
Journal of Mathematical Modelling and Algorithms 3: 31–38, 2004.
© 2004 Kluwer Academic Publishers. Printed in the Netherlands.

31

Planar Maximum Box Problem

MICHAEL SEGAL
Communication Systems Engineering Department, Ben-Gurion University of the Negev,
Beer-Sheva 84105, Israel. e-mail: segal@cse.bgu.ac.il

(Received in final form and accepted: 12 February 2004)

Abstract. Given two finite sets of points X+ and X− in R
d , the maximum box problem asks to find

an axis-parallel box B such that B ∩ X− = ∅ and the total number of points from X+ covered is
maximized. In this paper we consider the version of the problem for d = 2 (and find the smallest
solution box). We present an O(n3 log4 n) runtime algorithm, thus improving previously best known
solution by almost quadratic factor.

Mathematics Subject Classifications (2000): 52C45, 68U05.

Key words: discrete optimization, sorted matrices, axis-parallel.

1. Introduction

We consider the following planar maximum box problem. Given two sets X+ and
X− of n points each in the plane, find the smallest axis-parallel rectangle (box)
B that maximizes the number of covered points from X+ and does not contain
any point from X−. This problem has several applications in the numerous data
analysis problems, where we are interested to find patterns which intersect exactly
one of given two sets. A systematic study of criteria for selecting the most useful
patterns for classification of data using logical analysis of data was presented in [7].
It was shown that the best results are obtained by using inclusion-wise maximal
boxes. Also, the solution to the problem might be very useful in computer graph-
ics sampling [3]. The maximum box problem in arbitrary dimension d has been
considered by Eckstein et al. [4]. They [4] proved that when d is a part of the
input, the problem is NP-hard and gave O(n2d+1) runtime algorithm for a fixed d.
In this paper we show how to improve the runtime of their solution by providing
O(n3 log4 n) time algorithm, thus improving their result by almost quadratic factor
for d = 2. Our algorithm is based on several geometric observations together with
Frederickson and Johnson optimization technique [6] of sorted matrices, despite
of non-monotonicity of the problem. This paper is organized as follows. In the
next section we describe the basic algorithm for the planar maximum box problem
followed by the optimization technique of Frederickson and Johnson [6] and a
binary search. At the end we conclude the paper.

32 MICHAEL SEGAL

(a) (b)

Figure 1. Two different configurations.

2. The Algorithm

We assume without loss of generality that the coordinates of all points are distinct,
since we can enforce it by a small perturbation [5]. We distinguish between two
basic types of the solution to our problem (see Figure 1): its edges (since otherwise
we can shrink B) all its edges.

• Box B gets two points from X+ lying on opposite sides of B.
• Box B gets two points from X+ lying on adjacent sides of B.

We are interested in solving the decision version of both cases two and applying
an optimization technique of sorted matrices developed by Frederickson and John-
son [6]. So, the decision version of the problem is defined as follows: Given an area
A and a number k > 2, find whether exist a box B of area A that contains at least
two points (otherwise, B can be shrunk) of X+ on its edges such that B ∩ X− = ∅
and the total number of points of X+ covered by B is at least k. If we can get
an algorithm for the above problem, then the optimization algorithm will perform
a simple binary search over the possible integer values of k (that vary between 0
and n) looking for a box with a smallest area. The largest value of k for which
a box exists will provide an answer to our case – in fact, we will be able to find
the smallest box that contains the maximal number of points from X+ without any
point from X−.

Now we describe how to deal with these cases. For the first case we assume that
B contains pi, pj ∈ X+ such that pi lies at the left side of B and pj lies at the right
side of B (the other case when points are located at the top and bottom sides of B

is solved in the same fashion). The fixed width |x(pj) − x(pi)| (x(pi) and y(pi)

denote the x and y-coordinate of pi , respectively) of B determines a maximum
height h satisfying |x(pj) − x(pi)| ∗ h = A. The algorithm slides B of maximal
possible size from top to bottom over the sets X+ ∪ X−, keeping the number of
points of X+ in the current position of B and checking whether B ∩ X− is empty.
There are O(n) steps in this algorithm. It is obvious that if the order of points of
the set X+ and the set X− along the y-axis (x-axis) is known then the ordered
list of updates can be constructed in O(n) time. For example, suppose that the
y-coordinate of the bottom edge of B after we put B in its initial position is Y . We
can determine which points of X+ and X− are outside of B with y-coordinate less
than Y by two binary searches over the sorted lists of y-coordinates of the points

PLANAR MAXIMUM BOX PROBLEM 33

from X+ and X−. Next, while sliding B from top to bottom, we can check the next
point from X+ and X− to be covered by B in constant time. We also maintain a
sorted list of points (according to the y-coordinate) that are currently inside of B

in order to determine what point will leave B in the sliding process. Notice that
the deletions of the elements from this list are performed only from its head, while
points are inserted only at its tail. Thus, simple linked list will accomplish this task.
We also will need to check O(n2) opposite pairs of points (we sort the points of X+
and X− only once).

