
International Journal of Parallel Programming, Vol. 32, No. 3, June 2004 (© 2004)

Dynamic Memory Instruction
Bypassing

Daniel Ortega,1 Mateo Valero,2 and Eduard Ayguadé2

Received December 1, 2003; revised January 12, 2004; accepted February 19, 2004

Reducing the latency of load instructions is among the most crucial aspects
to achieve high performance for current and future microarchitectures. Deep
pipelining impacts load-to-use latency even for loads that hit in cache. In
this paper we present a dynamic mechanism which detects relations between
address producing instructions and the loads that consume these addresses and
uses this information to access data before the load is even fetched from the
I-Cache. This mechanism is not intended to prefetch from outside the chip
but to move data from L1 and L2 silently and ahead of time into the reg-
ister file, allowing the bypassing of the load instruction (hence the name).
An average performance improvement of 22.24% is achieved in the SPE-
Cint95 benchmarks.

KEY WORDS: Prefetching; memory bypassing.

1. INTRODUCTION

Bridging the Memory Wall (1) is one of the most important goals in Super-
computing design and even in normal microarchitecture development. The
increasing distance to main memory is becoming the dominant bottleneck
for a huge amount of applications. This makes techniques to overcome
this hurdle, such as caches and prefetching, a must in high performance
computers.

Most current microprocessors follow the load/store principle, i.e. all
operations work with registers but those who move data from registers to

1Barcelona Research Office, Hewlett Packard Laboratories, +34 935821300,
Barcelona, Spain. E-mail: daniel.ortega@hp.com

2Depto. de Arquitectura de Computadores, Universidad Politécnica de Cataluña,
+34 934017001, Barcelona, Spain. E-mail: {mateo,eduard}@ac.upc.es

199

0885-7458/04/0600-0199/0 © 2004 Plenum Publishing Corporation



200 Ortega, Valero, and Ayguadé

memory and back, namely loads and stores.3 This overall design princi-
ple allows for a simpler design, since instructions are more homogeneous
in their operands, but on the other hand decreases knowledge of the com-
putation, i.e. not knowing that a particular register contains a memory
address inhibits the microprocessor to speculate on its use and prefetch
it. Fortunately, part of this knowledge can still be gathered, specially by
tracking memory operations and tracking the sources of the data.

Several prefetching techniques are oriented at detecting patterns and
bringing data closer to the processor. In many cases this implies L1 or
L2. In these scenarios memory operations must still exist to finish the
trip between the on-chip caches and the register file. Our main objective
with the technique discussed in this paper is the elimination of memory
instructions from the critical path of the application. Achieving this would
be equivalent to stating that every piece of data lives in registers, that
no instruction shall wait for a piece of data coming from memory. This
can be done in several ways depending on the different scenarios. Ort-
ega et al.(2,3) present memory instruction bypassing techniques oriented
at numerical applications where a combinational effort from the compiler
and the hardware helped to shorten this gap. In this paper we are going
to discuss a dynamic approach oriented for non-numerical applications.

We focus entirely on integer applications, since these are much harder
for compilers to analyse. Aliasing effects, irregularities in the code and
strange data access patterns complicate the potential benefits that com-
pilers can extract from the code. As integer applications represent a very
important part of computation in high performance systems, solutions tai-
lored to their needs are necessary. These solutions normally come from the
dynamic side alone, from the microarchitecture. We will try to illustrate
this with examples.

On the left side of Fig. 1 we can see a small dependence graph of
a synthetic kernel. The kernel itself consists on a load instruction which
brings a piece of data from memory, two ALU operations which use this
piece of data and operate on it with two constants, and another ALU
operation, dependent on these two, which takes the output of both and
computes a value that is stored in memory. This value is also fed back to
the first load dependent on it.

On the right side of Fig. 1 we see a potential dynamic schedule that
an out-of-order superscalar processor may derive for the code. Let us
suppose that this kernel belongs to the critical path of our application,
i.e. any shortening of its execution will shorten overall execution. Under

3IA32 family of microprocessors was one of the few not following this principle up until
the core was redesigned to behave like a RISC core.



Dynamic Memory Instruction Bypassing 201

Fig. 1. Kernel example.

certain circumstances, the compiler can reduce the critical path by expos-
ing more parallelism, perhaps by unrolling and software pipelining the
loop. Nevertheless, the backwards dependence from the last ALU opera-
tion to the load disallows this kind of static optimisation. Another way
of shortening the critical path is to shorten the latency of any operation
involved in it.

Shortening the execution of a load operation usually means prefetch,
i.e. bringing in advance the piece of data from memory to the firsts lev-
els of cache so that the execution of the load hits in cache. Surely, if the
piece of data is not in the cache memories, the load will be dominant in
this critical path, making this critical path expand over a hundred cycles.
In this scenario, prefetching from memory is surely the best technique. If
we shorten these hundred cycles to a few tens (hitting in L2) or to a few
cycles (hitting in L1) the kernel will execute much faster. But what if the
piece of data is in the L1 cache? Can we still reduce this critical path?

The execution of the load in a current out-of-order superscalar pro-
cessor implies fetching the instruction, decoding and renaming it, waiting



202 Ortega, Valero, and Ayguadé

for its dependencies to resolve, issuing the instruction (finding a free port
to L1) and waiting for the data to arrive. Due to higher clock frequencies,
future microprocessors are expected to have L1 with higher latencies, from
a couple of cycles to several more. During the execution of the load its
dependent instructions may have already been fetched and may be waiting
for the completion of the load to be issued. In such a scenario, the overall
latency of the load (even if it hits in cache) is important and reducing it
will improve overall performance.

The structure of the paper is as follows. In Section 2 we will explain
the mechanism and the implications behind it. In Section 3 we will dis-
gress about our simulation environment. Later in Section 4 we will present
the different experiments that were conducted to assess the characteristics
of our mechanism. In Section 5 we will discuss the related work and we
will conclude the paper in Section 6.

