
International Journal of Parallel Programming, Vol. 32, No. 6, December 2004 (© 2004)

A Spill Code Minimization
Technique—Application in the
Metrowerks StarCore C Compiler

Virgil Palanciuc1,2 and Dragoş Badea1

Graph coloring algorithms have been shown to be an efficient and effective
means of performing register allocation. The power of these algorithms lies
in their strong coloring heuristics and their ability to abstract away disparate
allocation problems such as data-flow constraints, conforming to calling con-
ventions, and target machine restrictions. However, even optimal algorithms
cannot color every graph, and often some live ranges must be spilled to
memory to make room for others. In this paper, we present a new approach
of reducing spill code, which can be used to complement virtually any regis-
ter allocation algorithm, and provides a good support to implement cheaper
spill methods like spilling to another register (from a different class) and
rematerialization (reloading the register from a constant or expression). This
algorithm was partially implemented into the Metrowerks StarCore C com-
piler where it has proven its efficiency in terms of both cycle count and code
size.

KEY WORDS: Optimization; register allocation; spill code; rematerialization.

1. INTRODUCTION

Global register allocation and spilling using graph-coloring techniques has
been a topic of practical interest to compiler designers for a number
of years. In all compilers that use such a technique, some sort of con-
flict graph is built whose vertices correspond to the variables and whose

1 Motorola/Metrowerks Romania, Union Tower II Business Center, 5th floor, 010113,
Bucharest 1, Romania. E-mail: {virgil.palanciuc; dragos.badea}@freescale.com

2 To whom correspondence should be addressed.

475

0885-7458/04/1200-0475/0 © 2004 Springer Science+Business Media, Inc.

476 Palanciuc and Badea

edges represent the interference between the live areas of variables. The
coloring of the vertices of this graph corresponds to an assignment of
the variables to real machine registers. When the number of colors (i.e.,
real registers) is not sufficient, additional register-to/from-memory state-
ments must be inserted, and these extra statements are referred to as spill
code., Both problems (that of deciding whether a graph can be colored
with the given number of registers and that of minimizing the amount of
spill code) are computationally intractable. This paper presents an heuris-
tic spill reduction algorithm that can be used to complement virtually any
register allocation algorithm in order to reduce the amount of generated
spill code and thus to produce more efficient (smaller and faster) compiled
code. This algorithm has been developed in the context of the Metrowerks
StarCore C Compiler, a highly optimizing compiler that currently tar-
gets the Motorola SC100 family: SC110, SC120, SC140 and SC140E DSP
cores and also the platforms MSC8101 (single SC140 core) and MSC8102
(4 × SC140 cores). Consequently, the algorithm presented in this paper
assumes an architecture with explicit parallelism, in which a set of atomic
operations can be executed in parallel. Examples of such architectures are
VLIW, VLES, EPIC architectures.

StarCore is based on a variable length execution set (VLES) model; in
each cycle, an eight-word instruction set (called fetch set) is fetched from
memory, and the hardware detects the portion of the fetch set (called exe-
cution set) that contains the actual set of instructions to be executed in
parallel (actually, in the worst case an execution set may span over two
fetch sets). Note that the parallel execution of several instructions has to
be specified explicitly by the compiler/assembly programmer—that is, the
execution sets are not formed at runtime, instead they are encoded directly
in the object file.

There are two main register files in the SC architecture: one is the
DALU register file that contains 16 40-bit data registers (D-class regis-
ters) for integer and fractional data operand storage; the other one is the
AGU register file, which contains 16 32-bit address registers (R-class regis-
ters). Besides, StarCore also has available four address-offset registers and
four modulo registers, one predication bit for conditional execution, delay
slots, and hardware loop mechanisms. For a complete understanding of
the StarCore features, you may check the SC140 reference manual.(1)

One of the most important decisions the register allocator has to take
is which node should be spilled; many different heuristics are used to take
this decision, but the idea behind all is the same—the node should not be
used frequently, and spilling it to the stack should break as many con-
flicts as possible. Some register allocators insert some spill code to split
the live range of a node into several live ranges, and then spill only one

A Spill Code Minimization Technique 477

live range of the node. Anyway, once the register allocator has determined
which live ranges will be spilled, it must now decide where to place the
spill code. The simplest and roughest technique is to insert a store after
every definition of the live range and a load before every use. Although
this spill-everywhere technique works, it usually generates much more spill
code than is necessary. The existing register allocation methods have (usu-
ally local) spill elimination heuristics, to improve the quality of the code.
Our spill code elimination heuristic is a global heuristic; it can be used for
virtually any register allocation algorithm; it has a very good support for
rematerialization; it requires a relatively small implementation effort and it
generally produces very good results.

2. RELATED WORK

2.1. Chaitin’s Spilling Heuristic

Chaitin’s spilling heuristic (2) mentions several refinements to the sim-
ple spill-everywhere approach that can reduce the amount of spill code
inserted for a given spill decision. These include recomputation of register
values that can be done easily instead of transferring them to and back
from memory and only inserting spill loads at the deaths of other live
ranges where register resources are being made available.

2.2. Bernstein et al.’s Spill-Almost-Everywhere Heuristic

Bernstein’s spill-almost-everywhere heuristic limits even more the
amount of spill code inserted for a live range in a given basic block. With
Bernstein’s heuristic the number of loads and stores inserted into a basic
block is at most one load/store per live range.(3) This in effect renames the
live range for each basic block in which it is referenced, whereas Chaitin’s
heuristic may produce multiple new names in a given block.

2.3. Bergner’s Interference Region Spilling

To enable the spilling of limited portions of a live range, Bergner
introduces a new concept called the interference region (see Ref. 4). For
two interfering live ranges, their interference region is defined to be the
portion of the program where they are live simultaneously. By eliminat-
ing (spilling) this region from one of the live ranges through the addi-
tion of spill code, they will no longer be live simultaneously anywhere in
the program, thus they will no longer interfere. In his PhD thesis, Bergner
also presents a new live range splitting technique called interference region
splitting, which goes further in the attempt to minimize the spill code.