In the second case we assign two adjacent points pk and pl of X+ to B. Assume,
without loss of generality, that pk is located on the left side of B while pl is
located at the bottom side of B. Denote by c the lower corner of B, i.e. vertex
of the intersection of edges of B containing pk and pl , respectively. The decision
algorithm for this case is based on the same idea as in the previous case. Namely,
it tries all placements of B of area A and checks whether B ∩ X− is empty while
maintaining the total number of the points of X+ in B. As it can be seen, all the
boxes of area A whose lower left corner corner is c, have their upper right corner
on hyperbola h. Notice, that the remaining uncovered points from X+ ∪X− can be
divided into three subsets X1, X2 and X2. The subset X1 consists of the points of
X+ ∪ X− lying to the right of h, out of B. The set X2 consists of the points above
the sliding box B and the set X2 consists of the points to the right of B and to the
left of h. Clearly, X1 does not change during the running of the algorithm, since B

cannot cover any point from X. The set X2 undergoes insertions only and the set
X3 undergoes deletions only. As in the previous case, by knowing the order of the
points of X+ ∪ X− along the x-axis (and y-axis), we can construct the ordered list
of updates for sets X2, X3 in linear time. All we need is to check O(n2) pairs of
points from X+ lying on adjacent edges.

2.1. THE OPTIMIZATION STEP

In order to find an optimal solution in the second case of our algorithm we will fol-
low an optimization technique proposed by Frederickson and Johnson. It is based
on constructing and searching in monotone matrices. We give a brief explanation
of this approach. Consider a set S of arbitrary elements. Selection in the set S de-
termines, for a given rank k, an element that is kth in some total ordering of S. The
complexity of selection in S has been shown to be proportional to the cardinality
of the set [1]. Fredrickson and Johnson [6] considered selection in a set of sorted
matrices. An n×m matrix M is a sorted matrix if each row and each column of M is
in nondecreasing order. Fredrickson and Johnson have demonstrated that selection
in a set of sorted matrices, that together represent the set S, can be done in time
sublinear in the size of S. They have also observed that, given certain constraints
on the set S, one can construct implicitly the set of sorted matrices representing S.
For instance, the sums of the pairs in a Cartesian product of two input sets, denoted
by X + Y , can be represented by means of the sorted vectors X and Y .

34 MICHAEL SEGAL

THEOREM 1 ([6]). Let M be a sorted matrix of dimension n × m, where n � m.
Let Ts be the runtime of a decision algorithm which, given a value A, answers
‘yes’ or ‘no’. Assume that the answers are monotone with respect to A. Then the
total time needed to find the least element in M, for which the answer is ‘yes’, is
O(Ts log n + n).

Remark. Notice, that in our case the answers are not monotone with respect
to A. More specifically, consider the following cases.

1. Suppose that answer for a given value A is “yes”. Then, clearly, in order to find
smaller solution we have to decrease A.

2. Suppose that answer for a given value A is “no” and the reason is that in every
stage of our decision algorithm that the box of area A contained less than k

points from X+. In this case, we should definitely increase the value of A.
3. Suppose that answer for a given value A is “no” and the reason is that it was at

least one stage when our algorithm found a box with at least k points from X+,
it also contained some of the points of X−; in all other steps (if any) the box
contained less than k points from X+. This case is problematic: it seems that
we should decrease it since it may lead that a box may still stay with at least
k points from X+ inside while being empty from points of X−. On the other
hand if we increase the box, it may happen that box may cover additional points
from X+, thus reaching a lower bound of k, without including any point of X−.

We show how we can deal with the case 3. We will identify case 3 during the per-
formance of our algorithm and perform some actions that will lead to an ultimate
decision. We track our decision algorithm for the steps when the box is still empty
from the points of X− while containing less than k points from X+. Our goal,
is to check already during the decision step whether we can obtain a solution by
increasing A without using Frederickson–Johnson technique. When we encounter
such an event (call it E) we can check the existence of the larger solution using the
orthogonal range trees.

Consider Figure 2. As we explained above, during the execution of the algo-
rithm for a fixed value of A we can have two cases (a) and (b). In case (a) we

(a) (b)
Figure 2. Checking phase in two cases.