2. DYNAMIC MEMORY INSTRUCTION BYPASSING

Dynamic Memory Instruction Bypassing is a microarchitectural tech-
nique that learns from previous executions what are the producers of
addresses for the loads. As soon as these addresses are known, the mem-
ory is accessed, hoping to bring the data to a register before any depen-
dent instructions need it, thus allowing for the following bypassing of the
load. Benefit is possible because in many cases the compiler separates the
computation of the address from the issuing of the load. Good examples
of when this happens are list traversals and stack management. When
traversing a list, the compiler will issue a load instruction for the data of
the node in the list and another for the next pointer in the list, which
is indeed the computation of the address for the next node in the list.
In the following dynamic basic block this address will be used to access
another node. Our mechanism learns from this fact and allows the mic-
roarchitecture to issue these following loads as soon as their addresses are
known. On the other side, the stack pointer is normally modified when the
function is called, but used throughout the whole function for accessing
local variables and parameters. This allows our mechanism enough time
to bring data into registers.

In the next two subsections we will present the two parts in which our
mechanism is divided, the learning scheme and the operational scheme.

2.1. Learning Scheme

Learning means establishing relations between instructions that pro-
duce addresses and load instructions that use them. For microarchitectural



Dynamic Memory Instruction Bypassing 203

Fig. 2. Learning example: producer.

simplicity we have chosen to limit our mechanism to track only Base-
PlusOffset loads, those of the form load rg,base rg+offset, where
base rg is a register containing a base address and offset is a con-
stant field of the codeword. Most RISC microarchitectures have this kind
of load instructions and make an extensive use of them, i.e. to access the
stack, to access fields of structures, to access different elements of the
same cache line, . . . Loads with two source registers have intentionally
been omitted since they are harder to group and associate to just one
address producing instruction4 and because they only represent a small
amount of total dynamic loads in a programme.

Any instruction that defines an integer destination register5 is poten-
tially computing an address and is therefore of interest to our mecha-
nism. In the decode stage, the register defining instructions access a 32
entry table called the Latest Address Producer Table (LAPT). Each entry
keeps information about one address producing instruction and several
loads that consume from it (see example in Fig. 2). When the instruction
is decoded its logical destination register is used to access the LAPT. Its
PC is checked against the value of the PC field to see if this entry holds
information about this instruction. If this is not true, the old entry is taken
away from the table and a clear new entry is associated to this instruction,
by storing the correct PC and by setting the status field to learning.6

When a BasePlusOffset load arrives to the decode stage its base
address register is used to index the LAPT. The entry selected holds
information of the address producing instruction of this load.7 Each
load stores in this entry its destination register, its offset and sets the valid
bit of the consumer sub-entry (see example in Fig. 3). We have made
experiments (the results will be presented later) with a varying number of

4The importance of one producer per load will become clear when the microarchitectural
part of the mechanism is presented.

5Notice that integer loads also define registers which may become base addresses for fol-
lowing instructions.

6The old entry is not discarded, as will be explained later.
7Hold in mind that a particular load may have statically more than one address producing
instruction depending on the path taken to arrive to the load, but dynamically only one.



204 Ortega, Valero, and Ayguadé

Fig. 3. Learning example: consumer.

consumer sub-entries per entry, ranging from 2 to an unbounded quantity,
to explore the effect of this parameter. If the load finds an entry with such
a combination of destination register and offset, it changes the status field
from learning to stable.8 If all the consumer sub-entries hold already valid
information the load simply does nothing. More complex learning strate-
gies were not considered to minimise the overall complexity of the imple-
mentation.

Due to a lack of logical registers, it is usually very common for the
compiler to redefine a destination register as soon as no more instruc-
tions need to use it as source. Therefore, if the entries evicted from our
LAPT were not stored somewhere, hardly any one would ever achieve a
stable status and produce benefits. We have chosen to store these entries
in a secondary table called Address Producers Table (APT). This table
is tagged and indexed by the PC of the address producing instruction.
This way, when these instructions are fetched, we can access this table and
retrieve the information if it existed and insert it in the LAPT for its suc-
cessive use.9

Notice that both the accesses of address producing instructions and
loads to the LAPT share some conceptual parallelism with a normal
renaming strategy found in any superscalar processor. In the next subsec-
tion we will learn what an important role plays renaming in the whole.

2.2. Operational Mechanism

In order to benefit from all this information, some further actions
must be taken. If the status of an entry is stable when the address
producing instruction is decoded, the execution of this instruction is mic-
roarchitecturally modified. As soon as the value of its destination regis-
ter is computed (writeback stage) the operation mechanism will start the

8We have also made analysis on the amount of necessary offset bits, and approximately
5 bits suffice for all interesting offsets. This allows for smaller sizes of the tables involved.

9This secondary table needs only one read port since consecutive register defining instruc-
tions have consecutive PCs, and therefore we can group them in super-entries. Writes need
a little more complexity but on the other hand, they can tolerate some latency.



Dynamic Memory Instruction Bypassing 205

Fig. 4. Renaming example: prior state.

process of issuing special loads using the information in the table. For
each valid entry, it will add the offset to the computed value to deter-
mine the address to be fetched and it will issue a memory request. This
special load will have a microarchitectural representation in the processor
state slightly different from that of a normal load. It will not occupy an
entry in the reorder buffer since it will never need to get committed as an
instruction. Nevertheless, it will get specially renamed (thus the need for
the destination register in the LAPT) and it will occupy resources in a spe-
cial load-store queue.

The renaming process of the previous example used is described in
Figs. 4, 5 and 6. In them we can see how the address producing instruc-
tion renames the destination register of one of its consuming loads. This
renaming is not stored in the normal renaming table but in a special one.
Any intervening instruction between the address producing instruction and
the load will still access the correct physical register. When the correspond-
ing load is decoded, it will turn this renaming into active by moving the
mapping from the special renaming table to the normal one. Once this is
done, this load is converted into a no-op, since all its work has already
been done. Turning the renaming into a correct one does not guaran-
tee the data to have arrived into the register file. If it has, instructions

Fig. 5. Renaming example: after producer instruction.



206 Ortega, Valero, and Ayguadé

Fig. 6. Renaming example: after consumer instruction.

dependent on the load will be able to execute immediately and we can talk
about a total bypassing of the load. If the value has not arrived yet, the
normal scoreboarding of the microprocessor will wake dependent instruc-
tions when the value arrives. We call this scenario a partial bypassing of
the load.