478 Palanciuc and Badea

3. OUR APPROACH

In this paper, we present another efficient approach to spill elim-
ination. It was partially implemented on a hierarchical register alloca-
tor (which is a refinement of the algorithm presented by Callahan and
Koblenz.(5) We argue that having a separate spill elimination step is gen-
erally a good idea, since it provides provisions for a cleaner implementa-
tion and one can design a spill elimination algorithm that has the same
or better performance as the ones that are currently used in the register
allocators. The results are presented in Section 4 and come to support this
idea. In the remaining part of the paper, we will first introduce the basic
ideas of the register allocation algorithm we used, and we will present our
spill elimination algorithm, plus a few ideas on how to improve the results
obtained by the register allocator.

3.1. Motivation

We implemented our spill elimination algorithm on top of a hierar-
chical register allocator—a slightly modified version of the algorithm pre-
sented by Callahan and Koblenz.(5)

Hierarchical register allocation is a graph-coloring algorithm that is
sensitive to program flow structure and thus tries to place spill code in
less frequently executed portions of the program. The choice of variables
to spill is based on usage patterns between the spills and the reloads rather
than usage patterns over the entire program. The method allows a variable
to be assigned to one register over a portion of the program, memory in
a second portion, and a different register in yet a third portion.

Profiling information can be trivially incorporated to improve the
selection of spilled variables and the location of the spill code because all
analysis is based on the probability of executing a particular basic block
or flowing along a particular control flow edge.

The main idea is to represent the program’s loop and conditional
structure by a tree of tiles. Tiles are visited in a bottom-up fashion and
a local interference graph is created and colored (using pseudoregisters)
for each tile. A tile’s local spill decisions are made based on local usage
and coloring decisions are propagated upward into the tile tree. After the
bottom-up pass has allocated variables to pseudoregisters for the entire
tree, a top-down walk binds pseudoregisters to physical registers and intro-
duces spill code where desirable and required, but not necessarily where
the decision to spill was made. In order to minimize the amount of fix-up
code between tiles, we propagate individual information on virtual register
allocation upward and downward in the tile tree. In addition to better

A Spill Code Minimization Technique 479

spill code placement, this hierarchical approach also allows smaller con-
flict graphs to be constructed.

Although this register allocation algorithm has several important
advantages, it has at least one important disadvantage: although it does
split the live ranges at tile boundary, it does not split them inside a tile,
thus occasionally ending up with very poor code, especially for large loops
with high register pressure.

To fix this problem, we had the choice of adding an intra-tile live
range splitting algorithm or adding a post-coloring spill reduction step. We
did both and we noticed that (even though these algorithms sometimes
complement each other very effectively), the spill reduction step brought
far more performance than the intra-tile live range splitting algorithm,
basically due to its two main features:

1. It has the ability to correct some of the mistakes made by the
register allocation (wrong registers chosen for spilling and for live
range splitting).

2. It has a strong support for replacing stack slots with cheaper spill
locations (other registers, recomputing the value instead of reload-
ing it etc.).

This observation lead us to the conclusion that the tile-based approach is
generally enough for live range splitting, with only one notable exception
that we will present in Section 3.5.

In order to use the spill reduction algorithm after doing hierarchi-
cal register allocation (or any other type of register allocation), one small
change in the register allocator was made: a new class of ‘special’ virtual
registers was created—we call them spill registers. The register allocation
algorithm remains unchanged, except that now, when a virtual register is
spilled, instead of inserting moves from and to memory, it inserts transfer
instructions from and to the associated virtual spill register.

The spill reduction algorithm is activated after the allocator has col-
ored all registers, the code has been changed to physical registers, and
the only virtual registers remaining in the flow-graph are the registers in
the spill class. The elimination of unnecessary spill code is done in two
phases:

1. Gathering data and elimination of spill code.
2. Coloring spill registers.

The first step is actually an additional analysis step that computes equiv-
alence information for all the program points (i.e., it detects the regis-
ters/immediate values/expressions that have the same value as a virtual
spill register at any execution set of a program); based on this informa-
tion, we can decide that some load/store instructions are useless because
they do not have a significant impact on this equivalence information.

480 Palanciuc and Badea

The second step attempts to ‘color’ the virtual spill registers—that is,
to assign them to different registers. Note that even though we may occa-
sionally have available registers from the same class (due to encoding con-
straints), generally these register will be registers from a different class and
we will be able to use them only as spill locations (and not to perform
the actual computation). If no registers are available, we may decide to
use the equivalence information provided by the first analysis step in order
to recreate the value. Finally, if we have no equivalence information we
will end up creating a stack slot and replacing the spill register with that
stack slot. Moreover, if stack consumption is a big issue, one may decide
that several spill registers can share the same stack slot—but care should
be taken while doing this, because although it does save stack space (and
usually code size, too), it tends to increase the cycle count. This will be
discussed in more detail in Section 3.5.

In the next sections, we will describe in detail the spill reduction algo-
rithm, and we will provide a number of examples to illustrate how it
works.

3.2. Phase One—Analysis and Spill Code Elimination

As mentioned earlier, in the following sections we are going to view
the spill locations as a special class of virtual registers that will be referred
as spill registers. We are going to talk about their lifetimes, about their
preferences to get a certain color, and finally we are going to allocate
them real registers. The difference between spill registers and usual vir-
tual registers is that, in case no physical register is available, we are
not going to further create other spill locations for them but just asso-
ciate a stack slot to each spill register. In addition, if the spill regis-
ters’ coloring is not successful we do not have to further insert spill
code.

The first phase of the spill reduction is based on the computation of a
dataflow analysis problem—we called it ‘equivalence propagation’. It ana-
lyzes the content equivalence of each spill location with each physical reg-
ister, with a constant or with a simple expression at any point in program.
By ‘simple expression’, we mean only those expressions that can be repre-
sented by a single machine instruction. We impose this condition because
keeping complex expressions would be impractical in terms of computa-
tional complexity; also it will usually not bring benefit, since we are inter-
ested in rematerialization of registers at small cost, no larger than that of
a reload from a stack slot.

