International Journal of Parallel Programming, Vol. 32, No. 4, August 2004 (© 2004)

A Framework for Incremental
Extensible Compiler Construction

Steven Carroll"® and Constantine Polychronopoulos?

Received December 9, 2003, revised January 13, 2004, accepted March 15, 2004

Extensibility in complex compiler systems goes well beyond modularity of
design and it needs to be considered from the early stages of the design,
especially the design of the Intermediate Representation. One of the primary
barriers to compiler pass extensibility and modularity is interference between
passes caused by transformations that invalidate existing analysis information.
In this paper, we also present a callback system which is provided to auto-
matically track changes to the compiler’s internal representation (IR) allowing
full pass reordering and an easy-to-use interface for developing lazy update
incremental analysis passes. We present a new algorithm for incremental in-
terprocedural data flow analysis and demonstrate the benefits of our design
framework and our prototype compiler system. It is shown that compilation
time for multiple data flow analysis algorithms can be cut in half by incre-
mentally updating data flow analysis.

KEY WORDS: Compiler construction; incremental compilation.

1. INTRODUCTION

Compiler design concerns both the effectiveness of the analysis and code
optimization methods as well as the efficiency of the compilation process
itself. The latter has been the subject of research (along with compiler
optimization algorithms) primarily with respect to the complexity of indi-
vidual analysis or optimization algorithms. However, a global approach to

I Microsoft Corporation, 1 Microsoft Way, Redmond, WA 98052, USA. E-mail: scarroll@
microsoft.com.

2 Center for Supercomputing Research and Development, University of Illinois, 1308 W.
Main, Urbana-Champaign IL 61801, USA. E-mail: cdp@csrd.uiuc.edu

3To whom correspondence should be addressed.

289

0885-7458/04/0800-0289/0 © 2004 Plenum Publishing Corporation

290 Carroll and Polychronopoulos

compiler efficiency that considers the entire ensemble of analysis and opti-
mization passes is a considerably more complex subject that has attracted
much less attention by the research community.

The complexity of compiler systems, especially those that include pro-
gram restructuring and code optimization for microarchitectures that sup-
port instruction level parallelism (ILP), is such that their development
time and, correspondingly, their life-cycle far outlast the life-cycle of pro-
cessors and computer systems. Typical production compilers represent, at
a minimum, tens of man-years of development effort. It is typical to
expect a plethora of enhancements to a commercial compiler, including
new optimizations, revisions of existing modules, extensions to the internal
representation (IR), interfacing with DLLs and multithreading libraries,
extensions that are necessary to facilitate porting to various architectures,
etc. Leveraging powerful restructuring (and optimizing) compilers across
processor and system generations is the norm and the large life-cycle
of a compiler almost guarantees that the original developers are never
those performing the majority of modifications, extensions and mainte-
nance. Arguably the most commonly used and extended compiler is gcc,
which has been modified and ported to a variety of systems since 1987
(or presently 16 years).(l) The result of the various modifications and
re-adaptations of a typical compiler over the years is, more often than not,
patchwork code that reuses old modules in new contexts and adapts old
compilers to work with new language idioms and machine architectures.

In this paper, we present a compiler design framework that facilitates
three main goals: (1) extensibility, (2) compilation efficiency, and (3) code
optimization. We present our design approach and show that designing
for extensibility also improves code optimization and dramatically reduces
compilation time.

Our extensible compiler prototype is PROMIS® which is a multilin-
gual parallelizing compilation system targeting a host of RISC and CISC
architectures, including MIPS and x86 ISAs. One of the goals of the
PROMIS project is to develop a compiler framework that allows compiler
researchers to develop new analyses and transformations for new architec-
tures without deep knowledge of the underlying IR, data flow and com-
mon optimization passes. A library of common passes is provided that
the compiler developer can deploy in any order without any chance of
interference from new passes.* In this paper, we present an overview of
our design methodology, describe the implementation of specific analy-
ses and optimization passes that take advantage of the extensibility fea-
tures, and discuss experiments that clearly demonstrate the advantages of

4The PROMIS source code can be downloaded at http://promis.csrd.uiuc.edu/.

A Framework for Incremental Extensible Compiler Construction 291

the proposed design framework. Eventhough many of the advantages and
benefits are of a qualitative nature, our experiments provide strong quan-
titative evidence about the benefits of our framework with respect to dra-
matic reduction in compilation time.

In Section 2, we will present background on incremental analysis and
the PROMIS IR. Next, in Section 3, we present the architecture of the
callback mechanism and the API for simplifying incremental algorithm
design. In Section 4, we describe our implementation of a self-maintain-
ing data flow analysis. In Section 5, we present quantitative evaluations of
the benefits of this technique in terms of compile time improvement and
ease of implementation. Finally, we present related work, future work, and
conclusions.

2. BACKGROUND AND OVERVIEW

Throughout the paper we use the terms pass, transformations, opti-
mization, and module interchangeably to indicate an implementation of
an analysis or optimization pass. In the case of our prototype compiler,
PROMIS, a pass can be any module that involves a total or partial walk
through the IR and results in either transforming the IR or gathering data
or control flow (CF) information about the target program.

We consider passes to be of one of two categories: analysis passes
or transformation/optimization passes. Many traditional compiler mod-
ules can be broken into an analysis pass and a transformation pass. For
instance, the common subexpression elimination (CSE) pass first calculates
which subexpressions are available at each point in the program. That part
of the original pass is called the available expression analysis pass. Next,
the CSE transformation pass uses the available expression analysis infor-
mation to replace the common subexpressions with copies.

Frequently, analysis information is used multiple times throughout a
complete compilation. For instance, CSE creates new copies that can be
copy propagated, which in turn creates more opportunities for CSE. How-
ever, any transformation pass that runs in-between the initial calculation
of the analysis information and a reuse of that analysis information, can
potentially modify the program, thereby invalidating the analysis. If this
occurs, it would be necessary to recalculate the analysis information or
modify the transformation to maintain the analysis information. Since it
would be impossible for the designers of the libraries in PROMIS to pre-
dict all possible orderings and new passes that could be added to the sys-
tem, it would be necessary for the user’s configuration of PROMIS to
either recalculate needed analysis every time a transformation pass occurs
or modify the library code to maintain the information. The former is

292 Carroll and Polychronopoulos

inefficient and the latter requires the compiler writer to modify unfamiliar
code.