PLANAR MAXIMUM BOX PROBLEM 35

slide our box vertically (or horizontally) until we encounter an event E when the
box contains k′, k′ < k points from X+ (and still empty from points of X−. We
then allow our box to grow, in order to find the closest point c from X− to the
line segment [a, b] that lies between a and b. We count the number of points k′′
from X+ that lie in the box B ′ bounded by a, b and c. If k′ + k′′ � k than we
keep a value of A + area(B ′) as a possible value for our solution, and continue
our decision algorithm. In case (b) we slide our box according to hyperbola until
we encounter an event E with a box B1. We continue to slide it until some of the
points of X− moves inside of B2 (notice that during process of sliding all of the
intermediate boxes cover less than k points of X+). We are interested in finding
the closest point c from X− to the intersection point d of B1 and B2. We compute
the number of points of X+ inside of box B ′ that is defined by two black adjacent
points in left and lower edges of B1 whose upper edge has a y-coordinate equal to
the minimum of y-coordinates of upper edge of B1 and c, and whose right edge has
a x-coordinate equal to the minimum of y-coordinates of right edge of B2 and c. If
we have at least k points of X+ we keep a value of A+area(B ′) as a possible value
for our solution, and continue our decision algorithm. At the end we compute the
smallest value between the values we evaluated during the algorithm and output it.

We can find the closest point from X− to the line segment by constructing
orthogonal range tree T [2]. The main structure of T is a balanced binary tree
according to the x-coordinate of points from X−. Each node v of this tree corre-
sponds to the balanced binary tree (secondary tree) according to the y-coordinate
of points from X− whose x-coordinate belongs to the subtree rooted at v. We
augment this data structure by keeping an additional value for each node w in
the secondary data structures as the minimal value of the actual y-coordinates of
the points corresponding to the nodes in the subtree rooted at w. In order to find
the closest point from X− to the line segment, we perform a query on T by taking
a range as one side unbounded strip bounded by the line segment on other side. At
most O(log2 n) nodes of the secondary data structure are taken into account and
we collect all the minimal y-values that are kept in these nodes. A point that has
a minimal y-coordinate is an answer. When we are interested to find the closest
point from X− to the other query point d, our range is two-bounded (horizontally
and vertically) plane with an apex at d. For this, we will need the following small
observation. If we pass a bisector (45◦) throw d it will cut the quadrant of a plane
into two wedges: the distance from points in the upper edge to d will be determined
by their y-coordinate, while the distance from points in the lower edge to d will be
determined by their x-coordinate. We will, thus, two orthogonal range trees (each
one corresponding to the wedge), where one of them will keep additional values
as the minimal value of the y-coordinates of the points, while the other will keep
additional values as the minimal value of the x-coordinates of the points. Therefore
the query can be performed in O(log2 n) time as well as counting the number of
points from X+ inside the given query box.

36 MICHAEL SEGAL

Thus, the answer obtained by the decision algorithm for a given area A can be
classified as follows. If it is “yes”, we have to decrease A for a smallest solution.
If it is “no” with a fact that in every stage of the box of area A contained less than
k points from X+, we increase A. If it is “no” from other reason than above, our
algorithm also we return another value A′ if it exists (A′ > A and A′ is a smallest
such a value) for which the answer is “yes”. We also decide to decrease the value
of A′ from the reason explained in case 3.

The algorithm performs a sequence of iterations which includes matrices of
smaller size in each iteration. The matrices in any iteration are divided into sub-
matrices called cells. In each iteration, two representative elements are chosen from
each cell, the smallest value and the largest value. These representative elements
are used to discard certain cells from further consideration. For ease of exposition
it is assumed that M is a square matrix, whose dimension is a power of 2 (if not,
we can extend the size of matrix). Hence every cell will be of size which is a power
of 4. After a number of iterations all cells consist of single elements. Continue the
iterations as before, except without cell division, until a single element remains.

The structure of the matrix induces a partition of the set of remaining cells into
subsets called chains. Two cells belong to the same chain if and only if they are in
the same diagonal of the cells obtained from the original matrix M by partitioning
it into sub-matrices of the same dimensions as the cells. Let bi be the ratio of the
dimension of matrix M to the current cell dimension at the end of the ith iteration.
Clearly, bi = 2i . The maximum possible number of chains after splitting cells on
the ith iteration is 2bi − 1. Interesting that the number of cells does not increase
too quickly as the iterations progress.

LEMMA 2 ([6]). Let Bi = 4bi −1. For all iterations in which the cells are divided,
the number of remaining cells after the ith iteration is not greater than Bi .