Based on this information provided by the analysis, we will be able to
eliminate some unnecessary load and store instructions right from the first
phase and provide enough information to support the second phase of the

A Spill Code Minimization Technique 481

algorithm in making decisions about coloring or rematerializing the spill
registers at smaller costs.

This data analysis step that we are performing is actually a com-
bination of three dataflow problems similar with constant propagation,
copy propagation, and a somehow more sophisticated available expressions
analysis. The difference is that by performing these three analysis steps
together, we are able to gather more information as one could infer in
one analysis based on the information provided by the other (the simplest
example is the code sequence r0 = 3 r1 = 3, where we can decide that
r0 = r1 although there was no explicit assignment from r1 to r0.). Actu-
ally, the technique used in this first step can also be considered to be a
particular combination of analyses and optimizations, and thus it could be
described by combining the analysis frameworks, as described in Ref. 6.

The lattice we are working on has as elements arrays of sets. For each
physical and each spill register we will reserve a position in the array; on
this position, we keep a set representing the set of ‘objects’ equivalent to
that particular register (where an object may be another register, a con-
stant value, or an expression). Actually, we do not need to keep a set—we
can represent, for a register Reg this set as a structure containing:

• the number that is the value in Reg register (of course, we must be
able to assign two special values to that number—‘NOT A CONST’
and ‘ANY CONST’, corresponding to the bottom and top elements
of the ‘integer constant propagation’ (ICP) lattice, as defined in Ref.
7)

• a bitset representing the registers that are equivalent with Reg
register

• a list containing the expressions equivalent with Reg register. As
we already said, it is not useful (and it is practically impossible)
to have any expression in this equivalence list—we considered that
it is enough to keep the ‘simple expressions’—that is expressions
that can be recomputed using a single instruction, and thus can
actually be represented by the instruction itself.3 Note that here we
will also have to keep two special values—ANY EXPRESSION and
NO EXPRESSION corresponding to the bottom and top elements
of the lattice. We could represent ANY EXPRESSION by a NULL
list, and NO EXPRESSION by an empty list.

3 One could keep any expression as the tree representation of it, but proving two expres-
sions equivalent would imply very complex symbolic calculations, and it will still have a
limited generality. Besides that, we are not interested in very complex expressions since
the rematerialization cost would be too high and we will end up preferring the reload
from stack, anyway.

482 Palanciuc and Badea

On this lattice, we do a classical iterative dataflow analysis as pre-
sented in Ref. 7 with the values initialized to bottom (except the values for
entry, which are initialized at top).

IterativeAnalysis(FlowGraph FG)

{
foreach basic block B in FG do
{

if B!= Entry(FG) then
Initialize(B.equiv info);

else
InitializeEntry(B.equiv info);

AddElement(B, WorkList);
}

repeat
{

Initialize(temp);
B= ExtractElement(WorkList);
foreach basic block P in Predecessors(B) do

temp = Meet(temp, BlockFlowFunction(P,false));
if (temp != B.equiv info) then
{

B.equiv info = temp;
foreach basic block S in Successors(B) do

AddElement(S,WorkList);
}

}untilEmpty(WorkList);
} /* End of IterativeAnalysis */

EquivInfo Meet(EquivInfo e1, EquivInfo e2)
{

foreach register R do
{

Result.Reg[R].Const= meet constants(e1.Reg[R].Const, e2.Reg[R].Const);
Result.Reg[r].Regs = BitsetAnd(e1.Reg[R].Regs, e2.Reg[R].Regs);
}
foreach register R do

Result.Reg[R].Exp = meet expressions(e1.Reg[R].Exp, e2.Reg[R].Exp);
return Result;

}

A Spill Code Minimization Technique 483

Initialize(EquivInfo e)
{

foreach regsiter R do{
e.Reg[R].Const = ANY CONST;
BitsetFill(1,e.Reg[R].Regs);
e.Reg[R].Exp= ANY EXPRESSION;

}
}
InitializeEntry(EquivInfo e)
{

foreach regsiter R do{
e.Reg[R].Const = NOT A CONST;
BitsetFill(0,e.Reg[R].Regs);
e.Reg[R].Exp= NO EXPRESSION;

}
}

Notice that during the analysis we call the block flow function with a
second parameter ‘false’. This is because we use the same function to elim-
inate the useless spill instructions with the second parameter set to ‘true’.

The meet operator we used relies on the classical meet operators for
ICP and for bit vectors. In the case of expressions, lattice and the meet
operator is somehow similar with the one used for constant propagation—
here we have e1 ∧ e2 == e1 if e1 and e2 produce the same result (assum-
ing neither e1 or e2 have the special values of top or bottom).

The equivalence propagation analysis mostly provides us information
about which load instructions are to be removed and then we can decide
to remove store instructions that are useless (they actually become dead
code). This happens because usually load instructions can exist in equiv-
alence points, where rj == sk. (s denotes a spill register and r denotes
a physical register). Notice that stores usually come either after defini-
tions of physical registers (which invalidate possible equivalence relations
existent up to that point) or after redefinitions that update the old value.
Thus, it is unlikely to directly discover useless store instructions—but here
it is an example (Fig. 1) in which both the redefinition (mac) and the store
instruction can be removed.

Anyway, this is an exception—store instructions are usually seen as
necessary in the first place and they may eventually become useless after
removing some reloads (if we manage to remove all the loads exposed to
a store).

Consider the example in Fig. 2, in which variable x is spilled at a cer-
tain point in register allocator. The temporaries t1, t2, and t3 are created

484 Palanciuc and Badea

add r1,r2,r3
store r3,s1
[...]
load s1,r4
mac r5,r6,r4 /* equiv_info:{(r5==0)}*/
store r4,s1
[...]