In order to assure memory consistency we must also track spe-
cial loads issued before hand in a special load-store queue. Since these
loads are being issued out of order, it may be possible that an intervening
store writes to that same location before the real load thus making invalid
the data brought by the special load. In this case some mechanism must
be taken to re-issue the load 10 and re-execute any dependent instructions
that may have been issued with incorrect data. Some current microproces-
sors implement an aggressive memory disambiguation technique like the
one sketched here, since these mechanisms have been shown to be very
exact and provide reasonable benefits. Our Dynamic Memory Instruction
Bypassing needs no change to whatever disambiguation technique is imple-
mented other than adding a small table to store the addresses of the spe-
cial loads that are on the fly. Regarding our experiments, the size of this
table is negligible (a four entry table is sufficient) since the amount of spe-
cial loads on the fly is very small (take into account that once the real
load is decoded the special load will not conflict with any store to come
and it should be taken out of this table).

The mechanism presented is speculative in nature since we are issu-
ing special loads before we really know if the real loads will ever come to
execute. It may happen that after executing the address producing instruc-
tion (and therefore issuing and renaming all its consuming loads) the exe-
cution of the programme takes another path than the one taken during
the learning part of our mechanism. In this case the loads may never
be fetched and their values consumed (in average this happens to 24%

10Probably the simplest solution would be to take the value directly from this store.



Dynamic Memory Instruction Bypassing 207

of all the special loads). To detect this we track what renaming physical
registers depend on the base address register. If this base address register
is redefined by another instruction (which is easily detected in our mech-
anism with the LAPT) we free the physical registers associated with the
address producing instruction and we clear the entries in the special load-
store queue. Notice that this recovery mechanism is very simple and does
not need to re-execute any instructions. We therefore consider this kind of
speculation a win-win situation. The only negative effect that may affect
execution is the increase in incorrect memory accesses. The total amount
of incorrect memory accesses (24% in average) is not very big and does
not negatively affect performance.

3. SIMULATION ENVIRONMENT

Our own simulator was used throughout all the experiments. Our sim-
ulator is cycle accurate, trace and event driven. For all the experiments
we have designed a baseline microarchitecture named LoadStore which
simulates a typical out-of-order superscalar processor. In the following
paragraphs we will detail the assumptions and simplifications taken in the
simulations.

The memory model is composed of three levels, L1, L2 and main
memory. As our experiments do not need a highly accurate instruction
fetch mechanism, we have assumed a perfect instruction L1 which can
deliver up to width instructions per cycle, where width is the instruction
fetch width (four in the present experiments). This is a nearly ideal fetch
with only one constraint, taken branches stop the fetch. We consider
this model to be enough for our purposes. The L1 can be parametr-
ised by total size, associativity, replacement strategy in case associativity
is not one, line size and latency. Normally, all simulations assume a direct
mapped first level of cache with 32 bytes line size unless otherwise stated.
Our experiments were conducted by modifying the latency of the cache
and its total size.

The L2 cache can also be parametrised by the same characteristics.
All our simulations have assumed a 4-way associative with LRU replace-
ment policy and 64 bytes line size. The L2 latency and its total size
was modified across experiments but normally 12 cycles was used for the
latency and 512 Kb for the size. Finally main memory was simply para-
metrised by its latency, consisting of 60 cycles except where noted. Our
memory model assumes that only one level is accessed at a time, so that
if a load misses in L1, and hits in L2, its total latency will be L1 latency
plus L2 latency. Some microarchitectures allow for the L2 cache to be
probed in parallel with L1, thus making L2 total latency not dependent



208 Ortega, Valero, and Ayguadé

on L1. We have chosen not to follow this mechanism. With respect to
the bus utilisation we have assumed a perfect bus of latency mem latency
(normally 60 cycles) the bus between main memory and L2 cache. In many
microarchitectural simulations, the behaviour of this bus is critical for per-
formance, and better models are required to get consistent results. Nev-
ertheless, our techniques are oriented at producing benefits when data is
already on-chip, and this is why we have chosen to simplify this model
so to increase simulation speed. On-chip buses are modelled using ports
resources. A port resource must be accessed when the request is done (sim-
ulates sending the address for the loads) and when the data arrives back
(simulates the coming of the data back from the cache module). In gen-
eral we have one port between L1 and L2 and a variable number of ports
(depending on the experiments) between L1 and the Load Store queue.
TLB was not simulated at all (assumed perfect).

The width of the microprocessor has been set to the same as the
issue width, four instructions per cycle. The reorder buffer has been pro-
grammed to have 64 entries. Three different windows for integer, floating
point and the load store queue were assumed. As our main interest relied
not on the scheduling capabilities of our proposals but on the potential
performance of them, we chose to have issuing windows as big as pos-
sible so as to not affect performance at all. This was normally achieved
with half the size of the reorder buffer or even sometimes the same size
for all instruction windows. This is a little unrealistic, since having more
instruction window slots than reorder buffer entries is kind of a waste, but
as many scheduling policies achieve nearly perfect scheduling capabilities
with more reasonable sizes, we have assumed that this problem is orthog-
onal to our proposals. The number of functional units and their latency is
presented in Table I.

The branch prediction mechanism selected for all experiments assumes
a 14 bit history gshare with perfect Return Address Stack prediction.

Table I. Quantity and Latency of Functional Units

4way 8way

Quantity latency Quantity latency

Integer arithmetic 2 1 4 2
Integer logical 2 1 2 1
Floating point arithmetic 2 4 4 6
Floating point logical 2 2 2 2



Dynamic Memory Instruction Bypassing 209

Fig. 7. Impact of memory behaviour on SPECint95.

We have chosen a set of benchmarks known as SPECint95 . All inte-
ger traces were composed of a total of 50 million instructions per
simulation.

4. EXPERIMENTS

In this section we will present the experiments done to assess the vir-
tues and limitations of the dynamic mechanism presented in the previous
sections. Our base architecture will be the one named LoadStore which we
have discussed in the previous section. Our proposal will carry the label
dMIB (which stands for Dynamic Memory Instruction Bypassing ) in all
the Figures.

4.1. Impact of Memory Behaviour on SPECint95

One of the reasons for choosing SPECint95 for this set of experi-
ments is the fact that their memory behaviour is not very intense. Mostly
all of them fit in small L1–L2 caches. This can be seen analysing the first
three bars of Fig. 7. These bars represent the performance results for dif-
ferent configurations of our baseline, the LoadStore machine, with differ-
ent L1 memory sizes: a small 8 Kb as that of the Pentium IV, a 16 Kb,
the size selected for our baseline, and a configuration with a perfect mem-
ory behaviour which has been tagged as perfect prefetching in the Figure.
All bars have been normalised to the second one, the one with 16 Kb L1
cache, which will be used as our baseline for the rest of the section unless
noted.

