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1. Introduction

In the scientific and engineering community, developing algorithms for solving
linear systems of equations has been a vigorous and on-going activity. The most
common direct method for solving systems of linear equations is Gaussian Elimi-
nation. One special case of Gaussian elimination is Cholesky decomposition which
factorizes matrices with certain special characteristics. Cholesky decomposition
arises in areas such as linear programming and boundary element methods, making
it a particularly interesting problem to explore.

Even though many parallel algorithms have been developed during the past
decades [1, 3, 6, 8, 12, 13, 16, 18, 20], not many have addressed several key
design issues, such as portability, data layout, communication contention, and com-
munication bottlenecks at the same time, thus potentially providing inefficient
performance. As such, our approach will deal with synthesizing many important
issues and concepts; including: portability, data layout, communication schedule,
and task partitioning. In this paper, we expand on earlier research [18]. Since we
intend to develop parallel algorithms that can perform predictably and efficiently
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across a spectrum of computing systems, we will work within the well known LogP
model [4].

As stated, one of our design criteria is data layout. We note that designers have
studied the effect of data and task partitioning on performance [2, 5, 7, 9, 12–
15, 17]. As such, we will investigate the effect of 1-D and 2-D layouts on running
time in our overall run-time complexity analysis.

Another criteria we will consider is different parallel methods based on task
partitioning. We will focus on two methods in our design of parallel Cholesky
algorithms: fan-in and fan-out using various data layouts. For brevity, full proofs
have been omitted and can be found in [19].

We note that our approach, and potentially, our results in Cholesky decom-
position can be extended into applications in finite element and finite difference
methods [10, 11].

Lastly, we will implement our algorithms in order to gather performance data
in which to analyze.

2. LogP Model

In order to design portable and efficient parallel algorithms, it is imperative that we
select a model that stresses both realism and portability. As such, we will use the
LogP model in our analysis. In this section, we provide a brief description of the
model.

LogP [4] describes an abstract configuration of a distributed-memory multi-
processor machine. The processors communicate by point-to-point messages. The
model intends to be independent of the structure of the network but specifies the
performance characteristics of the interconnection network to deal with issues such
as portability.

The main parameters of the model are:
L: Latency or delay incurred in communicating a message containing a word

from the source processor to the target one.
o: Overhead, the length of time that a processor is either transmitting or receiving

a message. During this time, the processor cannot perform other operations
[o � g].

g: the gap defined as the minimum time interval between consecutive message
sending or consecutive message receiving at a processor.

P : number of processor/memory pairs running in parallel.
There is an upper bound for numbers of messages, L/g, to send/receive through

the network.
All our algorithms satisfy the conditions of the LogP model. For brevity, we

present results in this paper for the special case L = g.
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3. Design Issues for Cholesky Decomposition Algorithms

THE PROBLEM. Given a matrix A = (ai,j ) of size n×n, where A is symmetric
and positive definite, determine L = (li,j ), a lower triangular matrix of size n × n

where A = LLT.
We see that

li,j = ai,j −∑j−1
k=1 li,k lj,k

lj,j

,

lj,j =
√√√√aj,j −

j−1∑
k=1

(lj,k)2.

In order to derive useful run-time complexity results, we define the types of op-
erations allowed on the data and the partial results that can be formed and operated
on.

DEFINITION 3.1. A partial sum of li,j is one that has the following value{∑j−1
k=1 bkli,k lj,k if i �= j,∑j−1
k=1 bk(lj,k)2 otherwise,

where bk = 1 or 0, and can only be computed by

(1) the addition of 2 other partial sums of li,j ,
(2) the multiplication of some lj,k and li,k , or
(3) the square of some lj,k .

The partial sum

Xi,j =
{ ∑j−1

k=1 li,k lj,k if i �= j,∑j−1
k=1(lj,k)2 otherwise

is called the full partial sum.

Building on the definition of partial sum, we can now define a partial sum
update.