Fig. 1. Both redefinition and store can be removed.

def t1
store t1, s1
load s1, t2
use t2
load s1, t3
use t3

def x
use x
use x

i1. def r1
i2. store r1, s1
i3. load s1, r2
i4. use r2 /*no redef of r2*/
i5. load s1, r2 /* unnecessary load */
i6. use r2

Fig. 2. Code sequence containing a useless load.

and let us assume that real registers can be assigned to them. If t2 and t3
get the same physical register (r2) and there is no other rewrite instruc-
tion on r2 between instructions i3 and i6, then the values in s1 and r2
are identical before instruction i6. As result, we can optimize this piece of
code and eliminate the load in i5.

In Fig. 3, we have an example in which store instructions can be elim-
inated. Assume variable x is dead at block exit. If t3 and t4 were given the
same color (r3), the dataflow analysis will see s1 == r3 at point i8 in pro-
gram. The algorithm goes on with removal of the load i8, which used to

def t1
store t1, s1
load s1, t2
use t2
load s1, t3
use t3 & write t3
store t3, s1
load s1, t4 /*last use of s1*/
use t4

def x
use x
use x & def x
use x /*last use of x*/

i1. def r1
i2. store r1, s1
i3. load s1, r2
i4. use r2
i5. load s1,r3
i6. use r3 & def r3
i7. store r3,s1 /* dead code
after removing i8 */
.......no def of r3
i8. load s1, r3 /* last use of
s1*/
i9. use r3

Fig. 3. Dead code store (instruction i7) due to load elimination (instruction i8).

A Spill Code Minimization Technique 485

be the last instruction using the spill register s1. Spill registers are ana-
lyzed as usual virtual registers and s1 is going to be seen as dead after
program point i7. This means that its definition in i7 is dead code as well
and can be removed.

Next, we present the remaining routines from the first stage—Block-
FlowFunction (which is the ‘core’ of the analysis algorithm) and First-
Phase, which is the entry point in this phase:

void FirstPhase(FlowGraph fg){
IterativeAnalysis(FG);
foreach basic block B in FG do

BlockFlowFunction(B,true);
DeadCodeElimination(FG);

}

EquivalenceInfo BlockFlowFunction(Block b, bool elim)
pp equiv info = b.equiv info
foreach ES in b do

foreach instruction I in ES (traversed so that data dependencies
are fulfilled) do
{

if (I is a call instruction) then
foreach register r destroyed by callee do
delete equiv(pp equiv info, r);

if(I does not change any register) then continue;
if(I reloads register r from memory) then

delete equiv(pp equiv info, r);
if(elim & & redundant(pp equiv info, I)) then

remove inst(I)
if(! redundant(pp equiv info,I)) then
{

delete equiv(pp equiv info, dst(I));
add equiv (pp equiv info,I, dst(I));

}
}
return pp equiv info;

}

The heart of the analysis algorithm is the function BlockFlow-
Function, which produces the EquivalenceInfo at the end of a basic block,
given the EquivalenceInfo at the beginning of the basic block. In this
paper, we have presented a simplified version of it, that does not deal
with issues such as predicated execution or unpairable execution sets

486 Palanciuc and Badea

(i.e., execution sets with circular data dependences—for example the ‘swap’
execution set: tfr d0, d1 and tfr d1, d0). The analysis over one basic block
is done as follows: for each instruction that changes at least one register4

we first check to see whether the instruction is redundant (i.e., writes a
value that was already existing in the register) and if it is, then we can
safely remove it (if the value of elim parameter is ‘true’). If it is not redun-
dant, we delete all equivalences of that register, and recreate a new set of
equivalences. We do this by using three functions: delete equiv, add equiv
and redundant.

The function redundant checks to see whether the computation of an
instruction was not already performed. It can be easily implemented using
the add equiv function—it simply checks whether this instruction writes
any register; if it does, then it is redundant if it would bring no new equiv-
alence information for that register.

The function delete equiv removes the equivalence information related
to a register—that is, it initializes the information for that register to bot-
tom and removes all other equivalence information related to it (i.e., if we
destroy r1, we will need to destroy the equivalences r2 = r1 and r3 =
r1 + 1).

The function add equiv is the most complex function used in this
stage. It contains an iterative inference engine that first extracts the obvi-
ous equivalence information provided by the instruction (i.e., if we have
tfr d1, d2, we know that after this instruction d1 will be equal to d2) and
then updates all equivalence information where the register is involved,
considering the existing equivalence information. For example, in the case
of a tfr instruction from d1 to d2, the first step is to mark the fact that d1
is equal to d2 and d2 is equal to d1; but after that, we also need to extend
the existing equivalence information (i.e., if we knew that d1 is constant
and has the value ‘3’, we must mark the fact that d2 equals 3; further, if
we knew that d3 is d1 + d6, we must add the equalities d3 = d2 + d6,
d2 = d3 − d6, d6 = d3 − d2). This function should also take into account
the arithmetic properties of an operation (e.g., commutability).

Note that, besides removing redundant instructions, we could also
replace spill registers with expressions, thus providing rematerialization.
However, doing this from the first phase may lead to wrong rematerializa-
tion decisions which could adversely impact on the second stage, so it is a
good idea to delay rematerialization until the second phase.

4 Here by register we also mean spill register; also note that call instructions are consid-
ered to destroy all physical registers that are not callee saved (according to ABI), but
no spill registers.

A Spill Code Minimization Technique 487

3.3. Phase Two—Rematerialization of Spill Registers

In the second phase, spill registers are bound to physical registers,
constants/expressions (when the value may be rematerialized, and this has
not been done in the previous step), or memory locations, according to
the designated preferences and priorities.

SecondPhase(FlowGraph FG, EquivalenceInfo EI){
Webs = ComputeWebs(FG);
foreach web W in Webs do

RematerializeAll(W, EI, false); //(1)

IGraph = ComputeInterferenceGraph(Webs);
Pri = ComputePriorities(Webs, IGraph);
foreach web W from Webs, sorted by Pri do
{

RematerializeAll(W, EI, true);//(2)

if(no remaining uses for W) then continue;
Color = ChooseBestColor(W,IGraph, EI);
foreach rematerialized use from W do
if (reload from Color is better than current rematerialization
instruction) then

Change the rematerialization instruction to a reload instruction;
Adjust EI to reflect destroyed equivalences;

}
DeadCodeElimination(FG);

}

Note that in the coloring stage, we do not color virtual spill registers,
but instead we color webs (roughly speaking, a web is a distinct lifetime
of a register—for a more precise definition see Ref. 7). This is because a
spill register is likely to have several lifetimes (and this likelihood is fur-
ther increased by the first spill elimination stage). Consider the example
in Fig. 4.