The Extensible Compiler Interface (ECI) feature of PROMIS attempts
to address these problems. It provides an API that allows passes to track
the changes in the IR transparently and independently from the transfor-
mation passes using a callback mechanism. Analysis passes can update the
state of their analysis information using the changes recorded by the call
backs and incremental algorithms. Incremental algorithms are algorithms
where the state can be updated to reflect changes in the input. Order of
magnitude improvements in compile time have been observed® through
incremental compilation. In this paper, we present a novel organization for
a compiler that significantly improves the modularity and extensibility of a
compiler. In addition, the ECI framework provides novel support to ease
the job of designing incremental algorithms, which have been notoriously
difficult to implement and maintain.

2.1. PROMIS IR

The basics of the PROMIS IR are presented here to the extent nec-
essary to understand the algorithms below. The PROMIS IR is based on
a modified Hierarchical Task Graph (HTG).®®) The details of the IR can
be found at the PROMIS web site.® The HTG has two kinds of nodes,
Statement nodes and Compound nodes. Statement nodes are the simple
statements that make up the program like Call statements, Assignment
statements, Pointer statements and Branch statements. Compound nodes
are nodes that contain other nodes. For instance, Loop nodes contain
subnodes that represent the body of that loop. Each Loop node has an
implicit back edge that connects the end of the body with its beginning.
Hierarchical basic blocks are similar to basic blocks in that they contain
consecutive nodes without branches. However, the consecutive nodes can
be compound nodes that contain branches within them. Figure 1 depicts
an HTG. The outermost rectangle is the function block, which is the
“root” of the HTG. Ovals represent the loop nodes.

The HTG’s nodes are connected by two kinds of arcs: control flow
(CF) arcs and data dependence (DD) arcs. The CF arcs are always present
and the DD arcs can be constructed if desired. The HTG nodes and the
two types of arcs form the Core IR. All transformation passes are required
to maintain the Core IR structures.

In order to improve the extensibility of the PROMIS compiler, sev-
eral mechanisms are provided for adding new instructions, types, expres-
sions and analysis information. For this paper, we will focus on how to
add new analysis information to the IR. New analysis information called

A Framework for Incremental Extensible Compiler Construction 293

Function block

—
Loop Node <>

,..,..v..'-v-.Branch node

Statémé vasic blocks

Fig. 1. Hierarchical task graph example.

External Data Structures (EDSs) can be attached to any data structure
in the IR. For example, data flow information can be attached to each
statement node. An EDS attached to a variable can describe whether that
variable is privatizable. They are equivalent to annotations in the SUIF
compiler.®®

3. ARCHITECTURE

There are two layers to the ECI architecture in PROMIS. The lowest
level consists of the callbacks that are invoked on each modification to the
IR. This level provides maximum flexibility to developers of new passes. In
addition, there is an API built on top of the raw callback level that pro-
vides commonly needed functionality for incremental analysis described in
Sections 3.2 and 3.3. It improves ease-of-use at the cost of some generality.

3.1. Callbacks

Callback functions can be registered for a number of different events
in the IR. When an event occurs, all callbacks registered for that event
are invoked with all relevant parameters. For instance, when a new CF
arc is added, the “add Control Flow Arc” callbacks are invoked with the
new CF arc as a parameter. Since all modifications to the IR go through
a protected API, all transformations to the IR will transparently trigger
the appropriate callbacks.

294 Carroll and Polychronopoulos

The minimum set of callbacks necessary to track changes to a pro-
gram in the PROMIS IR is node addition and removal, and CF arc addi-
tion and removal. The node addition and removal callbacks track not only
when new nodes are added or existing nodes are removed, but also when
existing nodes are modified. For instance, if a statement node contains the
expression x = 3 4 3 and it is transformed into x = 6 by constant fold-
ing, this modification triggers one node removal and one node addition
callback. Correctness is assured because any change to an existing node
is equivalent to the removal of that node and the addition of a new node
with the new expression.

However, tracking node addition and deletion is not sufficient to
track all meaningful changes to a program. In order to track so-called
structural changes, the control flow arcs must also be tracked. A struc-
tural change is any change to the IR that can potentially change basic
block boundaries or the program ordering of those basic blocks. Remov-
ing a branch with a constant branch condition would be one example of
a transformation that structurally modifies a program, as would function
inlining. The addition or removal of call statements is another example
(although these do not require CF arc tracking to detect).

The callbacks presented so far are sufficient to track any change in
the program, but a larger set of callbacks is provided to make incremen-
tal analysis more convenient and efficient. For instance, any new variables
added to the IR can be detected by examining new nodes and modifi-
cations of nodes, but we also provide a callback for variable creation to
make those events easier to track.

3.2. Event Queues

The callbacks are sufficient to maintain any type of analysis since
they can track any change to the IR, but there is a lot of overlap in
needed functionality for good incremental algorithms. For instance, it is
always best to postpone updating the analysis information until that infor-
mation is actually queried. This lazy update scheme ensures that valu-
able compilation time is not wasted updating analysis that will never be
used. In this subsection, we present the various APIs that are provided
to the compiler developer for managing the changes to the IR. Each of
these interfaces is implemented as a set of pre-written callbacks that can
be registered for a new analysis pass. When the developer instantiates one
of these structures, the callbacks are automatically registered, presenting a
simple interface to access change information.

The simplest interface is a dirty flag. The dirty flag is set if any
of a list of provided modification types occur (i.e., CF arcs, nodes, or

A Framework for Incremental Extensible Compiler Construction 295

combinations). This interface is useful if the developer of the new pass is
interested in whether or not the IR has been modified, but is not inter-
ested in how it was modified. A first step for a new analysis might be to
simply use the dirty flag to determine if the IR has changed since the ini-
tial calculation and then recalculate if necessary.

However, if a compiler developer wants to develop an incremen-
tal analysis pass, one available interface is the Event Queue. An Event
Queue is simply a list of recorded modifications to the IR in the order
in which they occurred. An event in our system is a triple of the form
{rypE,AcTION,ID}. TYPE identifies what type of IR structure has been mod-
ified (i.e., CF arc, node, etc). action is either an add or a remove. b is a
unique identifier that indicates which instance of the type was modified.
The event data structure in PROMIS also stores a pointer to the actual
instance referred to by the i, although they must be treated with care (as
shown below). Events of the arc Type also store a pointer to the sink and
source of the arc.

