, the penalty depends on the degree of violation of
the constraint by the considered tuple:

• alldifferent([y1..yp]): fC(s) = 0/Ns ,
• atmost(P, [y1..yp], a): fC(s) = 0/Ns − P ,
• atleast(P, [y1..yp], a): fC(s) = 0/P − Ns ,
• nbdifferences([x1, y1, . . . , xp, yp], P ) : fC(s) = 0/Ns − P ,
• capa([y1..yp], a, [w1..wp],W ): fC(s) = 0/α + β(σs − W), where (α, β) are

two parameters.

For additional constraints, we propose to use whenever possible the following
principle: to fix the penalty function fC(s) to the minimum number of variables
that need to be modified to reach a consistent assignment. Note that the penalties
chosen for binary constraints, tuple, atmost, atleast and nbdifferences are coherent
with this principle.

Depending on the penalty function, we define the notion of critical variable:
variable y of constraint C is critical for a tuple s if changing the value of y in
s (keeping the same values for the other variables) makes it possible to reduce
the penalty of the constraint: yi is a critical variable in s if and only if
minv∈Dom(yi) fC(s(y1), .., s(yi−1), v, s(yi+1), .., s(yn)) < fC(s). If the constraint
C is satisfied, then no variable is critical in s. Otherwise, all variables or only
some of them are critical, depending on the constraint. For example, for alldiffer-
ent constraint, a variable is critical if it takes the same value as at least one other
variable.

3.3. LS SEARCH ENGINE

For a given search problem (S, f ) with S being a finite set of configurations and
f an evaluation function f : S → R, LS needs a so-called neighborhood function
N : S → 2S (N(s) ⊆ S is called the neighborhood of s ∈ S). An LS algorithm
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begins with an initial configuration s0 ∈ S and then generates a series of configura-
tions (si)i∈{0,1,...} such that ∀i ∈ {0, 1, . . .}, si+1 ∈ N(si). Well-known examples of
LS methods include various descent methods, Simulated Annealing (SA) [18] and
Tabu Search (TS) [13]. The main difference between LS methods lies in the way of
visiting the given neighborhood. In this study, we have chosen TS as our resolution
engine. Indeed, TS has been applied with great success to many hard combinatorial
problems [13]. Numerous studies of using TS for solving CSP-like problems also
suggested the interest of this method for this class of problems. Below we define
the components of our local search engine that are the search space, the evaluation
function, the neighborhood function and the TS meta-heuristic.

Search Space

We call configuration any complete assignment, including inconsistent assignments.
Such a configuration s can be represented by the series of values taken by the
variables in X:

s = (s(x1), . . . , s(xn)).

The search space is the set S = Dx1 × · · · × Dxn
of all configurations.

Evaluation Function

The evaluation function f (s) of a configuration s ∈ S is the weighted sum of the
penalty functions of all the constraints of the given problem:

f (s) =
∑
C

pC ∗ fC(s),

where pC > 0 is the weighting associated to the constraint C. These weightings
are to be fixed empirically or automatically.

Neighborhood Function

At each iteration, the LS heuristic replaces the current configuration by a new one
obtained by a local transformation called a move. Given a configuration s ∈ S,
a move consists in replacing in s the current value s(x) of a variable x by a new
value v: such a move is denoted by the couple 〈x, v〉. For each s ∈ S, the set of the
configurations that can be reached by such a move constitutes the neighborhood
of s.