In this example, the spilled variable creates a spill register with two
distinct lifetimes, which can, and actually should be colored individually.
This case is quite frequent in hierarchical register allocation, where the
‘large portion of the program’ may be an inner loop where x was allocated
to a physical register, and outside the loop x was spilled. In this case, we
would have fix-up load and store instructions that would follow exactly the
pattern presented in this example.

Let us go back to the coloring algorithm—notice that immediately
after building the webs, we make a first call to RematerializeAll. This
procedure uses the equivalence information to replace all possible reloads

488 Palanciuc and Badea

def x
store x,s0
.....
load s0,x

[a large portion of the program that uses x]

store x,s0
.....
load s0,x
use x

Fig. 4. Spill register with two lifetimes.

def r1
def r2
add r1,r2,r3
store r3, s0
def r3 // destroys the old value from r3
[...region with high R-class register pressure...]
[...region with high D-class register pressure...]
(*)load s0, r3

Fig. 5. Rematerialization would stretch lifetimes of r1 and r2.

with equivalent rematerialization instructions (constants, transfers from an
equivalent register, recomputation). However, we do not want all the val-
ues to be rematerialized from the very beginning—otherwise we would
have done this from the first stage. Instead, at the first call to Rematerial-
izeAll (denoted with (1) in the pseudocode) we only rematerialize the val-
ues that do not stretch any lifetime, which means that additional conflicts
between physical and spill registers are avoided. Consider the example in
Fig. 5. In this example, we have a region with high R register pressure,
which makes us spill r3 and reuse it for different purposes in that code
region. Assuming that we have another region with high D register pres-
sure, we may not want to rematerialize r3 in the point (*), because doing
so would stretch the lifetimes of r1 and r2 and thus would prevent these
two registers from being used as spill locations for the D-class registers in
the region where we have a high D-class register pressure. It is better to
delay rematerialization decisions that stretch lifetimes until the point (2) in
the algorithm, where we have to assign a color for the spill register (and
at that point we know that this spill register is the most important one
which was not already colored, thus rematerialization is acceptable even if
it stretches lifetimes).

A Spill Code Minimization Technique 489

After the first rematerialization step, we build the interference graph
and we compute the priority of each spill register (actually, for each web).
The register with a higher priority will be the first to be colored, as it
has a higher impact on the performance of the resulting code. The pri-
ority is computed with a heuristic merit function similar to a function
that computes spill cost during register allocation. Different merit func-
tions may be used depending on the compilation options: (e.g., compila-
tion for improved cycle-count or code size).

Having the interference graph built and the priority computed, one
can start the actual coloring. First, we attempt to rematerialize as many
register-uses as possible from the current web. If there is no register-
use left to be colored, the job is done and we may continue with the
next web. Otherwise, re-evaluate the conflicts (if some uses were rema-
terialized, there may be a smaller web with less conflicts) and select
the best color available. A good heuristic for the ‘best’ color is that
color which could be used by the fewest neighbors (we are only inter-
ested in the neighbors that are spill registers) and which destroys as
few rematerialization opportunities as possible. For example, if we have
a physical register Rx that is in conflict with all the neighbors and it
cannot be used to rematerialize any neighbor, then Rx is likely to be
the perfect choice for a spill location. Note that we may also have spe-
cial preferences for some registers (e.g., if we somehow manage to get a
register from the same class, we will have smaller register-to-register trans-
fer costs).

After having chosen a register for the spill location (or a stack
slot, if no register was available) we make an additional check to see
whether it would not be profitable to replace some of the remateri-
alized instructions with reloads without losing performance and with-
out creating additional conflicts. Replacing rematerialization instructions
with a register that was chosen as spill location is useful because it is
usually cheaper—not only for speed, but also for code size. For exam-
ple—we may have no speed penalty when materializing register from
a constant, but it is likely that we will have a code size penalty. In
addition, reloading from the register that was chosen as spill loca-
tion could avoid stretching the lifetime of several other physical regis-
ters.

Assuming that a register was chosen as spill location, we must take
care of the possible inconsistency that may occur in the equivalence infor-
mation provided by the first step. For example, in the case presented in
Fig. 5, if we chose r1 as spill location for a D register in the region of
high D-class register pressure, we must know that we will not be able to
rematerialize r3 anymore in point (*).

490 Palanciuc and Badea

A=input();
B=A+1;
if(A) {
 C = A+2;
 B = A+C;
 if(C) {
 B = B+C;
 C = B+C;
 }
 A = B+C;
}
D = A+B;

A B

DC

NODE COST
A 8
B 12
C 12
D +INF

Fig. 6. Code example, with corresponding interference graph and spill costs.

Finally, in the end of the second stage of the algorithm we have to
call dead code elimination again, since generally this coloring stage leaves
a lot of dead code behind.

3.4. Example

We will now examine a somehow more elaborate example that proves
the power of this spill elimination algorithm (this is in fact exactly the
example presented by Bergner(4)).

Assume that we have the code in Fig. 6 (with the corresponding spill
costs) and that there are only two available registers left. It is obvious that
this graph cannot be colored, and we will have to spill the variable A.

A regular register allocator, using Chaitin’s local heuristics for spill
reduction, would generate the code presented in Fig. 7(a), which has two
store instructions and two load instructions. As described in Ref. 4, the
interference region spilling heuristic would produce the code shown in
Fig. 7(b) that has only one load instruction and one store instruction. Our
method would give the optimal result that is shown in Fig. 7(c) (which
would actually be the code generated by using interference region splitting;
but remember that our method is not a live range splitting algorithm, it is
a spill reduction algorithm and thus can complement any register alloca-
tion algorithm already implemented).