DEFINITION 3.2. The partial sum update of li,j is the value âi,j = ai,j − Xi,j ,

and is computed by directly subtracting ai,j with Xi,j .

From these two definitions, we can now define allowable partial result opera-
tions for Cholesky decomposition.

DEFINITION 3.3. A valid partial result for a Cholesky decomposition algorithm
is either any matrix item ai,j , or is the result from
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• computing any partial sum,
• computing any partial sum update,
• for any j , the operation of taking the square root of âj,j , or
• for any i and j where i �= j , the operation of dividing âi,j with lj,j .

Item 3 and item 4 are referred to as final valid partial results.

From these definitions, it is clear that the lower bound on the number of com-
putations is �(n3).

In serial Cholesky decomposition, it is common to discuss the various loop-
ing/nesting techniques in the algorithm design. Clearly, there are three loops or
nests that can be used (for i, j , and k indices). This provides 3! = 6 different
looping structures that are named using the nesting order: ijk, ikj, j ik, jki, kij,

and kji, respectively. Each of these algorithms have a running time of O(n3). These
structures have been grouped via the first nesting loop [5, 15]. The ijk- and ikj -
structures are called row Cholesky, jki and jik are called column Cholesky, and
kji and kij are submatrix Cholesky.

Submatrix-Cholesky is referred to as immediate-update since as soon as multi-
pliers (li,j ’s) are available, values are updated that use them. Both row- and column-
Cholesky are referred to as delayed-update since rows or columns, respectively, are
updated only just before they are needed. Submatrix-Cholesky is often referred to
as fan-out, while column-Cholesky is referred to as fan-in. In this paper, we will
consider the methods of parallel fan-in and parallel fan-out.

While, it is clear that the serial running time of the looping algorithms is O(n3)

by considering the number of operations performed, many issues must be consid-
ered in designing and analyzing parallel Cholesky algorithms. In general, a parallel
algorithm is composed of three main items:

(a) data layout,
(b) computational tasks, and
(c) communication schedule.

Run-time can only be analyzed after these three items are specified. A data layout is
the initial assignment of the items of matrix A to the P processors. In this paper, we
consider several important and often-used data layouts in our design and analysis.
These will be discussed in the following subsection. Communication is dependent
on the layout and computational tasks since they will specify the data and partial
results that need to be sent between processors. Furthermore, communication must
satisfy conditions of the LogP model. Communication schedules will be discussed
in each algorithm. The lower bounds we will derive in Section 4 will hold regard-
less of specific communication schedules. The set of computational tasks are those
whose operations correctly compute L and only create valid partial results. Also,
when we discuss parallel algorithms based on methods, we must further restrict
computational tasks based on assignment to processors.
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Upon close inspection of the definitions for creating valid partial results, we
see that the computational lower bound on running time for any algorithm (re-
gardless of data layout and communication schedule) is �(n3

P
+ n) since the serial

complexity is �(n3), and there is an inherent sequentiality of �(n).
We now discuss parallel fan-in and parallel fan-out [5]. We note that much of

the existing discussion for fan-out and fan-in algorithm design has been based on
using column-oriented data layouts. We intend to design algorithms that utilize a
variety of data layouts. Therefore, we have generalized the methods in order to
account for use of different data distributions. In order to do so, we first provide
the following definitions.

REMARK 3.1. The processor initially assigned matrix item ai,j is denoted by pi,j .

DEFINITION 3.4. A partial aggregate of li,j on processor ρ is a partial sum of
the form

γ
ρ

i,j =
j−1∑
k=1

bk(li,k lj,k),

where

bk =
{

1 if pi,k = ρ,

0 otherwise.

A fan-out Cholesky parallel algorithm requires that all partial results for li,j
be computed by pi,j . A fan-in algorithm requires that partial results be divided
amongst the processors based on assigning partial aggregates as tasks. More for-
mally:

DEFINITION 3.5. An algorithm for Cholesky decomposition is a fan-out algo-
rithm on P processors if for all i, and j , any valid partial results for computing li,j
in the algorithm is assigned to pi,j .