Event Queues provide a number of extra features. First, event prun-
ing is available to remove redundant and intermediate events. For exam-
ple, if a node is created by one transformation and then eliminated by
another between initial calculation and update, that node’s events can be
safely ignored. The pruning functions will remove these events from the
queue. Pruning solves the memory de-allocation problem as well. If a node
has been removed permanently, it is likely that its memory has also been
de-allocated and is, therefore, invalid. If the last event in a queue for a
given ID was a remove event, all events with that /D are marked to signal
that the instance is no longer available (and the pointer to it is invalid).
The pruning function also labels all source and sink nodes of an arc as
removed if the chronologically last event modifying those nodes was a
remove. One example of the use of these labels is that a CF arc whose sink
node was eventually deleted can be ignored in forward data flow problems
because data cannot flow to a node that no longer exists.

3.3. Hierarchical Event Queues

Hierarchical Event Queues (HEQs) are an enhancement to event
queues that also store the location in the IR where the modifications have
occurred. In HEQs, the event queue is distributed throughout the hierar-
chical structure of the IR. Each compound node in the IR (i.e., loops,
blocks) begins with an empty sub-queue. When an event occurs, the event
is placed in the sub-queue of the parent compound node where the event
occurred. The sub-queue is stored as an EDS attached to the compound
node. For instance, if a node is removed, the event for that removal is

296 Carroll and Polychronopoulos

Hierarchical Hierarchical
Task Graph Event Queue

Fig. 2. Hierarchical event queue example.

stored in the sub-queue of the original parent node of the removed node.
For events of Arc type, a copy of the event is placed in the parent of
the arc’s sink and source node. When a compound node is deleted, all
the events in that compound node are promoted to the parent node’s sub-
queue, so that no location information is lost.

An example of an HEQ can be seen in Fig. 2 Several new nodes
(shaded and numbered) have been added to the IR since the HEQ began
tracking. An event corresponding to each addition is stored in the parent
node of each new node, which is the rectangle immediately surrounding it.
When the HEQ is accessed a tree is constructed from the compound nodes
with non-empty sub-queues up to the root node (the outermost function
block). Each compound node can be queried for changes within it. For
instance, if queried, the loop node labelled “Node A” will return the four
events contained within it. This is useful for demand driven updates since
many parallelization analyses are only interested in modifications within
loops.

4. APPLICATION: DATA FLOW ANALYSIS

In this section, we give an overview of the data flow algorithms that
were developed to showcase the power of the ECI system for extensibility.
Several data flow analyses have been implemented in our data flow frame-
work including available constants and copies, and available expressions.
Both intraprocedural and interprocedural calculations were implemented.

A Framework for Incremental Extensible Compiler Construction 297

4.1. Initial Calculation

We chose a structural elimination based approach to data flow cal-
culation for our implementation to take advantage of the loop proper-
ties of the HTG. HTG construction restructures highly irregular loops
as described in Ref. 6. Our approach is an extension of the structured
approach to data flow presented in Ref. 7. First, gen and kill sets are cal-
culated. The gen set enumerates the expressions, constants or copies which
are generated (defined) by a statement or block. The kill set describes
which of these are killed (re-written) by the statement or within the block.
The gen and kill sets are calculated from the bottom statement levels of
the HTG up to the root of the HTG. The in and out sets, on the other
hand, are calculated from the root of the HTG down to the statement
level.

Figures 3 and 4 give the equations for available copies which are
straightforward applications of the standard data flow equations. One
technique for applying our technique in a more traditional IR based on
a pure CFG would be to extend the handling of loops in the call graph
presented below to irregular loops.

To extend our implementation to work interprocedurally, we first sort
the call graph into strongly connected components (SCCs). Then, the
SCCs are topologically sorted. The calculation is again split into two
phases: a bottom-up gen—kill calculation and a top-down in—out calcula-
tion. The first phase proceeds in reverse topological order of SCCs from
the functions with no call statements up to the main function. This order-
ing assures that the gen and kill set of all called functions (out of the
SCC) will already be evaluated.

O
RED
O

gen[S]={d} gen [S]= gen [S2]1U (gen [S1]— kill [S2])
kill[S]1=Da—{d} kill [S]=kill [S2]V (kill [S1]— gen [S2])
out[S]= gen[S1U (in[S]1-kill[S]) in[S1]=in[S]
in[S2]= out [S1]
out[S]=out[S2]
(a) (b)

Fig. 3. Data flow equations (I).

298 Carroll and Polychronopoulos

EV\
T

o : ©
gen[S]= gen[S1]U gen[S2] | gen[S]= gen[Loopl]
kill[S]= kill[S2]1 N kill[S2] kill[S]= kill[Loopl]
in[S1]=in[S] | in[Loopl]=in[S]U gen[Loopl]
in[§2]=in[S] | out[S] = out[Loopl]
out[S]=out[S11Uout[S2] |
(a) (b)

Fig. 4. Data flow equations (II).

The calculation of gen and kill for each function is similar to the
intra-procedural calculation except for call statements. When a call state-
ment is evaluated, the gen and kill sets are equal to the gen and kill sets
of the topmost node after they are masked to eliminate all the bits that
represent expression/copies that cannot be propagated between procedures.
For instance, copies of local variables cannot be propagated. We call the
masked versions of the topmost (root) node’s gen and kill sets the “func-
tion gen and kill sets.”

An SCC in the call graph with more than one function signifies recur-
sion. We use an iterative approach to determine the solution for each func-
tion in the SCC in these cases. An initial solution to the gen and kill sets is
determined by evaluating the functions intra-procedurally once with empty
gen and kill sets for the call statements to functions within the same SCC.
In a recursion cycle, it can be assumed that each function is called, so
the final estimate of the kill set for the intra-SCC call statements is the
union of the kill sets from the initial calculations. The gen and kill sets are
updated with the new estimates and the functions are re-evaluated until
the estimates are stable.

After all gen and kill sets are calculated, the in and out sets are
calculated in the forward topological order of SCCs (from the main func-
tion down to the functions with no call statements). The input to the main
function is empty, but the input set to all other functions is the intersec-
tion of the in sets to the call statements to that function. The intersec-
tion of those in sets is then masked to eliminate non-IP propagatable bits.
Like the gen and kill calculations, for SCCs with multiple functions (recur-
sion), the calculation starts with a conservative estimate and is iterated to
improve that estimate. In this case, the initial estimate is an empty in set.