Let us explain in short why our method produces the result in
Fig. 7(c): after doing the first spill reduction phase, we will end up with a
code very similar to the one produced by IR spilling (the last load would
be eliminated because the value of A already exists in r0; the last store will
be eliminated as it is dead code).

A Spill Code Minimization Technique 491

r0=input();

r1=r0+1;
if (r0){
 r1=r0;
 r0=r1+2;
 r1=r1+r0;
 if (r0){
 r1=r1+r0;
 r0=r1+r0;
 }
 r0=r1+r0;

}

r0=r0+r1;

r0=input(); r0=input();
Store r0;
r1=r0+1;
if (r0){
 Load r1;
 r0=r1+2;
 r1=r1+r0;
 if (r0){
 r1=r1+r0;
 r0=r1+r0;
 }
 r0=r1+r0;

}

r0=r0+r1;

Store r0;
r1=r0+1;
if (r0){
 Load r1;
 r0=r1+2;
 r1=r1+r0;
 if (r0){
 r1=r1+r0;
 r0=r1+r0;
 }
 r0=r1+r0;
 Store r0;
}
Load r0;
r0=r0+r1;

Fig. 7. Results of spill reduction using: (a) Chaitin’s spilling heuristic; (b) Bergner’s IR
spilling heuristic; (c) Our approach.

But as opposed to other spill reduction approaches, instead of spilling
directly to the stack, we are now trying to ‘color’ the virtual spill regis-
ter (eventually, if we find no color or no way to rematerialize its value, an
available stack slot will be assigned to this spill register). Looking at the
code, we see that at the point where we have the first load instruction, we
have the value already available in r0, so we can ‘reload’ the value directly
from r0. Thus, the first store will become redundant and be eliminated as
dead code.

Note that in this example that we are actually facing a special case of the
problem of rematerialization: we could have decided from the very first step
that it is possible to remove the first load instruction and replace it with a reg-
ister-to-register transfer. In this particular case, the results would be the same,
but in general, taking this decision in the first step would stretch the lifetime of
r0 before the ‘coloring’ step. In a different example, we may have preferred to
reload A from stack, and to use the r0 register as a spill location for another
(more important) variable.

3.5. Support for the Proposed Algorithm in a Production Compiler

In this section, we will talk about the improvements that can be made
(generally in other optimization steps) to achieve better results with this
spill elimination algorithm.

First—it is quite obvious that it would be best if the spill elimina-
tion algorithm had nothing to optimize—which means that in order to

492 Palanciuc and Badea

achieve good register allocation, it is very important to have a lifetime-sen-
sitive software pipelining algorithm (examples of such algorithms are Slack
Modulo Scheduling(8) and Swing Modulo Scheduling(9)—but depending
on the architecture, other algorithms may prove to be better). In addition,
if the register allocator follows an instruction-scheduling step—it is best
to have a bi-directional, lifetime-sensitive instruction scheduler as the first
instruction-scheduling step.

Another very important change that should be made in order to
achieve good register allocation is restriction graph splitting, which is actu-
ally a kind of ‘architecture-dependent live range splitting’. By this, we
mean that if the architecture has encoding constraints that force several
registers to be colored in a single step, the register allocator should build
a restriction graph and should check from that graph whether all registers
are colorable. If a register is determined to be uncolorable from the very
beginning, we should split its live range to avoid spilling it. For example,
assume the following code sequence5:

[
maxvd0, vd1
maxvd0, vd2
]

In this case, even assuming we have plenty of physical registers available,
we cannot assign physical registers to vd0, vd1, and vd2 (if we assign d0
to vd0 then both vd1 and vd2 must be d4 – but vd1 and vd2 cannot
share the same register—first because we would have two writes to a reg-
ister in the same cycle, and even assuming we would ungroup the instruc-
tions—if neither of them is dead code, then vd1 and vd2 have a conflict in
the conflict graph). Normally, we would have to spill one of the registers—
but a better solution is to split the live range of one register as follows, in
order to obtain two colorable restriction graphs instead of an uncolorable
one:

tf rvd0, temp

[
maxvd0, vd1
maxtemp, vd2
]

5 This example is SC100 assembly code. On StarCore, there is a restriction which forces
a distance of +4 between the indexes of the two registers that serve as operands to a
max instruction; also both operands must be from the same bank—i.e., it is disallowed
to have one operand in the interval d0–d7 and the other one in d8–d15.

A Spill Code Minimization Technique 493

Fig. 8. Transfer-use peephole.

Fig. 9. Two simple peephole optimizations for transfer instruction removal.

Note that efficiently splitting the conflict graphs in a way that enables
the registers to be colored, and by adding a minimal amount of transfer
instructions, is a problem by itself and not at all a trivial one. However,
we do not discuss this problem here.

If the register allocator has a mechanism for preferences, it is useful
to add preferences in such a way that all temporary registers that result
after spilling a virtual register will prefer the same color—thus enabling
the spill elimination algorithm to remove the useless load/store instruc-
tions without leaving register-to-register transfers behind. Note that even
if the register allocation algorithm has no mechanism for preferences, we
can still avoid useless transfers (but a little bit less efficient) using the fol-
lowing peephole optimizations:

• the peephole optimization in Fig. 8 increases parallelism and pro-
vides more opportunities for the following peephole optimizations

• the two peepholes in Fig. 9 are designed to remove the useless
transfer instructions

• finally, we may add the (somehow more sophisticated) peephole in
Fig. 10 that removes transfer instructions, at the same time increas-
ing parallelism.

Generally, the stack consumption is another important performance
parameter that is monitored especially in DSP applications. The presented
algorithm can be easily enriched with analysis and heuristic functions in

Fig. 10. A more complex peephole optimization for transfer instruction removal.