The SPECint95 benchmark set has been traditionally thought of
having a good memory behaviour. This is due to the results shown in the
first three bars of Fig. 7. Having perfect memory only provides on aver-
age a 21% performance speed-up, which is not impressive and this fact
has made a lot of people lose interest in memory performance techniques



210 Ortega, Valero, and Ayguadé

for these applications. Nevertheless, as our interest resides in bringing data
from L1 and L2 transparently, this suite of benchmarks and this scenario
become ideal to establish the benefits of our mechanism. The last bar
shows a Limit study which assumes that all data is present in registers at
no cost (as opposed to assume it is always in L1 as in the perfect prefetch-
ing model). The fourth bar corresponds to a simulation of our mechanism
with unbounded resources, i.e. unbounded entries in the producer-consum-
ers table and unbounded consumers per entry. This simulation allows us
to understand how all benchmarks are behaving when our proposal is sim-
ulated with no constraints. First of all, it must be noted that there still
exists a gap between our dMIB unbounded bar and the Limit bar. This is
due to the fact that our mechanism does not address all kind of loads, just
those of the form load reg,base reg+offset. Moreover, our mech-
anism uses a particular learning heuristic which does take some time to
warm up and may not capture all possible loads. Partial bypassing is also
responsible for not achieving the Limit bar. This partial bypassing may
be due to two reasons, lack of enough distance from the producer of the
address to the load, and data that is present in main memory which our
mechanism can not bring early enough. Our first interesting result is that
in average dMIB unbounded performs better than having perfect memory
for the SPECint95 benchmark suite. In this Figure our unbounded mech-
anism shows an average improvement of 30% over a baseline machine
(with a peak of 60%).

One thing must be noted from this Figure is the fact that while
most benchmarks behave consistently producing benefits, two of them,
124.m88ksim and 129.compress do not exhibit practically any per-
formance benefits. Our analysis shows that 124.m88ksim suffers from a
problem of coverage while 129.compress behaves poorly due to a time-
liness problem. In Table II we show the average latency of loads in all
the SPECint95 benchmark suite. Correlating overall benefits with laten-
cies in superscalar processors is a tricky thing, because in many cases it
can deliver counterintuitive results. This has happened with our mecha-
nism. We measured the average latency of all loads in the LoadStore base-
line and in our dMIB model and found out an increase in this latency.
This effect is explainable if we reason that in our dMIB model these spe-
cial loads are issued much before, and although they may take longer in
average, they are surely going to produce their results before the baseline
would. In Table II we take this into account. The first column shows the
average latency of all loads in the base architecture. The second column
shows the average latency of loads running in our dMIB model but only
those that our mechanism does not attack. Analysing the complement of
the loads our mechanism speeds and the total will allow us to establish



Dynamic Memory Instruction Bypassing 211

Table II. Average Latency of loads

Benchmark All loads Non-captured loads

go 3.40 2.94
m88ksim 24.74 41.50
gcc 5.12 4.46
compress 3.03 1.21
li 3.59 2.27
ijpeg 3.92 2.21
perl 6.64 4.09
vortex 4.86 4.36

Average 6.91 7.88

All Loads means loads before any modification, as they behave in the LoadStore archi-
tecture. Non-captured Loads column shows the latency of loads not treated by our mech-
anism.

some facts about why 124.m88ksim and 129.compress behave like
they do. In 124.m88ksim, the average latency of all accesses to main
memory is 24.74 cycles. This is a very big number compared to the other
SPECint95 applications where this average is under 10 cycles for our
present configurations. Notice that 124.m88ksim is the only application
where the average latency of non-captured loads is even bigger than that
of all loads. This increase explains that our mechanism is precisely bypass-
ing instructions that do not miss in L1 nor in L2, leaving critical instruc-
tions without modifications. The critical path of 124.m88ksim is ruled
by these instructions, which our mechanism does not cover.

Average latency of non-captured loads is more appropriate to show
if our mechanism is bypassing missing or successful loads, but it does
not show how well our mechanism behaves on the loads it bypasses. Our
mechanism may be learning from problematic loads and trying to bypass
them earlier, but nevertheless, data still may be arriving too late for perfor-
mance increments. In Table III we can see how many bypassed loads with
respect to the total amount of loads do exist in every simulation. The last
column of this Table shows us how many of the bypassed loads arrive
before the load arrives at decode stage. A good thing about Dynamic
Memory Instruction Bypassing is that it should not produce slowdowns
normally. This is a particularity of prefetching techniques: even if pre-
fetching does not bring data in time, any decrease in the total stall time
produces some benefit, although sometimes this benefit is negligible. Pre-
fetching only produces slowdowns if it prefetches incorrect data which dis-
places correct data from the cache or when these prefetch instructions
interfere with other instructions in the fight for resources. Our technique



212 Ortega, Valero, and Ayguadé

Table III. Relation of Bypassed Loads

Benchmark Bypassed/Loads % Bypassed/Issued % Total B./Bypassed %

go 53.01 78.19 49.62
m88ksim 43.41 82.65 29.79
gcc 38.48 56.21 38.35
compress 85.71 100 0.03
li 78.97 70.39 29.66
ijpeg 69.78 90.70 70.53
perl 51.80 64.52 43.50
vortex 56.36 65.89 48.75

Average 59.69 76.06 38.77

The first column is the % of all loads that our mechanism captures. The second column
shows how many loads are bypassed with respect to the total memory accesses that our
mechanism issues. The third column represents the % of total bypassing from the total
number of bypassed loads. All numbers represent dynamic instances of loads.

brings data located in the higher levels of cache directly to free physical
registers, so the displacement problem does not affect us. Besides, in Table
III we can see that our learning strategy shows very good results. In
average 76.06% of everything brought is finally bypassed. As this number
is already very good, we have delayed for future research the analysis
of other learning (or unlearning) strategies that could improve it. With
respect to fighting for resources, our special loads have less urge for exe-
cution, thus better tolerating a couple of cycles of waiting for a particular
resource since they have been issued beforehand.