A Framework for Incremental Extensible Compiler Construction 299

4.2. Update Phase

Pseudocode for the update algorithm is presented in Figs. 5 and 6,
but an overview is presented here. Our incremental update algorithm uses
a HEQ for lazy updates. The HEQ is set to track control flow arcs and
nodes. When the analysis information is accessed, the HEQ is pruned
and each remaining event is processed. This implementation propagates all
changes in a single batch for signi ficant performance gains over evaluat-
ing each change individually. For instance, two changes in a single basic
block will likely propagate their effect to many of the same nodes. If the
effects of two changes propagate together, each affected node will only be
re-evaluated once. The algorithm has three phases. In the first phase, the
nodes that have been potentially modified are determined from the HEQ.
In the second phase, the effects of these changes on the gen and kill sets
and finally, the in and out sets are updated.

A node stack is used to hold all modified nodes. It has a stack for
each level of the HTG up to the maximum depth of the HTG. When a
node is pushed on the node stack it is put at the level equivalent to its
depth in the HTG. Node stacks are useful because the top-down and bot-
tom-up nature of the computation means that all nodes must be processed
level by level.

There are two node stacks for each function, a gen—kill stack and an
in stack. The gen—kill stack contains all nodes that need to have their gen
and kill sets re-evaluated. The in stack contains the nodes whose inputs
have changed. Events in the HEQ are processed as follows.

Node Add events add to the gen—kill stack. If node is a new copy or
expression, add all the nodes that can kill that node to the gen—kill stack.

Node Remove events no action; handled by CF arc.

CF Arc Attach events add the sink node to the gen—kill stack.

CF Arc Remove events the sink node and the sink node’s parent
must be re-evaluated; add the sink node where the event is stored in the
HEQ to the gen—kill stack. If the sink was not removed, add it to the in
stack.

The second phase begins by starting at the deepest level of the
gen—kill stack and re-evaluating the gen and kill set for each node at that
level. If and only if the new gen and kill have changed, the parent com-
pound node is pushed on the node stack at the next higher stack level and
the node is pushed on the in stack. This process continues upwards until
the node stack is empty or the root node is reached.

The events in the in stack are processed from the top level down.
Each node is re-evaluated and the input changes propagate forward at that
level. If and only if a node is a compound node and its in set changes, the

300 Carroll and Polychronopoulos

void
Updatelnterprocedural (HierEventQueueMap hegs) {
hegs.PruneAll () ; // prune all the HEQs to remove redundant and dead events
if (IsCallGraphDirty (hegs)) {
sccs = CalcSCCs () // calculates the SCCs are sorts them in topological order
}
// Phase 1: Find Affected Nodes, Build Node Stacks
NodeListFunctionMap modified_nodes; / / nodes that have been added or modified
NodeListFunctionMap removed_nodes; // parent nodes with removed children

foreach HierEventQueue heqg in hegs {
// find all effected nodes from the HEQ, divide into modified and affected lists
AffectedNodes (heqg, modified _nodes|[func], removed_nodes[func]);

}

NodeStackMap genkill_ns_map;

NodeStackMap rem_ns_map;

genkill_ns_map = ConvertToNodeStack (modified nodes) ;

rem_ns_map = ConvertToNodeStack (removed_nodes) ;

// Phase 2: Update Gen and Kill sets
foreach SCC scc in sccs (reverse topological order) {
if (scc.size > 1) {

// this scc has multiple functions, requires iteration

DataFlowSet scc_kill;

scc_kill = NULL;

foreach Function f in scc {
UpdateGenKill (f,genkill_ns_map,rem _ns_map) ;

}

scc_kill = CalcSCCKill (scc);

bool changes = true;

while (changes) {
genkill_ns_map.AddIntraSCCCalls (scc);
UpdateGenKill (£, genkill_ns_map, rem_ns_map,scc_kill) ;
DataFlowSet new_scc_kill = CalcSCCKill (scc);
changes = (new_scc_kill == scc_kill); // iterate until scc_kill stabilizes
if (changes) {scc_kill = new_scc_kill};

}

} else {
// asingle function scc
UpdateGenKill (f, genkill_ns_map, rem_ns_map) ;

// Phase 3: Update In and Out sets
foreach SCC scc in sccs (topological order) {
if (scc.size > 1) {
bool changes = true;
// getalist of all the call statements with targets in this scc
CallStatementList intra_scc_calls = IntraSCCCalls(scc);
CallstmtInDFMap cs_in_map;
foreach Call ¢ in intra_scc_calls {
cs_in_map[c] = c.GetInDFSet();
}
while (changes) { // iterate until stable
foreach Function f in scc {
UpdateInOut (£, rem _ns_map) ;
}

changes = CheckInSetForChanges (cs_in_map); // resetthe map and check for changes
}
} else {
UpdateInOut (f, rem_ns_map); // update in/out sets

}

Fig. 5. Update interprocedural algorithm.

A Framework for Incremental Extensible Compiler Construction 301

void
UpdateInOut (Function func, NodeStackMap ns_map) {
NodeStack ns = ns_map| func];

for level (0 to ns.DeepestLevel()) { // toplevelto bottom level
foreach Node node in level { // each affected node at this level
Node parent = GetParent (node

foreach Node node in parent.Subnodes (in topological order) {
if (level.IsElement (node)) {
Ievel.RemoveNode (node) ;
bool changed = RecalcInOut (node) ;
if (changed) {
// add the successors of this node to stack for recalc
ns.AddNodes (node. Successors (), level) ;
if (node.IsCompoundNode()) {
// add the first child of this compound node for recalc
ns.AddNode (node.FirstSubNode (), level+l) ;
}
if ((interprocedual) && isCallStmt (node)) {
// if this is a call stmt, push the top node of the called functions on their node stack
foreach Function called_f of node.CallTargetFunctions() {
ns_maplcalled_f] .Add(TopNode (called_£f),0);
}

}

void
UpdateGenKill (Function func, NodeStackMap genkill_ns_map,
NodeStackMap inout_ns_map) {
NodeStack genkill_ns = genkill_ns_mapl[func];
NodeStack inout_ns = inout_ns_map|func];
for level (genkill_ns.DeepestLevel() to 0) { // bottom level to top level
foreach Node node in level {
Node parent = GetParent (node) ;
bool changed = RecalcGenKill (parent) ;
if (changed) {
// add the parent to the gen-kill node stack for re-calc
genkill_ns.AddNode (parent, level-1) ;
// add this node to the in-out node stack for re-calc
inout_ns.AddNode (node, level) ;

Fig. 6. Update interprocedural algorithm (cont.).

in set of the child node is set to the new in set of its parent and the node
is pushed onto the next lower level of the in set.