DEFINITION 3.6. An algorithm for Cholesky decomposition is a fan-in algo-
rithm on P processors if

• for all i and j , and any processor ρ, any partial sum for computing γ
ρ

i,j in the
algorithm is assigned to processor ρ, and
• pi,j performs the summation operation that computes the value Xi,j , the partial

sum update âi,j , and the final valid partial result for li,j .

A fan-out algorithm must rely on transmissions of li,j ’s between processors in
order to perform partial sums. Any other valid partial result sent among proces-
sors would be counterproductive since processor pi,j cannot use results from other
processors, and ai,j is already initially assigned to pi,j .

A fan-in algorithm relies on transmissions of partial sums in order for pi,j to
gather the partial sums needed to form Xi,j .
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3.1. DATA LAYOUT

In designing parallel Cholesky algorithms, the choice of an initial data layout has
significant ramifications in design. A design not accounting for the layout could
lead to significant slowdowns in performance. As such, data layouts are listed as
one of the three main factors in our design and analysis. We consider well-known
matrix layouts that have been used in parallel Cholesky design. These layouts fall
mainly into two group: one-dimensional (1-D) and two-dimensional (2-D). In this
section, we provide definitions for the layouts we will use in this paper.

DEFINITION 3.7. Given P (� n) processors, denoted ρ0, ρ1, . . . , ρp−1, and an
integer β where 1 � β � n/P , a one-dimensional column wrapped layout of panel
size β, is a layout where for all i, 0 � i < P , ρi is assigned column kβP + iβ + q,
for all 0 � k < n

βP
and 1 � q � β.

We note that if row-oriented data layouts were to be used, there is no fundamen-
tal difference between the fan-in and fan-out general methods. As such, row data
layouts are not a focus of this paper.

For two-dimensional data layouts, blocks of the matrix A are assigned across
the processors. There is a granularity value G that is used to determine the size of
the (square) blocks to distribute.

DEFINITION 3.8. Given P (� n2) processors, denoted ρi,j where 1 � i,

j �
√

P , and an integer G where 1 � G � n/
√

P , a two-dimensional block
cyclic layout of granularity size G assigns to each processor ρi,j the matrix items
al,m where n

G
k + n

G
√

P
(i − 1) + 1 � l � n

G
k + n

G
√

P
i, n

G
k + n

G
√

P
(j − 1) + 1 �

m � n
G

k + n

G
√

P
j , and 0 � k < G.

When G = 1, the layout is also known as a block decomposition layout.

4. Lower Bounds on Run-Time

In order to understand and measure the efficiency of a parallel algorithm, it is im-
portant to derive a lower bound on running time to use for comparison. The closer
an algorithm is to an asymptotic lower bound, the better guarantee of efficiency can
be made. As such, in this section we derive a variety of lower bounds on parallel
run-time on the LogP model. Our lower bounds assume a particular data layout
and method while holding for any correct communication schedule that is used in
a Cholesky decomposition algorithm.

We note that since there are �(n3) operations in order to perform Cholesky
decomposition, and an inherent sequentiality of �(n), an inherent lower bound
would be �(n3

P
+n). This is referred to as the computational lower bound. Clearly,

the computational lower bound is a major factor in run-time, but does not include
communication time. In this section, we will consider the effects of communication
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on the lower bound and derive results that synthesize communication and compu-
tation. We note that in our analyses, we make the realistic assumption that n � g.
For brevity, proofs have been omitted, but can be found in [19].