From the results of Table III we derive that 129.compress is
suffering from a timeliness problem. In 129.compress we do cover
problematic loads, as can be shown by noting that the average latency of
non-captured loads is decreased from 3.03 to 1.21 cycles, but hardly any
of these arrive early enough to produce substantial benefit.

4.2. Bounding Resources

In order to analyse the effect of the number of entries in the APT11

and the number of consumers per entry in both tables, we run a series of
experiments in which we constrained either of these two parameters, leav-
ing the other unbounded. In Figs. 8 and 9 we present the performance
results of these experiments. Notice that the last two bars on both Figures
correspond to the limits explained in the previous subsection.

11The amount of entries in the LAPT is determined by the amount of logical registers.



Dynamic Memory Instruction Bypassing 213

Fig. 8. Performance speed-ups with unbounded entries an varying quantity of consumers
per entry.

Fig. 9. Performance speed-ups with unbounded consumers and varying quantity of entries
in the APT.

As results show, the number of consumers per entry increases per-
formance, but not dramatically. In the rest of the experiments we have
decided to fix this number to two consumers per entry, since this greatly
decreases the cost while maintaining the overall performance. The other
parameter has more impact on performance. As can be seen in Fig. 9 the
more entries the better. Where possible, we will present results for three
of these configurations, 2048, 4096 and 8192 entries. In Figures where
space is an issue, we will summarise the benefits of our technique with the
results from 4096 entries.

Figure 10 presents the first bounded simulation results. When we con-
strain both the number of consumers (which have been selected to only 2
in this Figure) and limit the number of total entries, we see a decrease of
the potential performance presented by the unbounded simulations. Fortu-
nately, this decrease is minimal. Our performance results range from 20%
with 2 K entries to up to 24.5% with 8 K entries, with peaks of nearly
50% in programmes like 099.go. These results are very promising indeed,



214 Ortega, Valero, and Ayguadé

Fig. 10. Main results (two consumers per entry) and varying number of entries in the APT.

for they show that a good percentage of the total performance shown by
the unbounded experiments can be achieved under realistic assumptions.

4.3. Renaming Registers

Our technique relies on free physical registers in order to increase per-
formance by issuing loads before they are fetched. Although there exist
different renaming techniques such as Gonzalez et al.(4) that delay the
renaming until the data is really needed, we have not investigated any of
these in combination with Dynamic Memory Instruction Bypassing. Instead
we are more concerned in analysing the impact that a reduced number of
registers may have in our technique.

Some processors such as the Alpha 21164 have been designed with as
many physical registers as the processor may ever need, so that they never
stall due to lack of free physical registers.12 As every instruction can at
most define an extra renaming register, having an equal amount of reg-
isters as live instructions in the processor is equivalent to an unbounded
number of renaming registers. In our case, as the Reorder Buffer has 64
entries, 64 extra renaming registers are enough to satisfy this point.

In Dynamic Memory Instruction Bypassing , an address producing
instruction may issue loads before these loads arrive in the window, i.e.
it does not only use a renaming register for its destination register (the
address) but it also consumes registers for consuming loads, whose life-
times will expand since the address is produced until their load instruc-
tions appear in the processor or until another instruction redefines the
address register on which they are based. Assuming that a considerable
amount of these renamings are successful this implies that our technique

12This is also done because implementing a pipeline stall due to lack of registers is costly,
and in many cases having this amount of registers is feasible. Under other assumptions
it may be preferable to stall the pipeline when registers are unavailable.



Dynamic Memory Instruction Bypassing 215

Fig. 11. Effect of the amount of renaming registers.

should be more dependent on the total number of renaming registers. In
Fig. 11 we can see the impact of having 32, 48 or 64 renaming registers
both in the LoadStore baseline and in our mechanism. When we reduce
the number of renaming registers, the relative improvement of our mech-
anism over the LoadStore architecture with the same number of registers
decreases: our 22.24% of average improvement gets reduced to a 20.75%
with 48 registers and with only 32 renaming registers our mechanism only
outperforms LoadStore machine with 32 renaming register by a 16.3%.

Notice that the LoadStore baseline benefits very little from having 64
renaming registers as compared to having only 48. This is because the
probability of having a reorder buffer completely full of register defin-
ing instructions is very small. Our mechanism takes more benefit of these
extra registers. On the other side of the spectrum, with only 32 renaming
registers, our mechanism continues to outperform the base architecture,
even a base machine with 64 renaming registers. This is very promis-
ing indeed, for it shows that our mechanism uses registers more intel-
ligently. In our machine, when an address generating instruction arrives
at the decode stage, it will consume renaming registers for its consum-
ing loads even if this implies stopping the pipeline due to lack of reg-
isters shortly after. This can be seen as an increase in the priority of
getting renaming registers for loads, which are usually considered critical
instructions.

4.4. Tolerating Cache Latencies

One of the first aims of our technique is to better tolerate the future
increasing latency of on chip caches. In this subsection we will explain the
experiments conducted to analyse how much benefit comes from bypassing
from L1, how much from bypassing from L2 and the effect of increasing
latencies to both levels of cache. To analyse this we have run experiments



216 Ortega, Valero, and Ayguadé

Fig. 12. Effect of L1 latency supposing perfect memory (dMIB assumes 4096 entry APT
with 2 consumers per entry.

where L1 is of infinite capacity and produces no misses (no capacity nor
cold misses). With this scenario we are effectively isolating the impact of
memory latency (or L1 cache since we are considering that everything
hits in L1 cache) and thus we can measure how our technique behaves
under different latencies. In Fig. 12 we can see six bars per programme.
The first three represent the execution of a microarchitecture without our
mechanism and with latencies to perfect L1 of 1, 3 and 5 cycles. The
last three bars incorporate our bypassing mechanism (all bars are nor-
malised to the LoadStore architecture of 1 cycle [third bar]). The first
thing that these results show us is that with perfect memory, our average
speed-up decreases from a 22% as seen in Fig. 10 to a 15%. This num-
ber allows us to derive that on average, 75% of our performance improve-
ment comes from the bypassing of data present in L1 cache. Nevertheless,
we can not forget where the other 25% improvement comes from, bypass-
ing data present in the L2 cache as will be shown with the results from
Fig. 13. Another outstanding fact is that the microarchitecture enhanced
with Dynamic Memory Instruction Bypassing executes faster in average
with a 5 cycle L1 cache than a LoadStore architecture with just 1 cycle
latency to L1. This shows that our mechanism is a good choice if design-
ers decide to user larger caches at the expense of access time.