In the interprocedural case, the SCC ordering is used to determine
ordering in which functions are re-evaluated. A change to a function root
node’s gen or kill set is reflected by pushing all call statements to that
function on the gen—kill stack that corresponds to the call statement’s
function. Changes to the in set of a call statement result in the function’s
root node being pushed on to the in stack. Reiteration of the functions
within the SCC is performed in the case of recursion until a stable solu-
tion is determined.

302 Carroll and Polychronopoulos

5. RESULTS

Three key objectives of our design approach are to allow passes to be
reordered, to allow new passes to be added without invalidating existing
analyses, and to facilitate the development of incremental analyses. In this
section, the compile time improvement of incremental algorithms and ease
of implementation of incremental analyses are quantitatively evaluated.

5.1. Compile Time

We apply common transformations to several known benchmark
codes in order to quantify the compilation time benefits of our approach.
Previous quantitative evaluations of incremental algorithms have been
based on random call graphs and random modifications.®> While those
results are interesting, we believe it is more important to determine the
actual reduction in compilation time in realistic situations for standard
benchmarks. The SPEC95 benchmarks were used for our experiments.

The PROMIS compiler was built using Microsoft Visual Studio ver-
sion 6. It was executed in a Windows XP environment on a dual proces-
sor system with 2.66 GHz Xeon processors with hyperthreading enabled.
The test system has 1.5 GB of RAM. A high resolution timer library
was implemented that uses the processor hardware counters. The PROMIS
pass console automatically uses these timers to determine the amount of
compile time passed between the start and completion of each compiler
pass.

The compile time overhead of executing the callbacks to push events
on to the queue was measured by comparing the runtime of the trans-
formation for CSE with and without the callbacks turned on. Callbacks
were turned off using a dynamic flag. The overhead never exceeded 2%
and was usually too small to be measurable. This was the expected result,
since HEQ callback functions were designed to be O(1) for node attach
and detach operations.

Figures 7 and 8 depict the speedup of incremental update versus.
recalculation for intraprocedural available copy analysis. The initial calcu-
lation of intraprocedural available copy analysis is performed. Next, the
copy propagation transformation is invoked, changing a certain number
of nodes. The number of nodes changed is equivalent to the number of
copies propagated because each propagation changes a single node. Then,
the available copy information is incrementally updated or cleaned and
re-evaluated. Speedup is calculated as the time to recalculate divided by
the time to update incrementally. The time to recalculate is the timer read-
ing for a second calculation of the available copies initial calculation after

A Framework for Incremental Extensible Compiler Construction 303

Incremental vs Recalculation - Available Copies (small)
Intraprocedural

10000

1000 b\’\

—*—su2cor
—e—hydro2d
100 1 marid
swim
—=—compress
——tomcatv
10 A

1 T T T
10 100 1000 10000

number of changes

7

speedup

-y

Fig. 7. Intraprocedural speedup — available copies

Incremental vs Recalculation - Available Copies (large)
Intraprocedural

100000

10000 \
4&\ —=—apsi
1000 P ——applu
—x—m88ksim
waveb
100 \&\ fpppp
——|i

10 \\%\\x

speedup

1 10 100 1000 10000
number of changes

Fig. 8. Intraprocedural speedup — available copies.

the original data has been cleaned from the IR. The cleaning time was not
included in the speedup. The time to update is defined as the timer reading
for the data flow update pass, which processes the HEQ and then updates
the gen, kill, in, and out sets.

304 Carroll and Polychronopoulos

The x axis depicts the number of changes, which is equivalent to
the number of nodes changed by the copy propagation pass. The y axis
is speedup as defined above. Each line in the graph represents a differ-
ent input benchmark from SPEC95. The data is broken up between large
benchmarks and smaller benchmarks so that the trend for small bench-
mark could be seen more clearly. A log-log graph was used because the
speedup for a small number of changes is orders of magnitude larger than
the speedup for larger numbers of changes.

As can be seen, it is always faster to incrementally update the avail-
able copy information after copy propagation rather than recalculate. It
is an order of magnitude faster to update for small numbers of changes.
Note that each benchmark’s data ends when there are no further copies
to propagate. It is also important to note that the code generated for the
incremental version and recalculation code were compared to confirm the
precision of our approach. The emitted code was identical for each bench-
mark as verified by the different application, which compares each line of
the two versions and reports whether or not they are identical.

Figures 9 and 10 depicts the same speedup comparison for interproce-
dural analysis. Changes in the interprocedural analysis can propagate fur-
ther than the intraprocedural case because, for example, a new copy that
is generated in the main function can be available in each function called
from main. Therefore, the speedup curves drop off faster than in intrapro-
cedural analysis. However, even in the interprocedural case, thousands of
changes can be tolerated.

The speedup graphs for intraprocedural and interprocedural incre-
mental available expression analysis are presented in Figs. 11-14. The
shapes of the curves are largely similar to the available copies analysis with
up to a thousand changes being quicker to incrementally update instead of
recalculating. One interesting data point in Fig. 14 is the crossover point
where recalculation becomes faster than update. This point is reached in
two large benchmarks, /i and m88ksim. It is, therefore, determined that
for large benchmarks in the sample used here, the maximum number of
changes that should be updated instead of recalculated is approximately
1000 changes.

An optimization driver pass was written to repeatedly execute the
constant folding (CF), constant/copy propagation (CP), and CSE passes.
In the first half of this pass, CF and CP are run repeatedly until no fur-
ther changes are possible. In the second half, CSE and CP are run repeat-
edly until no further changes occur. The driver has two modes: recalculate
and wupdate. In recalculation mode, the data flow information is cleaned
and recalculated after each pass that made changes to the IR. In update
mode, the data flow analysis is incrementally updated. Speedup results are

A Framework for Incremental Extensible Compiler Construction 305

Incremental vs Recalculation - Available Copies (small)

Interprocedural
10000
1000 RN
—*—su2cor
é- —-— hydro2d
e 100 mgrld
o swim
@ —+—tomcatv
—=- compress
10 4
1 T T T
1 10 100 1000 10000
number of changes
Fig. 9. Interprocedural speedup — available copies.
Incremental vs Recalculation - Available Copies (large)
Interprocedural
——applu
g. —=—apsi
g —*—m88ksim
g_ waveb
* foppp
——1i
1 T T T
1 10 100 1000 10000

number of changes

Fig. 10. Interprocedural speedup — available copies.

presented in Table 1. Note that ipupdate and iprecalc represent the anal-
ysis time using interprocedural analysis. On average, incremental analysis
was about twice as fast as recalculation.