Our first lower bound holds for any parallel fan-out Cholesky algorithm that
utilizes a column-wrapped layout with panel size β. A fan-out algorithm requires
that every pi,j perform the full set of computations to compute li,j with no help
from other processors except to receive the needed li,k’s and lj,k’s. Consider any
column α in the matrix, in order to compute all the li,α’s, it must receive partial
columns from the first α − 1 columns (if the columns belong to other processors).
Clearly, processor ρP must receive many la,b’s. Our lower bound on communica-
tion is based on analyzing the lower bound on the number of messages ρP must
receive. Below is the combined (computational and communication) lower bound
for fan-out on panel column-wrapped layouts.

THEOREM 4.1. A lower bound for parallel fan-out Cholesky decomposition on
P processors using column-wrapped data layout with panel size β is �(n3

P
+n2g).

Analyzing the lower bound derived, we note that (1) the communication lower
bound is �(n2g), which pinpoints that when designing an algorithm under these
assumptions, there is no need to try to design it to perform (asymptotically) less
than n2 phases of communication. Moreover, β does not seem to have an effect on
the asymptotic lower bound.

We now derive a lower bound on run-time for fan-in Cholesky decomposition
using a panel column-wrapped layout. Since a column-oriented layout is used,
the only useful messages sent would contain either values of partial aggregates or
values of sums of partial aggregates. Again, consider any column α, the processor
assigned column α must take pairs of li,α and lj,α for multiplication in order to
form partial aggregates. There are �((n − α)2) such partial aggregates from mul-
tiplications from this column alone. The lower bound on communication considers
the amount of messages a processor needs to send in order to transmit the needed
partial aggregates to appropriate processors. We obtain the following lower bound
result:

THEOREM 4.2. A lower bound for parallel fan-in Cholesky decomposition on P

processors using column-wrapped data layout with panel size β is �(n3

P
+ n2g).

Interestingly, (a) fan-in and fan-out for one-dimensional column-wrapped data
layout with panel size β have asymptotically equal lower bounds, (b) β does not
seem to asymptotically affect run-time, and (c) P does not appear to be an asymp-
totic factor in the communication part of the lower bound.

Our lower bound results above for fan-in and fan-out are fixed on a restricted
class of 1-D data column layouts, namely structured wrapped layouts with fixed
panel size. We now focus our attention on deriving a lower bound that is applicable
to all 1-D column-oriented layouts. Thus, we begin by providing the following
definition:
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DEFINITION 4.1. A data layout is said to be a single-item data layout if every
data item is initially assigned to a unique processor.

A single-item layout is one that does not allow multiple copies of the data to
be initially distributed among processors. This is a realistic assumption, especially
in light of the fact that when designers typically turn to parallel environments, it is
because the matrix sizes are quite large making replication of data costly. Another
realistic assumption is that processors are assigned an equal portion of columns.
Therefore, we now formally define this.

DEFINITION 4.2. A data layout on matrix A of size n × n for P processors is
said to be a balanced data layout if every processor is assigned θ(n2

P
) of the matrix

items.

Building on this definition, we can discuss balanced column-oriented data lay-
outs.

DEFINITION 4.3. A data layout for matrix A on P processors is said to be a
balanced column data layout if

• it is a single-item layout,
• it is a balanced layout, and
• any two matrix items ai,j and ak,j that are in the same column must be assigned

to the same processor ρ.

Using this data layout, we obtain the following:

THEOREM 4.3. Given any balanced column data layout, �(n3

P
+ n2g) is a lower

bound on running time for both fan-in and fan-out Cholesky decomposition.

From the theorem above, we see that the balanced column layout lower bounds
are asymptotically equal to the lower bounds for panel column-wrapped. Further-
more, we see that if a column-oriented layout is used, as long as there are no initial
replications (i.e. the layout is single-item), and data is distributed proportionally
across processors (i.e. the layout is balanced), the lower bounds are asymptotically
equal between fan-in and fan-out Cholesky decomposition.

As an aside, if we generalize our result such that any single-item, balanced, one-
dimensional data layout (i.e. either row- or column-assignment), we can obtain a
lower bound on run-time for fan-in and fan-out, and the corollary is provided below.