In Fig. 13 we have conducted another series of experiments assum-
ing perfect L2. In this case we have analysed different latency pairs for
both L1 and L2. The simplest case is 1 cycle hit in L1 plus 12 cycle hit in
L2 (L2 is always accessed after the miss, never in parallel, what augments
L2 hit latency to 13 cycles in this case) which has been used as base-
line for all our experiments. The second pair assumes a 3 cycle hit latency
to L1 and another 15 cycles for L2. The biggest latency pair assumes
5 cycles to L1 plus another 20 to hit in L2. In this Figure we can see
that the improvement obtained in the 1–12 case grows up to a 22%, just



Dynamic Memory Instruction Bypassing 217

Fig. 13. Effect of L1–L2 latency pairs supposing perfect L2.

what happens in the general case with normal memory. This validates our
previous assessment that in average 25% of our performance improvement
comes from bypassing from L2 cache. This potential improvement allows
our mechanism to obtain bigger relative performance improvements when
increasing L1–L2 latency pairs, as can be seen in Fig. 13 where the aver-
age relative performance grows to 28.65% with 3–15 L1–L2 latency pairs
and up to 31.5% with 5–20 L1–L2 latency pairs.

With the experiments of Fig. 14 we wanted to know how our mecha-
nism would behave under certain L1 latency-size pairs. The general trend
in microprocessor design is making L1 size smaller not because lack of
transistors, but in order to increase its speed. We have analysed three dif-
ferent configurations of size and latency, the bigger the size the larger the
latency. We believe these configurations represent the microarchitectural
trend due to increased microprocessor pipelining(5–7). The simpler config-
uration has a L1 cache of 1 Kb accessible in 1 cycle. The second config-
uration has a L1 cache with 4 Kb with a latency of 3 cycles. Finally the
last configuration has a L1 cache of 16 Kb but at a distance of 5 cycles.
All three configurations have a 4 Mb L2 cache at a distance of 20 cycles.
As can be seen from the data on Fig. 14 all configurations with Dynamic
Memory Instruction Bypassing outperform in average those without this
technique, even the 1 Kb L1 cache with dMIB outperforms a LoadStore
machine with 16 Kb.

4.5. Incremental Prefetching

As our technique is oriented to data present in on-chip cache, it will
benefit from a good memory behaviour. This is because when our mech-
anism encounters a particular instruction that misses, the overall reduc-
tion of the critical path is minimal with respect to the total memory
latency. What we tried to do at this stage of our research is to augment



218 Ortega, Valero, and Ayguadé

Fig. 14. Effect of different L1 latency+size pairs.

Fig. 15. Effect of incremental strided prefetching (dMIB assumes 4096 entry APT with four
consumers per entry).

our dynamic bypassing mechanism with a linear prefetching mechanism
(similar to the one presented in Ortega et al.(3)) that could overcome the
hurdle imposed by bad memory performance. This way we could be effec-
tively exploiting more opportunities in a simple and cost effective way.
Unfortunately and contrary to what happened for numerical applications
in Ortega et al.(3) this incremental prefetching has not been successful at
all.

The prefetching mechanism proposed over our bypassing mechanism
should only target the load instructions that our bypassing mechanism tar-
gets, but should focus on subsequent executions of the same instruction by
learning their behaviour from past instances.

Our hardware consists of a small PC tagged table called Cache-Line
Prefetching Table (CLPT). In our experiments we have chosen to make it
very small (from 8 to 32 entries) and fully associative with least recently
used (LRU) replacement policy. Each entry in this table just one field (plus
the tag), the Last Effective Address.

When a load instruction is executed by our mechanism, the prefetch-
ing mechanism is activated. If there is a tag match in the CLPT, the cur-
rent stride between the current effective address and the tables last effective



Dynamic Memory Instruction Bypassing 219

Table IV. Dynamic Percentage Type of Producer Instructions

Benchmark Arithmetic Loads Movs

go 39.9 58.5 1.55
m88ksim 47.5 48.62 3.9
gcc 38.77 52.3 8.9
compress 90.9 9.1 0.0
li 31.5 57.6 10.8
ijpeg 26.6 71.5 1.8
perl 26.2 66.9 7.0
vortex 27.4 62.75 9.8
Average 41.09 53.40 5.46

address is computed. This stride is multiplied by the prefetching distance
(a parameter in our study) and is added to the current effective address
to compute the potential to-be next instance address. If there is no match
in the CLPT the prefetching mechanism simply allocates a new entry by
using LRU replacement policy.

The results of the simulations for the proposed mechanism can be
observed in Fig. 15. This Figure presents five bars per application. The
first bar represents our LoadStore baseline, and the rest of them repre-
sent different versions of our technique, the last three are the ones with
different prefetching strategies. We decided to implement static prefetch-
ing distances, ranging from the next dynamic instance up to the three next
dynamic instances. P dist stands for prefetching distance, thus the third
bar represents our technique with an prefetcher associated at distance 1,
and so on. These flat results show that incremental prefetching is not at
all interesting for this dynamic mechanism.

The reasons that explain this behaviour are mainly two. First of all,
this dynamic mechanism is oriented for non-numerical applications of
whom their good memory behaviour is well known, as we have stated
before. This makes it less interesting to include an incremental prefetcher.
Secondly, the quantity and possibilities of strided incremental prefetch-
ing are less than in the static mechanism. This can be noted by analy-
sing Table IV where we show the dynamic percentage type of producer
instructions. All our producer instructions fall into one of these opcodes:
addiu, addu, and, ld, lw, lhu, lh, lbu, move, movn and movz.13 We
have classified all opcodes into three sets: arithmetic, composed of addiu,

13All these opcodes belong to the MIPS R10K ISA.



220 Ortega, Valero, and Ayguadé

addu and and; loads, composed of ld, lw, lhu, lh and lbu; movs,
composed of move, movn and movz. In this Table it can be seen that in
average less than half or all dynamic producers of valuable information
fall into the arithmetic cathegory. This cathegory is the only one capable
of producing strided patterns so the possibilities of prefetching are very
small indeed.