494 Palanciuc and Badea

order to reuse the stack locations assigned to spill registers in the second
phase. The analysis can be done using the spill registers conflict graph:
one spill register is replaced by a new stack location or by the stack loca-
tion assigned to another spill register that is not in conflict with it. The
main purpose of this optimization is to decrease stack consumption, but
probably on most architectures (including StarCore) it can also be used to
reduce code size because the encoding of stack slots with small offsets is
usually more efficient than the encoding of stack slots with large offsets.
Thus, if we choose to allocate small stack slot offsets to a register (stack
slot) that if frequently referenced, can gain a significant amount of code
size; we can gain even more code size if instead of individual registers we
consider groups of registers that can share the same stack slot. However,
care must be taken when sharing a stack slot if we do cycle-count opti-
mizations, because sharing a stack slot introduces additional dependencies
that may limit the amount of parallelism available to the compiler.

4. RESULTS

In this section, we present a set of results that prove the efficiency of
our spill reduction algorithm. These tests consist mainly of optimized and
un-optimized DSP code (which is our primary interest). However, good
results have been reported for control code, too.

We tested this optimization in the context of the Metrowerks C Com-
piler for StarCore, on a set of large applications as well as on several DSP
benchmarks. The applications are:

• G729—MDCR6 optimized C implementation for the ITU-T G.729
8 kbps speech vocoder

• EFR—Out-of-the-box implementation of the GSM Enhanced Full
Rate 12.2 kbps speech vocoder

• AMR—Out-of-the-box implementation of the 4750 ... 12200 bits/s
speech codec for Adaptive Multi-Rate speech traffic channels

• G723—Out-of the box implementation of the ITU-T G.723 dual-
rate speech codec

• G728—optimized implementation of G728 16 kbit/s speech coding,
specified in ITU-T recommendation G.728

• JPEG—image compression-decompression
• MP3—mp3 audio format decoder

We compare performance results with and without spill reduction.
One should note that the compiler’s default spill reduction strategy is

6 MDCR stands for Motorola DSP Center Romania.

A Spill Code Minimization Technique 495

Table I. Cycle-Count Improvement

Application Compiler Without spill With spill
name options reduction reduction Improvement(%)

G729 coder -O3 96,959 89,219 8.67
-O3 -Og 92,879 85,747 8.31

G729 decoder -O3 16,204 15,643 3.58
-O3 -Og 14,589 14,139 3.18

G723 codec -O3 755,715 744,407 1.50
-O3 -Og 734,775 732,896 0.26

EFR codec -O3 268,497 25,2668 5.90
-O3 -Og 203,786 19,6014 3.81

AMR coder -O3 334,468 316,249 5.45
-O3 -Og 257,597 252,051 2.15

G728 decoder -O3 363,707 357,481 1.71
-O3 -Og 330,470 323,661 2.06

G728 encoder -O3 3,274,962 3197,099 2.38
-O3 -Og 2,924,223 2,875,217 1.68

JPEG decoder -O3 2,892,110 2,782,148 3.80
-O3 -Og 2,885,510 2,777,489 3.74

JPEG encoder -O3 2,476,065 2,278,939 7.96
-O3 -Og 2,487,888 2,302,342 7.46

MP3 decoder -O3 64,564,031 55,936,948 13.36
-O3 -Og 64,747,121 55,979,876 13.54

Cor h -O3 3234 3234 0
Mb01 -O3 16,491 16,486 0
Mb02 -O3 2639 2639 0
Mb03 -O3 22,421 21,743 3.1
Norm corr -O3 5704 5704 0
Search 10i40 -O3 10,165 9643 5.41
Vq subvec -O3 781 578 26

activated by default, so ‘without spill reduction’ is actually not a spill-
everywhere strategy. The register allocation performs by default live range
splitting at tile boundary, and it also performs useless load/store removal
(similar in spirit with Chaitin’s heuristics described in Ref. 2).

Table I shows cycle-count improvement on some DSP applications
and unit-tests.

Notes:

• The results are in cycles on the Motorola StarCore�140 DSP core.
• Compilation options notations: -O3 for cycle-count optimization,

-Og for global optimization.
• The results for cycle-count performance do not include memory

contention cycles.

496 Palanciuc and Badea

Table II. Code Size Improvement

Application Compiler Without spill With spill
name options reduction reduction Improvement (%)

G729 coder -O3s 53,888 50,880 5.7
-O3s -Og 53,376 50,432 5.5

G729 decoder -O3s 45,376 40,144 11.5
-O3s -Og 40,624 39,888 1.8

G723 codec -O3s 29,440 28,160 4.35
-O3s -Og 27,332 25,504 6.35

EFR codec -O3s 24,256 22,800 6.0
-O3s -Og 22,592 21,312 5.67

AMR coder -O3s 62,112 58,784 5.36
-O3s -Og 59,856 56,416 5.75

G728 decoder -O3s 28,032 27,488 1.94
-O3s -Og 27,968 27,312 2.35

G728 encoder -O3s 27,488 26,912 2.10
-O3s -Og 27,760 26,784 3.52

JPEG decoder -O3s 66,688 65,008 2.52
-O3s -Og 66,384 64,784 2.41

JPEG encoder -O3s 57,440 56,560 1.53
-O3s -Og 57,136 56,224 1.60

MP3 decoder -O3s 82,896 72,896 12.06
-O3s -Og 82,640 72,576 12.18

Cor h -O3s 5008 5008 0
Mb01 -O3s 5728 5648 1.4
Mb02 -O3s 4742 4752 0
Mb03 -O3s 5888 5840 0.8
Norm corr -O3s 5312 5248 1.2
Search 10i40 -O3s 8000 7200 10
Vq subvec -O3s 4864 4848 0.3

• For some applications such as JPEG and MP3, a significant
amount of the presented cycle-count number is due to intensive file
I/O necessary for testing the applications.

• The performance increase is more significant on the encoders com-
pared with the decoders. This shows that the encoders are more
complex than the decoders, and have significantly higher register
pressure.

• Where we have 0% improvement, it is due to good register alloca-
tion (no spill)—no improvements could be done to it.

Table II shows code size improvement on some DSP applications and
unit-tests.