Carroll and Polychronopoulos

306
Incremental vs Recalculation - Available Expressions (small)
Intraprocedural
100000
10000
—*—su2cor
2 1000] ——hydro2d
3] mgrid
2 I ——tomcatv
» 100 4 \\ swim
—=— compress
10
1 ‘ ‘ ‘
1 10 100 1000 10000
number of changes
Fig. 11. Intraprocedural speedup — available expressions.
Incremental vs Recalculation - Available Expressions (large)
Intraprocedural
1000000
100000
10000 1 fpppp
= —=—apsi
B 000 T —-applu
g x wave5
@ N —m88ksim
100 —— i
10 4
1 ‘ ‘

10 100 1000 10000
number of changes

-

Fig. 12. Intraprocedural speedup — available expressions.

A graphical comparison of the compile time for the two modes in
intra procedural and inter procedural data flow drivers can be found in
Figs. 15-17. In these graphs, the x axis is now the benchmark. Each
benchmark has four bars representing the total analysis computation time

A Framework for Incremental Extensible Compiler Construction 307

Incremental vs Recalculation - Available Expressions (small)

Interprocedural
100000
10000
—e— hydro2d
g. 1000 —*-su2cor
o I~ —— tomcatv
& mgrid
7] 100 - swim
‘\\\ —®—compress
10 =<
\\\:\—" \\\
1 T
1 10 100 1000 10000
number of changes
Interprocedural speedup — available expressions.
Incremental vs Recalculation - Available Expressions (large)
Interprocedural
100000
10000 -
1000 F~ ——applu
_g- fpppp
@ 100 A ~l
o wave5
7] —=—apsi
10 100 1000 10000
0.1

number of changes

Interprocedural speedup — available expressions.

for recalculation mode and update mode for both the standard intraproce-
dural mode and the interprocedural mode. The pass timing data for each
benchmark was generated by the timers, and the sum of execution time
spent in passes related to analysis (either calculation, update, or cleaning
of the data flow analyses during the driver) was calculated. The y axis is

308 Carroll and Polychronopoulos

Table I. Total Analysis Speedup for Optimizations

Units Secs Secs Secs Secs
Benchmarks Update Recalc Speedup Ipupdate Iprecalc Ipspeedup

Tomcatv 0.892078 1.743996 1.95 0.99307 1.951276 1.96
Compress 0.290018 0.833402 2.87 0.600084 1.525409 2.54
Swim 1.654695 3.419882 2.07 2.316679 4.510543 1.95
Mgrid 2.155619 4.795379 222 5.171289 8.680112 1.68
Hydro2d 8.226787 17.65996 2.15 20.68031 35.97532 1.74
Su2cor 17.21337 50.09315 291 39.11354 88.97242 2.27
Applu 46.1024 136.0613 2.95 72.85377 184.3312 2.53
Fpppp 63.79205 127.8026 2.00 91.73171 179.6379 1.96
Apsi 53.8326 217.615 4.04 315.098 798.2923 2.53
Wave5 58.81569 162.2093 2.76 375.071 679.635 1.81
M88ksim 17.66136 110.161 6.24 375.867 931.7761 2.48
Li 3.29864 26.65209 8.08 116.3783 263.7807 2.27
Average 3.35 2.14

Incremental vs Recalculation - Data Flow Driver (small)

10

9

8

7
§ 6 HErecalc
S 5 Oupdate
3 Oiprecalc
@ 4 Oipupdate

3

2

1

0

tomcatv compress swim mgrid
benchmark

Fig. 15. Incremental versus recalculation — data flow driver (small).

the number of seconds spent on this analysis. It can be seen clearly in the
graph that the length of the bars associated with recalculation mode are
much longer than the corresponding update bar.

A Framework for Incremental Extensible Compiler Construction 309

Incremental vs Recalculation - Data Flow Driver (medium)

200
180
160
140
120
100
80
60
40
20

Hrecalc
Oupdate
Oiprecalc
Oipupdate

seconds

hydro2d su2cor applu fpppp
benchmark

Fig. 16. Incremental versus recalculation — data flow driver (medium).

Incremental vs Recalculation - Data Flow Driver (large)

1000
900
800
700

600 Hrecalc
Oupdate
Oiprecalc

Oipupdate

500
400
300
200
100

seconds

apsi waveb m88ksim li
benchmark

Fig. 17. Incremental versus recalculation — data flow driver (large).

310 Carroll and Polychronopoulos

5.1.1. Effectiveness of Event Pruning

Tables II and III present the number of events pruned during the
execution of the data flow driver pass. The charts also list the number
of constants folded, constants propagated, copies propagated, common
subexpressions eliminated and finally the number of passes (CF, CP, CSE)
that were executed by the driver. First, it should be pointed out that the
number of events pruned is actually smaller in some cases for the inter-
procedural calculation. This reduction in the number of events pruned
is caused by the call graph pruning done by the interprocedural solver.
The call graph pruning function removes any function in the source code
that is not reachable via any call arc from the main function. Therefore,
the number of functions that are optimized is frequently smaller for the
interprocedural analysis when compared to the intraprocedural analysis.
The statistics concerning the number of changes made are presented for
two reasons. First, they provide outside researchers with data to gauge the
strength of the PROMIS optimizer compared to their own optimizers. Sec-
ond, the statistics demonstrate a general trend that the number of events
pruned increases as the number of changes increase.

Pruned events occur in the data flow driver in several situations. The
first cause of pruned events occurs in the first half of the data flow driver
when the CP and the CF transformations are being alternated. For the fol-
lowing block of code, the available copies are calculated, and it is deter-
mined that A = 4 at the beginning of statement 2

Table Il. Event Pruning and Optimization Statistics (Intraprocedural)
Constants Constants Copies CSEs
Bench Folded Propagated Propagated Pruned # Events # Passes
Tomcatv 2 43 66 16 0 9
Compress 102 86 164 8 66 13
Swim 38 67 138 29 0 9
Mgrid 57 452 278 264 218 11
Turb3d 270 303 848 142 100 15
Su2cor 447 667 1009 260 160 11
Hydro2d 123 298 759 42 68 9
Applu 542 410 1671 144 178 11
Fppp 293 227 440 53 18 9
Apsi 449 2665 1675 1072 678 15
Wave5 417 2744 1552 1084 406 11
M388ksim 938 3237 1870 1302 1672 23