COROLLARY 4.4. Given any single-item, balanced, one-dimensional data lay-
out, �(n3

P
+ n2g) is a lower bound on running time for both fan-in and fan-out

Cholesky decomposition.

We now turn our attention to deriving lower bounds for two-dimensional data
layouts. These layouts have a granularity size G for subdividing the matrix into
sub-blocks for assignment to processors.
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In fan-out, every pi,j must compute the full set of valid partial results to form li,j .
Thus, consider processor ρs,t in the block cyclic layout. This processor is assigned
G2 sub-blocks each of size n2

GP
. Our lower bound is derived by computing the

number of messages processor ρ√P ,
√

P must receive in order to compute all of
it’s li,j ’s.

THEOREM 4.5. A lower bound for parallel fan-out Cholesky decomposition on P

processors using block cyclic data layout with granularity size G is �(n3

P
+ n2√

P
g).

Analyzing our results, we see that the granularity size G does not appear in the
lower bound above.

Turning our attention to fan-in, we again consider processor ρs,t . This processor
must compute all partial aggregates γ

ρs,t

i,j . We see that a message can either be
a transmission of a partial aggregate value, or a transmission of some li,j value
among two processors. Therefore if processor ρs,t is assigned matrix item ai,j , it
must have either computed or received lk,j where j � k � i in order to compute it
set of partial aggregates. Based on this fact, we obtain the following lower bound
for fan-in Cholesky decomposition.

THEOREM 4.6. A lower bound for parallel fan-in Cholesky decomposition on P

processors using block cyclic data layout with granularity size G is �(n3

P
+ n2√

P
g).

Again, the choice of fan-in or fan-out does not seem to affect the lower bound
analysis. Also, granularity does not seem to affect the derived lower bounds as-
ymptotically.

Overall, the choice of fan-in versus fan-out does not seem to have a major effect
on the lower bounds derived.

The lower bounds derived, clearly, do not guarantee that a parallel algorithm
can be designed that can achieve each asymptotic lower bound. The goal is to use
these asymptotic values as a means of an absolute comparison in order to determine
the efficiency of an algorithm. Of course, we will try to design algorithms that do
achieve our lower bounds, if the asymptotic run-time of an algorithm equals an
asymptotic lower bound, then that algorithm is asymptotically optimal.

5. Parallel Algorithms

In order to discuss our parallel algorithm designs, we first discuss serial fan-in
and serial fan-out. In order to do so, two subroutines called CMOD for partial
sum update, and CDIV for generating Cholesky factors li,j for column j are first
presented. The pseudo-code for the subroutines are written to appropriately address
our formal definitions of valid partial results.
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ALGORITHM 5.1 CMOD(r, s)

for i = r to n do
if s = 1 then

l̂i,r ← li,s ∗ lr,s
else
l̂i,r ← l̂i,r + li,s ∗ lr,s

ALGORITHM 5.2 CDIV(s)

if s = 1 then
ls,s ←√as,s

for i = s + 1 to n do
li,s ← ai,s ÷ ls,s

else
l̂s,s ← as,s − l̂s,s

ls,s ←
√

l̂s,s

for i = s + 1 to n do
l̂i,s ← ai,s − l̂i,s

li,s ← l̂i,s ÷ ls,s

Fan-in (Column-Cholesky) and fan-out (Submatrix-Cholesky) utilize these sub-
routines [15] in their design. Below are examples of serial fan-in and serial fan-out.

ALGORITHM 5.3 Submatrix-Cholesky (fan-out)

for k = 1 to n do
CDIV(k)

for j = k + 1 to n do
CMOD(j, k)

ALGORITHM 5.4 Column-Cholesky (fan-in)

for j = 1 to n do
for k = 1 to j − 1 do

CMOD(j, k)

CDIV(j)

In our parallel design, we modify these routines in order to make efficient use of
a parallel environment. These modifications also take into account communication
costs through use of the LogP model.