5. RELATED WORK

Moudgill et al.(8) presents a speculative renaming that is done in par-
allel with the fetch of the instruction. Its global aim is to reduce the path
of all the instructions in the pipeline. We share some conceptual relation
with this paper, since our techniques renames certain instructions before
they ever arrive to the Rename stage. Another piece of work that relates
to ours with respect to the renaming is Balasubramonian et al.(9) This
paper proposes a double strategy for renaming register assignment. The
first strategy is the normal one while the second strategy gets fired when
all but a subset of all the renaming registers have already been assigned.
This strategy renames instructions but frees their registers after a certain
amount of time. This way if the dependent instructions have already read
the value, the processing will continue as normal, otherwise, the depen-
dent instructions will receive incorrect data. This technique is based in
the fact that the average live cycles of a register is usually very small.
This is specially true of registers devoted to address generation and branch
computation. Although all the instructions executed in this way must get
re-executed when the amount of free registers increases, this speculative
execution mode allows for the warming of branch prediction tables and
caches, accelerating the subsequent execution. One of the benefits of this
technique, prefetching to L1, is only achieved for linear data structures.
Linked structures can not be prefetched by this technique since the address
for the next piece of data must be brought from memory. If only one of
the nodes does not hit in cache, the specific load instruction will be a
long latency instruction and the mechanism will free its destination regis-
ter to assign it to another instruction. This way the dependence prefetch-
ing chain is broken.

Besides its renaming component, this paper also deals with a concept
or field which we have referred to as Memory Instruction Bypassing, while
others refer to it as Memory Renaming or as Memory Bypassing. In some
cases this term is understood as mechanisms which communicate mem-
ory operations allowing some of them to be bypassed by using registers.
Other times, bypassing is understood as the shortcutting of the data from
the producer to the consumer, and it is therefore nearer to the concept of



Dynamic Memory Instruction Bypassing 221

memory renaming than to our concept of instruction bypassing. Neverthe-
less, these two definitions mix frequently in the literature.

One of the first works in pure memory renaming is Tyson and
Austin.(10) This paper proposes to predict dependencies among mem-
ory instructions using value prediction and then rename the memory
instructions accordingly to execute them faster. By using value prediction,
their renaming is speculative, and may need recovery actions in case of
mis-speculations. A similar approach in concept is the one presented in
Moshovos et al.(11) The authors propose also to detect dependencies, what
they call memory cloaking, and convert these dependencies into def-use
chains that can be subsequently used to shortcut the data. They also pro-
pose a Transient Value Cache similar in concept to a victim cache specially
designed for data that is likely to be bypassed. As the first one, the mech-
anism is inherently speculative.

One year later appeared the following work(12) developed at Intel.
This work is highly focused to the IA32 architecture, where the lack of
registers is very important. Their goal is to better use the register file. To
achieve this they analise when two instructions are going to produce the
same result, and when this is so, they get assigned the same physical reg-
ister. This makes renaming more complex, since a count of defs of each
register must be maintained, but on the other hand it allows instructions
to execute faster because once two instructions are assured to produce the
same result, the dependents on the second one do not need to wait for it
to finish, thus proceeding faster. The authors also present the concept of
unification, which tries to detect when two instructions are going to use
the same memory location so that they can eliminate the need for the sec-
ond access.

In Reinman et al.(13) the authors propose to identify potential depen-
dencies among stores and loads by software, leaving the hardware the
responsability of the bypassing only. Moshovos et al.(14) is another piece
of work (as Jourdan et al.(12)) that analyses the communication among dif-
ferent loads that access the same memory location.

Austin and Sohi(15) is one of the first pieces of work that we definitely
put under the umbrella of Memory Instruction Bypassing, leaving memory
renaming aside. This paper tries to accelerate the execution of the loads, to
achieve the total bypassing of the instruction. The mechanism predecodes
these type of instructions, it caches previous base registers and introduces
a quick computation of the memory address of the data that allows the
load to proceed two cycles before to the cache. Assuming a 1 cycle access
time to the L1 cache these loads execute in 0 cycles.

Black et al.(16) is another piece of work oriented at speeding up the
pipeline of loads. This work proposes to predict load addresses so that



222 Ortega, Valero, and Ayguadé

the cache access can be started before. Something similar, although more
extended is presented in Yoaz et al.(17). This paper presents three solutions
related to the scheduling of memory instructions. The solutions proposed
are the prediction of dependencies among memory instructions and the
prediction of which bank the data is going to be located in. A cache way
detector is also presented in Chung et al.(18). The authors also propose to
learn from previous executions how the computation of base addresses is
done. Once the load arrives to decode stage, this information is used to
speculate the load, generating a predicted load which will proceed to the
cache. As the learning is not good enough, it is enhanced with prediction,
making the mechanism speculative in nature. If the speculation fails, the
predicted load is squashed and the normal load proceeds to the cache.

Bekerman et al.(19) presents a very good analysis of the problems that
the different classes of load instructions have with respect to its potential
bypassing. The authors analise how many references belong to the stack,
how many can be detected in the fetch stage, how many have an absolute
value . . . They claim they can resolve the addresses of over 65% of all the
BasePlusOffset loads in the fetch stage.14 Although this piece of work is
very interesting at first, they concentrate more on possibilities and talk less
about specific implementations of the different mechanisms presented.

Roth et al.(20) is another piece of work that is highly related with the
mechanisms presented in this document. It combines prefetch with mem-
ory renaming. In this work the authors propose to track loads that pro-
duce addresses and loads that consume those addresses. These loads are
responsible of traversing pointer chasing structures such as trees or lists.
The communication of the data between loads is very complex.

In Ortega et al.(2) the authors of this document experimented with
a combined hardware-software approach to this problem in the context
of numerical applications. The compiler annotates pref instructions allow-
ing the hardware to bypass the execution of other load instructions to the
same line of cache. In Ortega et al.(3) the work was extended by combin-
ing both bypassing and prefetching.

6. CONCLUSIONS

In this paper we have thoroughly analysed a dynamic mechanism
aimed at detecting relations between address producing instructions and
the loads that consume these addresses. This knowledge allows us to
implement a Memory Instruction Bypassing mechanism that issues the
loads before they are fetched by the processor. By issuing loads before,

14All these values take into account a CISC machine as the I32 architecture.