Restricted Neighborhood

In order to make the search more effective, we use a heuristic that consists in
restricting the choice of a move to critical variables (see Section 3.2): in other
words, a possible move 〈x, v〉 will be considered only if x is critical (a variable x

is critical in configuration s if x is critical for at least one constraint).
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TS Algorithm

The algorithm we use is called TabuCSP [10]. TabuCSP is a basic adaptation of the
tabu meta-heuristic to the CSP. It uses a short-term memory (tabu list) and a very
simple aspiration mechanism. The role of the tabu list is to avoid short-term cycling
and to go beyond local optima. The principle of the tabu list is the following: before
a move 〈x, v〉 is performed, one memorizes in the tabu list the couple 〈x, s(x)〉 for a
fixed number of iterations (tabu tenure). This way, the move 〈x, s(x)〉 is forbidden
for this period; in other words, one forbids to assign to x its previous value s(x).
However, a tabu move can be chosen if it makes possible to reach a configuration
better than the best one found so far (in TS, removing in such a way the tabu
status of a particular move is called aspiration). Notice that the optimal tabu tenure
generally depends on the instance and is difficult to obtain. However, appropriate
values can be found by limited experiments or by some automatic mechanisms.

Data: tl : tabu tenure;
Result: the best configuration found
begin

generate a random configuration s

while not Stop-Condition do⌊
choose the best authorized move 〈x, v〉
introduce 〈x, s(x)〉 in the tabu list for tl iterations
assign value v to variable x in s

return the best configuration found
end

The algorithm first builds an initial configuration s: this initial configuration
is simply built by assigning to each variable any value chosen randomly in its do-
main. At each iteration, the TabuCSP algorithm considers all authorized moves and
chooses the best one (break ties randomly). Recall that a move 〈x, v〉 is authorized
if (1) the variable v is critical and (2) either move 〈x, v〉 is not tabu, or it improves
the best solution found so far. The algorithm stops if a solution has been found
(f (s) = 0) or if a fixed limit is reached concerning the number of iterations.

3.4. INCREMENTAL DATA STRUCTURES

The efficiency of TS is greatly influenced by its ability to find quickly a best move
at each iteration. Therefore, an important point when implementing a TS algorithm
is the design of powerful incremental data structures and algorithms. One may
find, in the literature, examples of dealing with simple constraints such as binary
constraints [9]. In the context of this work, we must deal with more complex non-
binary constraints. In what follows, we describe the general principle we have
developed for such constraints.
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We use a data structure denoted by γ that associates to each possible move
〈x, v〉 a positive number denoted by γ (〈x, v〉) (recall a possible move is any couple
〈x, v〉 such that x ∈ X and v ∈ Dom(x)). γ (〈x, v〉) memorizes the sum of the
weightings of the constraints that involve variable x and that would be violated if
the value v would be assigned to variable x.

Data structure γ is initialized before the first move and then updated after each
move, using incremental algorithms. Given this data structure, it is now possible to
compute the performance of a move 〈x, v〉, i.e. the variation δ(〈x, v〉) of the cost
function that results from this move. δ(〈x, v〉) can be obtained in constant time by
the equation: δ(〈x, v〉) = γ (〈x, v〉) − γ (〈x, s(x)〉). Note that γ also indicates if a
given variable x is in conflict: it is the case if and only if γ (〈x, s(x)〉) > 0.

In order to implement the tabu list, we use another data structure denoted by T ;
each element of T corresponds also to a possible move. To know in constant time
whether a move is tabu: move 〈x, v〉 is tabu if and only if the current number of
iterations is smaller than T (〈x, v〉).

4. Problem Representation

In this section, we show various examples of modeling well-known problems with
the help of the constraint primitives introduced in the last section. Constraints of
these problems belong to different types, and are often non-binary. For each prob-
lem, we give first a brief description and present then its formulation with constraint
primitives. As we will see, the formulation of a given problem can be achieved in
a compact and concise way, thanks to the expressive power of the primitives.

Boolean Satisfiability

A SAT instance is defined by a set of Boolean variables and a set of clauses
(disjunction of literals). The problem can be represented as follows:

• Each Boolean variable xi is represented by a variable.
• All domains equal {0, 1}.
• A literal lj is associated the value V (lj ) = 1 (0) if it is positive: lj = xi

(negative: lj = ¬xj ). A clause li ∧ · · · ∧ ln is represented by a constraint tuple
([l1 · · · ln], [V (l1) · · · V (ln)]).