For brevity, we present all the running times of our algorithms and present the
fan-in and fan-out Cholesky algorithms for panel column-wrapped layout. Full
algorithms can be found in [19].

We first consider our one-dimensional data layout, column-wrapped layout with
panel size β. Our algorithms are based on existing algorithms for parallel Cholesky
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on column layouts [5] that have been adapted to our constraints, and bears much
similarity to them.

Our first algorithm is parallel fan-out cholesky for 1-D column wrapped layout.
We start by considering what modifications are needed in CMOD and CDIV in

order to account for initial processor assignment. These new routines will be called
PMODfan-out,1-D and PDIV fan-out,1-D, respectively.

For fan-out, messages contain only li,j values. Also, since the data layout is a
column-oriented layout, there is no need to modify CMOD. Therefore,
PMODfan-out,1-D is the same algorithm as CMOD. However, CDIV will be modified
since the messages that need to be sent will be partial results created within CDIV,
so PDIV fan-out,1-D has been designed such that embedded in it is the communication
schedule for the Parallel Fan-out algorithm for column-wrapped. The new PDIV
algorithm is presented below.

ALGORITHM 5.5 PDIVfan-out,1-D(s, α, b)

if s = 1 then
if b = α then

ls,s ←√as,s

for i = s + 1 to n do
if b = α then

li,s ← ai,s ÷ ls,s

send li,s to processor ρ(α+1)mod P

else
receive li,s from processor ρ(α−1)mod P

if b �= (α + 1) mod P then
send li,s to processor ρ(α+1)(mod)P

else
if b = α then

l̂s,s ← as,s − l̂s,s

ls,s ←
√

l̂s,s

for i = s + 1 to n do
if b = α then

l̂i,s ← ai,s − l̂i,s

li,s ← l̂i,s ÷ ls,s

send li,s to processor ρ(α+1)mod P

else
receive li,s from processor ρ(α−1)mod P

if b �= (α + 1) mod P then
send li,s to processor ρ(α+1)(mod) P

The remainder of the discussion for the parallel fan-out algorithm for panel
column-wrapped is straightforward since communication has been detailed in PDIV.
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It is important that the algorithm not have excess idleness, thus we consider that
issue and other issues in our design. Below is the pseudo-code and running time.

ALGORITHM 5.6 Parallel Fan-out Cholesky for Panel Column-Wrapped Layout

For each processor ρj do in parallel
for k = 0 to n

βP
− 1 do

for s = 0 to P − 1 do
for q = 1 to β do

i ← kβP + sβ + q

PDIV fan-out,1-D(i, j, s)

if j = s then
for x = q + 1 to β do

y ← kβP + sβ + x

PMODfan-out,1-D(y, i)

for l = k + 1 to n
βP
− 1 do

for x = 1 to q do
y ← lβP + jβ + x

PMODfan-out,1-D(y, i)

Run Time: O(n3

p
+ n2g)

Our algorithm running time is asymptotically equal to the corresponding lower
bound. As such, this algorithm is asymptotically optimal. Therefore, there is no
benefit (beyond reduction of constant factors) to trying to further overlap commu-
nication with computation, nor for developing complicated communication sched-
ules.

We now turn our attention towards developing a fan-in Cholesky algorithm
for panel column-wrapped data layout. Again, we consider revising CMOD and
CDIV as needed. Messages for this algorithm will be partial sums that contain
combinations of partial aggregates. The communication schedule will be embed-
ded inside the two subroutines: PMODfan-in,1-D and PDIV fan-in,1-D. We present the
pseudo-code for the new PMOD and PDIV below.