From the preceding lemma, the number of cells remaining at the end of iteration
i − 1 is no more than Bi−1. Hence no more than O(Bi) work is done in dividing
and selecting among cells on the ith iteration. Thus the total work for dividing and
selecting cells is O(�i(Bi)) = O(�i(bi)) = O(n). Iterations with no cell division
will begin when there are O(n) elements. The number of remaining elements will
decrease by half each time, yielding O(n) time for the iterations, ultimately giving a
least feasible element – the entry in matrix with the positive answer. For feasibility
testing, O(log n) iterations with cell division are performed, and O(log n) iterations
without cell division (cells with one element) are performed. Hence all feasibility
testing requires O(Td log n) time, yielding the total O(Td log n + n) runtime of the
algorithm.

We observe that the set of all distances measured along the x-axis (y-axis)
between the points of X+ can be represented implicitly as a sorted matrix M of
size n × n if the order of the points of X+ along the x-axis (y-axis) is known.

Let us consider the geometry of the optimal solution for the planar maximum
box problem and determine the potential values of area A for the optimal solution.

PLANAR MAXIMUM BOX PROBLEM 37

There can be two kinds of solutions according to the two cases of positioning points
on the edges of B. In the first case, box B has its width (height) fixed and thus its
area A is defined by the second parameter – height (width). As we observed above
we can represent all these values as a sorted matrix M of size n × n. As one can
point out M also will contain redundant values but they will have no affect on
the correctness or runtime of the algorithm. In the second case the optimal box
with the area A, has its width and height defined by two pairs of points lying on
its adjacent sides, where one pair (pk, pl) is fixed. The distances from each point
pk, pl to the other points of X+, measured along the x-axis (y-axis respectively)
define an array X (resp. Y) of linear size. Having the arrays X and Y available we
can represent all potential values of A in the second case for fixed (pk, pl) as a
sorted matrix M of size n × n. Notice that for each pair of points of X+ lying on
the adjacent sides of B we can build a corresponding sorted matrix M in O(n) time.
Finally we remark, that when we obtain an answer “no” by using Fredrickson and
Johnson technique we also keep a list of other values (if exist) that we obtain from
our decision algorithm (case 3). At the end we choose the smallest value between
the one obtained by the Fredrickson and Johnson technique and the the other that
belongs to the list of case 3.

By applying the optimization technique of Fredrickson and Johnson [6] we
obtain that the second case of planar maximum box problem can be solved in
O(n3 log3 n) time.

Thus we have the following result:

THEOREM 3. For a given number k, we can find the smallest area box (if exists)
that cover at least k points from X+ without any point from X− in O(n3 log3 n)

time.

Doing a binary search over the values of k yields the following theorem.

THEOREM 4. The planar maximum box problem can be solved in O(n3 log4 n)

time.

3. Conclusions

In this paper we presented an O(n3 log4 n) algorithm for the planar maximum box
problem by improving currently best solution with O(n5) runtime. It is not trivial
to generalize our solution for arbitrary dimension since the partition of the solution
into different topological cases as it done in this paper does not lead to the im-
provement in the running time of the algorithm. In particular, instead of two basic
cases that we dealt here, we will have four basic cases that require to spend more
computational resources (time and space) in order to solve them. It also would be
interesting to solve the variation of this problem by finding a maximum ball instead
of a maximum box.

38 MICHAEL SEGAL

References

1. Blum, M., Floyd, R., Pratt, V., Rivest, R. and Tarjan, R.: Time bounds for selection, J. Comput.
System Sci. 7(4) (1973), 448–461.

2. de Berg, M., van Kreveld, M., Overmars, M. and Schwartzkopf, O.: Computational Geometry,
Algorithms and Applications, Springer-Verlag, 1997.

3. Dobkin, D., Gunopulos, D. and Maass, W.: Computing the maximum bichromatic discrepancy
with applications to computer graphics and machine learning, J. Comput. System Sci. 52(3)
(1996), 453–470.

4. Eckstein, J., Hammer, P. L., Liu, Y., Nediak, M. and Simeone, B.: The maximum box problem
and its application to data analysis, Comput. Optim. Appl. 23 (2002), 285–298.

5. Edelsbrunner, H. and Mucke, E. P.: Simulation of simplicity: A technique to cope with
degenerate cases in geometric algorithms, ACM Trans. Graphics 9 (1990), 66–104.

6. Frederickson, G. and Johnson, D.: Generalized selection and ranking: Sorted matrices, SIAM J.
Comput. 13 (1984), 14–30.

7. Hammer, P., Kogan, A., Simeone, B. and Szedmak, S.: Pareto-optimal patterns in logical analysis
of data, RUTCOR Research Report 7-2001, 2001.