Graph k-Coloring and Graph Coloring

Let G = (V ,E) be an undirected graph with a vertex set V and an edge set E.
A k-coloring of G is any assignment φ: V → {1 · · · k} such that no two endpoints
of a same edge receive the same value: {x, y} ∈ E ⇒ φ(x) �= φ(y). An optimal
coloring of G is a k-coloring with the smallest possible k (the chromatic number
χ(G) of G).
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Given a couple (G = (V ,E), k), the k-coloring problem PG,k consists in find-
ing a k-coloring of G. Problem PG,k is represented in the following way:

• Each vertex vi ∈ V is assigned a variable xi .
• All domains equal {1..k}.
• Each edge vivj ∈ E is associated to a constraint different([xi, xj ]).

To find an optimal coloring of G (graph coloring problem), we solve PG,k with
decreasing values of k: given a value k0 for which a k-coloring is known, we
continue with k = k0 − 1, k0 − 2, . . . until we fail.

Maximum Clique

A clique in an undirected graph G = (V ,E) is any complete sub-graph of G.
Given a graph G = (V ,E) with V = {v1, . . . , vn}, the Maximum Clique problem
is to find a clique of maximal cardinal.

We call PG,k the problem to find a clique with a fixed number k of vertices.
Problem PG,k can be represented in the following way:

• Each vertex vi ∈ V is assigned a variable xi .
• All domains equal {0, 1}.
• Each non-edge vivj /∈ E is associated to a constraint tuple([xi, xj ], [1, 1]).
• There is a constraint atleast([x1..xn], 1, k).

To find a maximum clique of G, we solve PG,k with increasing successive values
k = 1, 2, . . . until we fail.

Frequency Assignment Problem

A cellular network is defined by a set {C1, C2, . . . , CN} of N cells, each cell Ci

requiring Ti frequencies. The possible values for the frequencies are represented by
consecutive integers in the interval [0..NF ]. Interference occurs when two frequen-
cies assigned to the same cell or two adjacent cells are not sufficiently separated.
Therefore, there are two kinds of constraints:

• co-cell constraint: any pair of frequencies assigned to a radio cell must have
a certain distance between them in the frequency domain.

• adjacent-cell constraint: any pair of frequencies assigned to two adjacent cells
must be sufficiently separated in the frequency domain.

These constraints are conveniently represented by a symmetric compatibility
matrix M[N,N] where N is the number of cells in the network and each element
of M is a non-negative integer. Let fi,k denote the value of the kth frequency (k ∈
{1..Ti}) of Ci and let {1..NF} denote the set of NF available frequency values; then
the interference constraints are formulated as follows:
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• M[i, i] (i ∈ {1..N}) is the minimum frequency separation necessary to satisfy
the co-cell constraints for the cell Ci . ∀m,n ∈ {1..Ti}, m �= n, |fi,m − fi,n| �
M[i, i].

• M[i, j ] (i, j ∈ {1..N}, i �= j) representing the minimum frequency separa-
tion required to satisfy the adjacent-cell constraints between two cells Ci and
Cj . M[i, j ] = 0 means there is no constraint between the cells Ci and Cj .
∀m ∈ {1..Ti}, ∀n ∈ {1..Tj }, |fi,m − fj,n| � M[i, j ].

We represent the problem as follows:

• Each frequency fi,l is represented by a variable xi,l

X = {xi,l , 1 � i � N, 1 � l � Ti}.
• All domains equal [1..NF ].
• We define the following constraints:

– co-cell constraint: for each i ∈ [1..N], for each l, m ∈ [1..Ti ], l < m,
we require: distance([fi,l, fi,m],M[i, i]).

– adjacent-cell constraint: for each i, j ∈ [1..N], i < j , for each l ∈ [1..Ti]
and each m ∈ [1..Tj ] we require: distance([fi,l, fj,m],M[i, j ]).