ALGORITHM 5.7 PMODfan-in,1-D(r, s, α, w, m)

for i= r to n do
if s = αβ + 1 then

l̄α
i,r ← li,s ∗ lr,s

else
l̄α
i,r ← l̄α

i,r + li,s ∗ lr,s
if (w + 1)βP + αβ > r and m = β then

if w > 0 or (w = 0 and α > 1)
receive l̄α−1

i,r from ρ(α−1)mod P

l̄α
i,r ← l̄α

i,r + l̄α−1
i,r

send l̄α
i,r to ρ(α+1)mod P
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ALGORITHM 5.8 PDIV fan-in,1-D(s, α)

if s = 1 then
ls,s ←√as,s

for i = s + 1 to n do
li,s ← ai,s ÷ ls,s

else if s � β then
l̂s,s ← as,s − l̄α

s,s

ls,s ←
√

l̂s,s

for i = s + 1 to n do
l̂i,s ← ai,s − l̄α

i,s

li,s ← l̂i,s ÷ ls,s

else
receive l̄α−1

s,s from processor ρ(α−1)mod P

if s = αβ + 1 then
l̂s,s ← temps,s

else
l̂s,s ← l̄α

s,s + l̄α−1
s,s

l̂s,s ← as,s − l̂s,s

ls,s ←
√

l̂s,s

for i = s + 1 to n do
receive l̄α−1

i,s from processor ρ(α−1)mod P

if s = αβ + 1 then
l̂i,s ← l̄α−1

i,s

else
l̂i,s ← l̄α

i,s + l̄α−1
i,s

l̂i,s ← ai,s − l̂i,s

li,s ← l̂i,s ÷ ls,s

Using the modified PDIV and PMOD, we now design our parallel fan-in
Cholesky for column-wrapped layouts.

ALGORITHM 5.9 Parallel Fan-in Cholesky for Panel Column-Wrapped Layout

For each processor ρj do in parallel
for k = 0 to n

βP
− 1 do

for s = 0 to P − 1 do
for q = 1 to β do

l← kβP + sβ + q

for t = 0 to k − 1 do
for x = 1 to β do

y ← tβP + jβ + x

PMODfan-in,1-D(l, y, j, k, x)



230 EUNICE E. SANTOS AND PEI-YUE CHU

if s < j then
for x = 1 to β do

y ← kβP + jβ + x

PMODfan-in,1-D(l, y, j, k, x)

else if s = j then
for x = 1 to q − 1 do

y ← kβP + jβ + x

PMODfan-in,1-D(l, y, j, k, x)

PDIV fan-in,1-D(l, j)

Run Time: O(n3

p
+ n2g)

Analyzing our run-time result for parallel fan-in on column layouts, and com-
paring it with the lower bounds derived in the previous section, we see that we have
an asymptotically optimal algorithm.

Thus, we have provided asymptotically optimal algorithms for both fan-in and
fan-out for column-wrapped layouts. Since the running times also match the lower
bounds for our arbitrarily one-dimensional layouts, our algorithms are asymptoti-
cally optimal over that range of data layouts. Furthermore, β does not asymptoti-
cally affect run-time complexity for 1-D layouts.

Turning our attention to block-cyclic layouts, for brevity, we have omitted the
algorithms and provided the running times. Full algorithms can be found in [19].

The running times of our parallel fan-in Cholesky and parallel fan-out Cholesky
on block cyclic layouts with granularity size G are the same; namely O(n3

p
+ n2g).

Comparing the running times with the lower bounds derived, clearly the two are not
asymptotically equal. We note that the asymptotic running times of the algorithms
for block cyclic are the same as those for column-wrapped. Moreover, the column-
wrapped algorithms are asymptotically optimal under the restriction of using 1-D
layouts. Since our algorithms for 2-D layouts already as efficient as the respec-
tive 1-D counterparts and the algorithms for 1-D layouts cannot be made to be
asymptotically faster, we are guaranteed that the run-time complexity for parallel
fan-in and fan-out Cholesky using 2-D layouts are either equal, or even better than
the complexity with 1-D layouts. This spotlights the usefulness in further work
towards determining the asymptotic complexity for Cholesky decomposition using
these data layouts.