A Spill Code Minimization Technique 497

Notes:

• The results are in bytes and include only the code section measurements.
• Compilation options notations: -O3s for code-size optimization,

-Og for global optimization.
• The algorithm efficiency can be noticed especially on out-of-the box

code. Also, on G729 decoder one may notice that the spill reduction
seems less effective in global optimization, but in fact in this case
there is a much lower register pressure and hence less spill code to
be optimized-away.

5. CONCLUSIONS AND FUTURE WORK

While graph coloring is widely recognized as ‘the method’ for solving
register allocation problems, the problem of inserting spill code has not
yet seen a solution with such a wide acceptance. Several heuristics have
been developed in order to tackle this problem, and there are generally
two directions in attempting spill code reduction:

• live range splitting register allocators
• spill reduction heuristics.

Aggressive register allocators use both these approaches to try to min-
imize the spill code—and we have also taken this approach. We used
a hierarchical register allocation algorithm that splits the live ranges
and inserts spill code in cheaper points (considering the program’s con-
trol structure) combined with a Chaitin-style spill reduction heuristic.
However, this algorithm produced unsatisfactory results when dealing with
very large tiles that had high register pressure. We had the choice of
adding an intra-tile live range splitting algorithm or designing a better
spill reduction algorithm. In our first attempt, we tried to implement a
liverange splitting algorithm similar to the one described by Chow (see
Ref. 10) in the existing register allocation algorithm, which proved to be a
tough task since the two algorithms use radically different approaches. We
ended up implementing a live range splitting algorithm that was executed
before the actual coloring of the tile—actually, it was only a code transfor-
mation designed to reduce register pressure. Two different live range split-
ting heuristics were implemented:

• the first heuristic starts by choosing ‘split points’ as being points
where we have a relevant increase or decrease in register pressure,
then at each split point it splits those variables that have high/low
spill costs and a high usage pattern both before and after the split
point

498 Palanciuc and Badea

• the second approach starts by selecting the live ranges to split
(those with a low/high spill cost) and then decides how many times
and where to split the live range.

The results yielded by these algorithms were disappointing. Although
we had good (sometimes excellent) results on some test cases, on other test
cases we had significant performance decrease (going as high as 15–20%).

Note that our live range splitting heuristics do not fit well in a Briggs-
like register allocator (since they start from the ideas presented by Chow and
Hennessy,(10) which have a different coloring framework). Bergner’s interfer-
ence region splitting algorithm presented in Ref. 4 is a more natural comple-
mentary live range splitting solution for Briggs-like register allocators as well
as for our hierarchical register allocation algorithm. Still, we did not choose
to implement it as the results presented in his PhD thesis showed perfor-
mance decrease similar to that observed for our live range splitting approach.

The results of our efforts toward implementing a complementary live
range splitting algorithm (as well as the results presented by Bergner) led
us to the conclusion that (except for the particular cases of architecture-
specific restriction graph splitting algorithms described in Section 3.5) it is
generally sufficient to do live range splitting at tile boundary. In order to
further improve the results of hierarchical register allocation, we need to
have a good spill reduction heuristic—and the results obtained using the
solution presented here make us believe that this algorithm is a fairly good
solution for spill reduction. The great advantage of our approach is that
(as opposed to Bergner’s IR spilling/splitting) this approach always yields
better (or equal) performance when compared with that provided by the
supporting register allocator alone (in this paper, a spill reduction heuris-
tic similar in spirit with the one presented by Chaitin).

As future purposes, we plan to fully implement the spill reduction
algorithm in our hierarchical register allocator and to evaluate the benefits
of the full implementation. In addition, we want to experiment with new
heuristics for rematerialization and coloring. Besides, we intend to enrich
the stack slot reuse capability with good heuristics for code size reduc-
tion. It should also prove interesting to know what is the performance of
the spill reduction algorithm when used with a non-hierarchical register
allocator, and what other improvements it needs for becoming truly effi-
cient when combined with other register allocation algorithms.

REFERENCES

1. SC140 DSP Core Reference Manual, http://e-www.motorola.com/files/dsp/doc/ref man-
ual/MNSC140CORE.pdf.

A Spill Code Minimization Technique 499

2. G. J. Chaitin, Register Allocation and Spilling via Graph Coloring. SIGPLAN Notices,
Proc. ACM SIGPLAN 1982 Symposium on Compiler Construction, 17(6), pp. 98–105
(June 1982).

3. D. Bernstein, D. Q. Goldin, M. C. Golumbic, H. Krawczyk, Y. Mansour, I. Nahs-
hon, and R. Y. Pinter, Spill Code Minimization Techniques for Optimizing Compilers.
SIGPLAN Notices, Proc. ACM SIGPLAN 1989 Conference on Programming Language
Design and Implementation, 24(7), pp. 258–263 (July 1989).

4. P. E. Bergner, Spill Code Minimization Techniques for Graph Coloring Register Allo-
cators. PhD thesis, University of Minnesota (1997).

5. D. Callahan, B. Koblenz, Register Allocation via Hierarchical Graph Coloring. Proc.
ACM SIGPLAN 1991 Conference on Programming Language Design and Implementa-
tion, Toronto, Ontario, Canada (June 26–28, 1991).

6. C. Click and K. D. Cooper, Combining Analyses, Combining Optimizations. ACM
Transactions on Programming Languages and Systems, 17(2):181–196 (1995).

7. S. Muchnick, Advanced Compiler Design and Implementation, Morgan Kauufmann
Publishers (1997).

8. R. A. Huff, Lifetime-Sensitive Modulo Scheduling, SIGPLAN Conference on Program-
ming Language Design and Implementation (1993).

9. J. Llosa, A. Gonzalez, E. Ayguade, and M. Valero, Swing Modulo Scheduling: A Life-
time Sensitive Approach, International Conference on Parallel Architectures and Compi-
lation Techniques (October 1996).

10. F. W. Chow and J. L. Hennesy, The Priority-Based Coloring Approach to Register
Allocation, ACM Trans. Program. Languages Syst., 12(4):501–536 (October 1990).