Progressive Party Problem

The Progressive Party Problem (PPP) appeared in a yacht club in order to organize
a party that would last for different successive time periods [3]. In the problem,
there is a given number H of host boats that invite the G guest crews of other boats
on their board. The size c(g) of each guest crew g ∈ [1..G] and the capacity C(h)

of each boat h ∈ [1...H ] are given. For each time period, each guest crew must
visit a host boat respecting the following constraints:

• The capacities of the host boats must be respected.
• Each guest crew must move to a different boat for each time period.
• Two guest crews can meet at most once.

An assignment plan consists in assigning to each guest crew a boat to visit for
each time period. The problem consists in finding a valid assignment plan for a
maximum number of time periods. We denote by PT the problem of finding a valid
assignment plan for a fixed number T of time periods.� To deal with PPP , we
solve the series of problems P1, P2, . . . .

We represent problem PT in the following way:

• For each crew g ∈ [1..G] and each time period t ∈ [1..T ], variable xg,t

represents the boat visited by g at period t :
X = {xg,t , 1 � g � G, 1 � t � T }.

• All domains equal [1..H ].
• We define the following constraints:

� In the original problem, T = 6. Larger T makes the problem harder.
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– For each time period t ∈ [1...T ] and each boat h ∈ [1...H ] we require:
capa([x1,t · · · xG,t ], [c(1) · · · c(G)], h, C(h)).

– For each guest g ∈ [1..G] we require:
alldifferent([xg,1 · · · xg,T ]).

– For each couple (g1, g2) (with g1 < g2), we require:
nbdifferences([xg1 ,1, xg2,1, . . . , xg1,T , xg2,T ], 1).

Let us mention that we can formulate other well-known combinatorial problems
including bin-packing, knapsack, unicost set covering problem, etc. In addition
to progressive party problem and frequency assignment problem, we may con-
veniently formulate other complex real-world problems such as the problem of
daily photograph scheduling of an earth observation satellite and the sports league
scheduling problem.

5. Problem Resolution

In this section, we show in some detail numerical results for three of the problems
introduced in the last section: the Graph Coloring Problem, the Frequency Assign-
ment Problem and the Progressive Party Problem. Whenever possible, results are
contrasted with those known in the literature. We give also performance indications
for Binary Max-CSP instances solved by the proposed approach.

Graph k-Coloring and Graph Coloring

For graph coloring, we used the following graphs from the well-known second
DIMACS challenge benchmarks [17].�

◦ Three random graphs: DSJC250.5, DSJC500.5 and DSJC1000.5. They have
250, 500 and 1000 vertices, respectively, and a density of 0.5 with an unknown
chromatic number (the smallest number of colors reported in the literature for
these graphs are 28, 48 and 83, respectively).

◦ Two Leighton graphs: le450_15c and le450_25c. They are structured graph
with the known chromatic number (respectively 15 and 25).

◦ Two flat graphs: flat300_28 and flat1000_76. They are also structured graph
with the known chromatic number (respectively 28 and 76).

We are interested in these graphs because they were largely studied in the liter-
ature and constitute thus a good reference for comparison. Moreover, these graphs
are difficult and represent a real challenge for graph coloring algorithms.

The tabu tenure tl used in these experiments is a variable which depends
on the number nbCFL of conflicting vertices in the current configuration: tl =
Random(A) + α ∗ nbCFL where A and α are two parameters and the function
Random(A) returns randomly a number in {0, . . . , A − 1}. Experiments of various

� Available via ftp from ftp://dimacs.rutgers.edu/pub/challenge/graph/benchmarks/.
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Table I. Results of TabuCSP for graph k-coloring

Graph k TabuCSP

DSJC250.5 28 10 2,500,000 355

29 10 587,000 85

30 10 97,000 15

DSJC500.5 50 10 1,495,000 402

51 10 160,000 47

52 10 43,000 14

DSJC1000.5 89 3(2) 4,922,000 2,099

90 5 3,160,000 1,357

91 5 524,000 226

92 5 194,000 85

le450_15c 16 8(2) 319,000 69

17 10 18,000 5

le450_25c 26 10 107,000 38

27 10 7,300 4

flat300_28 32 10 149,000 25

flat1000_76 87 1(4) 7,400,000 3,301

88 2(3) 4,000,000 1,820

combinations suggested that (A = 10, α = 0.6) is a robust combination for the
chosen graphs.