Li 90 1438 609 384 704 25

A Framework for Incremental Extensible Compiler Construction 31

Table lll. Event Pruning and Optimization Statistics (Interprocedural)
Constants Constants Copies CSEs

Bench Folded Propagated Propagated Pruned # Events # Passes
Tomcatv 2 43 66 16 0 9
Compress 102 85 150 7 66 13
Swim 38 69 138 29 0 9
Mgrid 55 453 270 214 264 11
Turb3d 275 326 862 140 110 15
Su2cor 445 517 973 169 96 11
Hydro2d 123 293 756 42 68 9
Applu 548 410 1788 144 190 11
Fpppp 294 240 447 53 20 9
Apsi 445 2343 1607 915 592 15
Wave5 416 2832 1449 1053 448 13
M88ksim 931 3102 1803 1254 1604 23
Li 91 1428 611 378 698 25

1: A =4

2. X =3+ A;

CP modifies statement 2. As discussed earlier, a modification is rep-
resented as a detach event on node 2 followed by an attach event on the
same node
1: A=4,

2: X=3+4

Next, CF executes and again modifies node 2, creating 2 more nodes.
1: A =4
2:X=T17,;

Since changes have occurred, the CP pass must be executed again,
and therefore available copy information must be updated and the event
pruning algorithm will prune the two extra events on node 2.

Another case where events will be pruned is when a node is copy
propagated, creating a new common subexpression which is then elimi-
nated. In the following sequence of code, note that statement 3 is modified
twice. The extra modification events will be pruned.

1: X=A+B;
2: Y =B;
3.Z=A+Y;
1: X=A+B;
2: Y =B;

3: Z=A+B;

312 Carroll and Polychronopoulos

1

~

A+ B;
tl;
B;
tl;

W N B~ -
N =~ X
Il

5.2. Ease of Implementation

One of the main reported disadvantages of incremental compilation
algorithms (according to other studies) is the complexity of implementa-
tion and maintenance.®) We argue that our callback system addresses the
maintenance issue by making the incremental passes completely indepen-
dent of transformation passes. In this section, we address the issue of ease
of implementation. This is a notoriously difficult factor to evaluate quan-
titatively, and our approach relies on references to lines of C++ code. The
source files for general data flow, available copies, and available expres-
sions were divided into incremental and non-incremental parts. Approxi-
mately 2500 lines of code were related to incremental update out of a total
of approximately 8000 lines of code. Therefore, about 31% of the code
is related to incremental updates. The amount of time invested in devel-
oping an incremental update algorithm for the analysis passes was about
50-75% of the amount of time it took to develop the initial calcula-
tion pass thanks, in large part, to the extensive reuse of code between
initial calculation and update and the functionality provided by the HEQ.
Almost all of the code that was developed for the initial calculation was
reused for the update algorithm.

6. RELATED WORK

A comprehensive catalog of previous research in general incremental
analysis can be found in Ref. 9 By far the most wellresearched incremen-
tal compiler framework is abstract grammars. Attribute grammars became
very popular for incremental algorithms because of Reps’ optimal algo-
rithm for incremental attribute evaluation.!'Y Our work is more flexible
than incremental attribute evaluation because analyses need not be based
on the attribute grammar formalism. This generality is necessary because
it is impossible to predict whether future analyses in PROMIS will be
implementable in the many types of attribute grammars. The incremental
evaluator algorithms implemented using the HEQs can be specialized for
each analysis. In addition, a circular attribute grammar would be neces-
sary to handle the interprocedural data flow analysis.('")

Carle and Pollock(!? developed an incremental source to source paral-
lelizer framework. Like the PROMIS ECI system presented here, a compiler

A Framework for Incremental Extensible Compiler Construction 313

is broken into phases (passes) that communicate only through data attached
to the IR. Their approach is also based on an attribute grammar system.

SUIF®1) is one of the most commonly used extensible compilers in
the research community. It is designed to provide a library of passes that
can be used by the compiler designer. SUIF annotations are similar to the
PROMIS EDS because they can both be attached to structures in the IR
to give more information about them. However, SUIF lacks a system for
maintaining these annotations and they can be invalidated by transforma-
tion passes that do not understand them. We believe our system is consid-
erably more flexible than SUTIF in terms of pass order flexibility and ease
of design of incremental analysis passes.

The Montana compiler® also has “observers” which is related to
our callback idea in that both of them dispatch events to registered
observers. However, the paper on the Montana extension mechanisms
makes no claims about using the callbacks to perform incremental com-
pilation. Also, the granularity of the Montana callbacks appears much
coarser grained than the PROMIS API.

An early framework for incremental data flow analysis information was
presented by Tan and Lemone.(!> Like PROMIS, all transformations are
required to go through a specially defined interface for moving nodes so that
the changes can be tracked. Pollock and Soffa’® built a compiler re-opti-
mization framework that uses incremental data flow algorithms to trigger
when certain optimizations are safe after small edits to the source program.

Ryder et al have produced a series of incremental data flow analy-
ses!722) exploring elimination algorithm, iterative algorithms and hybrid
elimination—iterative algorithms. Sreedhar ez al.®® presented an incremen-
tal data flow algorithm to fit the specifics of their “DJ” graph, much like
the algorithm in this paper is optimized for the HTG. Any of these algo-
rithms could be implemented in the ECI framework, but a custom algo-
rithm was developed to take advantage of the loop structures in the HTG.

Lerner et al.®® proposed a way of combining separate data flow algo-
rithms into a single driver while maintaining modularity. Each component
analysis is extended to allow them to return “replacement graphs” that
reflect the improvements made by one module in addition to the out set
for the node. This technique improves the quality and runtime of data flow
analysis, but appears to be restricted to working only with other data flow
analyses, and therefore not suited to our more general purposes.

7. FUTURE WORK

We are developing several other analyses in the ECI framework to
prove it is sufficiently general, robust and easy to use. Analysis modules

314 Carroll and Polychronopoulos

that drive automatic parallelization are being developed in order to dem-
onstrate that the ECI system is equally effective at high end analyses as it
is at low level analyses like data flow. Specifically, we will be developing an
incremental version of array privatization. We are also developing demand
driven versions that calculate partial updates of the analysis information at
certain regions of the program.

8. CONCLUSION

In this paper, we presented an extensible compiler design framework
which facilitates an easy unification of extensive analysis, restructuring and
code generation and optimization, resulting in substantial reduction of
compilation time as well as in fully modular design and development. We
demonstrated the viability of our approach by outlining our implementa-
tion of the PROMIS research prototype which was designed explicitly for
extensibility. The callback system allows passes to be reordered without
concern for invalidating the analysis information. We believe that the call-
back/event queue design could easily be transferred to improve the exten-
sibility of other compiler infrastructures.