6. Experimental Results

In the previous sections, we have provided a theoretical analysis on the complex-
ity of parallel Cholesky decomposition using fan-in and fan-out methods and on
two basic layouts by deriving lower bounds, designed and analyzed algorithms,
and compared the various results. In this section, we implement our algorithms
and gather performance data in order to compare them against our theoretical
predictions.
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Figure 1. Effects of panel size (β) on performance for n = 512, 1024, and 2048.

We implemented our algorithms on a cluster of Pentium III (1 GHz) machines
using MPI (Message Passing Interface). In our implementations, we utilized MP-
Isend and MPIrecv commands as the basic primitives for building our own com-
munication schedules.

We implemented our algorithms for a variety of matrix sizes spanning from
n = 512, 1024, and 2048 and used from 2 to 16 processors (for block cyclic, only
4 and 16 processors were used due to subdividing using

√
P ). For panel column

wrapped layouts, the panel size (β) spanned from 1 to 1024 (dependent of the size
of the matrix and the number of processors used). For block cyclic layouts, the
granularity size (G) spanned from 1 to 1024 (dependent on n and P ). For brevity,
only key results are presented. Full details can be found in [19].

In our analysis, we noted that the panel size, β, has no asymptotic effect on
running time. We now compare the performance of parallel fan-in and fan-out
Cholesky decomposition on column-wrapped layouts based on panel size. Fig-
ure 1 presents a performance comparison based on panel size for n = 512, 1024,

and 2048, respectively. Clearly, panel size does have an effect on performance.
Therefore, the asymptotic analysis is hiding the effects of β within constant fac-
tors.

We next compare the performance of parallel fan-in and parallel fan-out us-
ing panel column-wrapped data layouts. Figure 2 presents performance for n =
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Figure 2. Performance for n = 512, 1024, and 2048 of parallel fan-in and fan-out using panel
column-wrapped layout.

Figure 3. Performance comparison of the algorithms.

512, 1024 and 2048. Analyzing the data, using panel column-wrapped, differences
in parallel fan-in and parallel fan-out performance are quite small.

Turning our attention to block cyclic layouts, we note that similar to β in the
one-dimensional panel column-wrapped layout, G does affect performance, which
seems to be hidden in the asymptotic analysis. Full performance data for block
cyclic can be found in [19].

Lastly, Figure 3 provides a comparison of the algorithms implemented. Similar
to the 1-D layout algorithms, the 2-D layout algorithms difference in overall per-
formance are not high. However, the 1-D layouts appear to become more efficient
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as the problem size increases. This is a topic for future work since a variety of
factors could be causing this phenomenon.

7. Conclusion

In this paper, we considered the problem of designing efficient and optimal paral-
lel Cholesky decomposition algorithms for general distributed-memory networks/
machines. We considered two standard layouts; namely panel column-wrapped
data layout and block cyclic data layout that would be used to design the algo-
rithms. We also considered generalized fan-in and fan-out methods for Cholesky
decomposition as the two methods in our analyses.

We derived both upper and lower bounds on run-time in order to determine
efficiently and optimality. From our theoretical analysis, we showed that both algo-
rithms using our 1-D layouts are asymptotically optimal. Furthermore, we showed
that there is no need to use more complicated 1-D layouts in order to obtain a better
running time (asymptotically) since our lower bounds hold for a generic set of 1-D
layouts.

For 2-D layouts, we were able to show that our algorithms are efficient but not
necessarily optimal, since the upper and lower bounds are not equal. This leaves
open the question of whether the lower bound, upper bound, or both need to be
tightened.

Furthermore, we implemented our algorithms in order to provide performance
analysis. Our analysis was able to pinpoint and predict important performance
issues that need to be considered for optimal and/or efficient parallel algorithm
design. We note that some performance issues were marked by the asymptotic
nature of our analysis suggesting directions for future work.
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