Table I reports results with our approach. These results are also cited in [12] as a
reference for a hybrid evolutionary algorithm. Each line corresponds to particular
k-coloring instance and gives the results obtained by TabuCSP on this instance.
These experiments consist in a series of runs, each run being limited to 10 mil-
lion iterations. Column 3 indicates the number of successful executions and the
number of failures. Columns 4 and 5 display the average number of iterations and
the average time for successful runs (the timing is based on an UltraSPARC-IIi
333 MHz with 132 MB RAM). For each graph, the smallest value of k in the
table is the smallest one for which TabuCSP could find a solution. For example,
for DSJC1000.5, it found a solution with 89 colors but failed to find one with 88
colors.

For the k-coloring problem, TabuCSP is reduced to the tabu algorithm called
TabuCOL of [15]. There are other known strategies for the k-coloring problem and
the graph coloring problem (see [16]). Compared with these other methods, the
approach used by TabuCSP remains the simplest and allows to produce competitive
results with respect to other “pure” LS techniques [15, 16, 9]. Note however that,
for some large graphs, TabuCSP and other pure LS techniques are outperformed
by hybrid strategies, notably the Hybrid Evolutionary Algorithm of [12].
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Table II. Results of TabuCSP for frequency assignment

Problem Opt/LB TabuCSP SA CP GCA

NF(S) Iter T [sec] NF T [sec] NF T [sec] NF

8.150.20 8 8(10) 18 923 123 8 509 9 7 200 8

8.150.30 8 8(10) 404 3 8 446 12 10 800 15

15.300.20 15 15(10) 41 484 573 15 4 788 17 3 600 20

15.300.30 15 15(10) 22 429 327 15 2 053 24 36 000 27

8.75.25.1 16 17(10) 34 414 274 17 1 382 20 1 000 19

8.75.25.3 16 16(5) 62 764 485 17 1 744 19 7 595 19

8.150.15.3 16 18(10) 46 425 668 18 3 705 22 375 22

8.150.25.6 16 16(3) 56 120 906 17 5 981 30 153 29

15.300.25.6 30 35(2) 78 266 2 940 36 5 359 47 380 47

15.300.25.9 30 35(1) 61 294 2 168 36 6 586 45 – 45

Frequency Assignment

For FAP, we used a set of instances proposed by France Telecom (CNET) [14].�

We experimented with two different ways to fix the weightings of the constraints:
(1) uniform weightings, (2) weightings fixed to 1 for adjacent constraints and to
infinity for co-cell constraints. Note that the option 2 is equivalent to limit the
search space to the configurations that respect the co-cell constraint.

We have used TabuCSP to solve these instances. In Table II, the results of
TabuCSP are compared with those of the best known results obtained by such ap-
proaches as Simulated Annealing (SA), Constraint Programming (CP) and Graph
Coloring Algorithms (GCA), reported in [14]. We notice first that TabuCSP out-
performs CP and GCA on these instances in terms of the quality of solutions.
Moreover, TabuCSP outperforms the SA algorithm on 4 instances, while does as
well as SA on the other instances (in terms of computing time, TabuCSP is always
faster than SA even for solutions of better quality).

The results show that our approach is very powerful for the FAP. Moreover, we
notice that it is flexible enough to try different options in solving the same problem.