Our design also addresses the difficulties commonly associated with
designing incremental algorithms by providing a simple interface for track-
ing changes. Our tracking system also postpones any incremental main-
tenance until the information is next accessed in a lazy fashion so that
valuable compile time will not be wasted updating analysis informa-
tion that will not be reused. In addition to the improved modularity
of passes and compiler extensibility, the incremental passes implemented
in our system also provide considerable compile-time speedups. A new
incremental data flow algorithm has been implemented in the incre-
mental framework that is capable of combining the effect of several
changes into a single update pass. Order of magnitude changes have
been demonstrated for small changes to the IR for data flow analysis.
Finally, this research work demonstrated a 100% improvement in com-
pilation time for updating data flow across repeated execution of the
CSE, CF, and constant/CP transformation passes on well-known bench-
marks (glstead of random graphs and random modifications like previous
works.

9. ACKNOWLEDGMENTS

This work was supported in part by NSF Grant EIA 99-75019 with
research support from NSA, and a grant from Intel Corp. The views of
this paper do not necessarily reflect the views of the funding agencies. The

A Framework for Incremental Extensible Compiler Construction 315

authors would also like to thank members of the PROMIS group past and
present for their contributions to this work.

REFERENCES
1. The GNU Project, GCC Releases, http://www.gnu.org/software/gcc/releases.html.
2. H. Saito, N. Stavrakos, S. Carroll, and C. Polychronopoulos, The Design of the

14.

15.

PROMIS Compiler, Compiler Construction Conference, Lecture Notes in Computer Sci-
ence, 1575:214-228 (1999).

. B. G. Ryder, W. Landi, and H. D. Pande, Profiling an Incremental Data Flow Analysis

Algorithm, IEEE Transactions on Software Engineering, 16(2):129-140 (1990).

. C. Polychronopoulos, The PROMIS Compiler Web Page, http://promis.csrd.uiuc.edu/.
. R. Wilson, R. French, C. Wilson, S. Amarasinghe, J. Anderson, S. Tjiang, S. Liao,

C. Tseng, M. Hall, M. Lam, and J. Hennessy, The SUIF Compiler System: A Paralle-
lizing and Optimizing Research Compiler, Technical Report CSL-TR-94- 620, Stanford
University, Stanford, CA (May 1994).

. M. Girkar and C. D. Polychronopoulos, The Hierarchical Task Graph as a Uni-

versal Intermediate Representation, International Journal of Parallel Programming,
22(5):519-551 (October 1994).

. A. Aho, R. Sethi, and J. Ullman, Compilers: Principles, Techniques, and Tools, Addison

Wesley (1986).

. R. S. Sundaresh and P. Hudak, Incremental Computation via Partial Evaluation, Eigh-

teenth Annual ACM Symposium on Principles of Programming Languages, Orlando,
Florida, pp. 1-13, New York: ACM (1991).

. G. Ramalingam and T. Reps, A Categorized Bibliography on Incremental Compu-

tation, Conference record of the Twentieth Annual ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, Charleston, South Carolina, pp. 502-510
(1993).

. T. Reps, T. Teitelbaum, and A. Demers, Incremental Context-dependent Analysis for

Language-Based Editors, ACM Transactions on Programming Languages and Systems,
5(3):449-477 (July 1983).

. L. G. Jones, Efficient Evaluation of Circular Attribute Grammars, ACM Transactions

on Programming Languages and Systems (TOPLAS), 12(3):429-462 (1990).

. A. Carle and L. Pollock, Modular specification of Incremental Program Transforma-

tion Systems, Proceedings of the 11th International Conference on Software Engineering
(1997).

. The National Compiler Infrastructure Project, The National Compiler Infrastructure

Project, http://www.suif.stanford.edu/suif/NCI (January 1998), also at http://www.cs.vir-
ginia.edu/nci.

D. Soroker, M. Karasick, J. Barton, and D. Streeter, Extension Mechanisms in Mon-
tana, Proceedings of the 8th IEEE Israeli Conference on Software and Systems (1997).
Z. Tan and K. A. Lemone, A Research Environment for Incremental Data Flow Anal-
ysis, Proceedings of the 1985 ACM Thirteenth Annual Conference on Computer Science,
pp. 356-362, ACM Press, NY (1985).

. L. L. Pollock and M. L. Soffa, Incremental Global Reoptimization of Programs, ACM

Transactions on Programming Languages and Systems, 14(2):173-200 (April 1992).

. B. G. Ryder and M. C. Paull, Incremental Data-flow Analysis Algorithms, ACM Trans-

actions on Programming Languages and Systems, 10(1):1-50 (January 1988).

316

18.

19.

20.

21.

22.

23.

24.

Carroll and Polychronopoulos

M. G. Burke and B. G. Ryder, A Critical Analysis of Incremental Iterative Data Flow
Analysis Algorithms, IEEE Transactions on Software Engineering, 16(7):723-728 (1990).
T. Marlowe and B. Ryder, Hybrid Incremental Alias Algorithms, Proceedings of the
Twentyfourth Hawaii International Conference on System Sciences (1991).

M. Carroll and B. Ryder, Incremental Data Flow Update via Attribute and Dominator
Updates, ACM SIGPLANSIGACT Symposium on the Principles of Programming Lan-
guages, pp. 274-284, ACM Press (1988).

M. Carroll and B. Ryder, Incremental Data Flow Analysis via Dominator and Attri-
bute Update, Proceedings of the Conference on Principles of Programming Languages,
IEEE, NY (1997).

J-S. Yur, B. G. Ryder, and W. Landi, An Incremental Flowand Context-Sensitive
Pointer Aliasing Analysis, Proceedings of the 21st International Conference on Software
Engineering (ICSE-99), pp. 442-452, ACM Press, NY (May 16-22 1999).

V. C. Sreedhar, G. R. Gao, and Y.-F. Lee, A New Framework for Exhaustive
and Incremental Data Flow Analysis Using DJ Graphs, SIGPLAN Conference on
Programming Language Design and Implementation, pp. 278-290 (1996), URL cite-
seer.nj.nec.com/sreedhar9Snew.html.

S. Lerner, D. Grove, and C. Chambers, Composing Dataflow Analyses and Transfor-
mations, Proceedings of the Conference on Principles of Programming Languages, ACM,
NY (2002).