Progressive Party Problem

Recall that to solve the PPP, we solve a series of CSPs (PT )T =1,2,..., where PT

represents the problem of finding an assignment for T time periods. In the litera-
ture, only one instance of the Progressive Party Problem has been widely tested –
that of the original organization problem. In this instance, there are G = 29 crews
and H = 13 boats, the party is organized for T = 6 time periods. We tried to solve

� These instances are available from the second author of the paper.
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Table III. Results of TabuCSP for the progressive party problem

Problem ILP CP TabuCSP

CP1 CP2 T [sec] Iter

P6 fail 27 min. a few sec. 0.3 sec. 210

P7 fail 28 min. a few sec. 0.5 sec. 330

P8 fail fail a few sec. 1.7 sec. 1,366

P9 fail fail several hours 67.5 sec. 51,507

P10 fail fail fail fail

the problem PT for T = 6 to T = 10 (10 is an upper bound of the number of time
periods).

After limited preliminary experiments, we decided to use weightings equal to 1
for nbdifferences constraints and 2 for the two other constraints.

Table III presents the best known results obtained with three different methods:
ILP (Integer Linear Programming) [3], CP [22, 2] and TabuCSP. From the table,
we see that ILP fails to solve any of P6 to P10. The results of CP indicated by
CP1 [22] and CP2 [2] are much more interesting. Indeed, CP1 solves P7 and P8 in
27 and 28 minutes, respectively, but fails to solve P9 and P10. The results of CP2
are much better: indeed, P7 and P8 are now solved in a few seconds (after several
hundreds of backtracks). The problem P9 is also solved, but in several hours (and
millions of backtracks).

Using TabuCSP, we solve the problem up to 9 time periods. P8 is solved very
easily in two seconds (on a Sun ULTRA 1, 128 RAM, 134 MHz) with a few hun-
dreds of iterations while P9 is solved in about one minute with a few thousands of
iterations. It is still an open question whether a solution exists for 10 time periods.
However, TabuCSP frequently finds configurations involving only one violated
constraint.

Binary Max-CSP instances

Finally, we also used TabuCSP for solving binary Max-CSP instances. The con-
straints in explicit binary CSPs (or Max-CSPs) are represented using the binary
primitive. In [10], the results of TabuCSP are reported and compared with those
of two repair heuristics, notably the Min-conflict Random Walk heuristic (MCRW)
considered to be among the most efficient AI heuristics. The comparison showed
clearly that TabuCSP outperforms MCRW for these instances.

6. Discussion and Conclusion

In this paper, we presented a general approach for solving constraint problems
by local search. This approach is based on the definition of a set of high-level
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constraint primitives and an advanced local search engine. The primitives provide
a convenient way to model various combinatorial search problems while the LS
engine ensures an efficient resolution. For an efficient handling of these primitives
by LS, we introduced a set of appropriate penalty functions.

Another important issue we have addressed concerns the implementation of the
TS resolution engine. Indeed, in order to make the search engine as efficient as
possible, incremental data structures and incremental algorithms have been devel-
oped. Combined with a simple neighborhood and an appropriate penalty technique
for constraint handling, the resulting TS algorithm proves to be a powerful solver.

To validate the approach, we have presented examples of modeling various
combinatorial problems, including the progressive party problem, graph coloring
problem and frequency assignment problem. Computational experiments on some
well-known instances showed that the proposed approach is not only general, but
also is able to produce very competitive results.

In this paper, we have focused our study on the CSP model where one seeks a
feasible solution for a given problem instance. It should be mentioned that there is
no real difficulty to extend the system for constrained optimization problems where
one is given a cost function in addition to constraints. Indeed, the penalty approach
studied in this paper is naturally applicable to the constraints and the cost function
simultaneously.

To conclude, we think that a general constraint solving by LS constitutes an
interesting and important alternative for tackling large and difficult combinatorial
(satisfaction or optimization) problems and deserves more research efforts in the
future.
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