Dynamic Memory Instruction Bypassing 223

our mechanism allows the microarchitecture to see further in the future.
The mechanism brings data from L2 and L1 directly into the register
file, diminishing load-to-use latency. This will become more important in
the near future, where pipeline depths and cache access time will affect
negatively memory operations. Besides, the execution of the load instruc-
tion ahead of time allows the processor to better utilize the resources
involved in the execution such as the ports to L1 and the renaming reg-
isters. As loads are executed when their addresses are known, our mech-
anism behaves as if it were assigning a higher priority to these kind of
instructions, allowing them to use renaming registers ahead of other less
critical instructions. While the bringing of data to the register file is done
speculatively, the use of this register is not decided until the load arrives.
Thus, the mechanism does not need a special recovery mechanism for
incorrectly issued loads, what greatly simplifies the design of the pipeline.

The overall performance improvement produced by the mechanism is
22.24% in average with 4096 entries and two consumers per entry and
grows up to nearly a 50% in applications like 099.go. In average, our
Dynamic Memory Instruction Bypassing with 32 renaming registers, out-
performs a LoadStore base architecture with 64 renaming registers. We
have also shown the relation between our mechanism and the sizes and
latencies of the memory hierarchy, and that our mechanism can bridge the
gap caused by larger caches at longer distances.

ACKNOWLEDGMENTS

This work has been supported by the Ministry of Education of Spain
and the European Union (FEDER funds) under contract TIC2001-0995-
C02-01, and by Hewlett Packard Laboratories.

REFERENCES

1. W. A. Wulf and S. McKee, Hitting the memory wall: Implications of the obvious,
Computer Architecture News, Vol. 23, ACM Press, pp. 20–24 (1995).

2. D. Ortega, M. Valero, and E. Ayguadé, A novel renaming mechanism that boosts soft-
ware prefetching, Proceedings of the 15th Annual International Conference on Supercom-
puting, ACM Press, pp. 501–510 (2001).

3. D. Ortega, J.-L. Baer, E. Ayguadé, and M. Valero, Cost-effective compiler directed
memory prefetching and bypassing, Proceedings of the International Conference on
Parallel Architectures and Compilation Techniques, IEEE Computer Society Press,
pp. 189–198 (2002).

4. A. González, J. González, and M. Valero, Virtual-Physical Registers, Proceedings of the
Annual International Symposium on High-Performance Computer Architecture (February
1998).

5. M. Hrishikesh, N. Jouppi, K. Farkas, D. Burger, S. Keckler, and P. Shivakumar, The
optimal logic depth per pipeline stage is 6 to 8 FO4 inverter delays, Proceedings of



224 Ortega, Valero, and Ayguadé

the 29th Annual International Symposium on Computer Architecture, IEEE Computer
Society Press, pp. 14–24 (2002).

6. A. Hartstein and T. Puzak, The optimum pipeline depth for a microprocessor, Pro-
ceedings of the 29th Annual International Symposium on Computer Architecture, IEEE
Computer Society Press, pp. 7–13 (2002).

7. E. Sprangle and D. Carmean, Increasing processor performance by implementing
deeper pipelines, Proceedings of the 29th Annual International Symposium on Computer
Architecture, IEEE Computer Society Press, pp. 25–34 (2002).

8. M. Moudgill, K. Pingali, and S. Vassiliadis, Register renaming and dynamic specula-
tion: An alternative approach, Proceedings of the 26th Annual International Symposium
on Microarchitecture, IEEE Computer Society Press, pp. 202–213 (1993).

9. R. Balasubramonian, S. Dwarkadas, and D. Albonesi, Dynamically allocating proces-
sor resources between nearby and distant ILP, Proceedings of the 28th Annual Inter-
national Symposium on Computer Architecture, ACM Press, pp. 26–37 (2001).

10. G. Tyson and T. Austin, Improving the accuracy and performance of memory com-
munication through renaming, Proceedings of the 30th Annual International Symposium
on Microarchitecture, IEEE Computer Society Press, pp. 218–227 (1997).

11. A. Moshovos and G. Sohi, Streamlining inter-operation memory communication via
data dependence prediction, Proceedings of the 30th Annual International Symposium
on Microarchitecture, IEEE Computer Society Press, pp. 235–245 (1997).

12. S. Jourdan, R. Ronen, M. Bekerman, B. Shomar, and A. Yoaz, A novel renaming
scheme to exploit value temporal locality through physical register reuse and unifi-
cation, Proceedings of the 31st Annual International Symposium on Microarchitecture,
IEEE Computer Society Press, pp. 216–225 (1998).

13. G. Reinman, B. Calder, D. Tullsen, G. Tyson, and T. Austin, Classifying load and
store instructions for memory renaming, Proceedings of the 13th Annual International
Conference on Supercomputing, ACM Press, pp. 399–407 (1999).

14. A. Moshovos and G. Sohi, Read-after-read memory dependence prediction, Proceed-
ings of the 32nd Annual International Symposium on Microarchitecture, IEEE Computer
Society Press, pp. 177–185 (1999).

15. T. Austin and G. Sohi, Zero-cycle loads: Microarchitecture support for reducing load
latency, Proceedings of the 28th Annual International Symposium on Microarchitecture,
IEEE Computer Society Press, pp. 82–92 (1995).

16. B. Black, B. Mueller, S. Postal, R. Rakvic, N. Utamaphethai, and J. Shen, Load exe-
cution latency reduction, Proceedings of the 12th Annual International Conference on
Supercomputing, ACM Press, pp. 29–36 (1998).

17. A. Yoaz, M. Erez, R. Ronen, and S. Jourdan, Speculation techniques for improving
load related instruction scheduling, Proceedings of the 26th Annual International Sym-
posium on Computer Architecture, IEEE Computer Society Press, pp. 42–53 (1999).

18. B.-K. Chung, J. Zhang, J.-K. Peir, S.-C. Lai, and K. Lai, Direct load: Dependence-
linked dataflow resolution of load address and cache coordinate, Proceedings of the
34th Annual International Symposium on Microarchitecture, IEEE Computer Society
Press, pp. 76–87 (2001).

19. M. Bekerman, A. Yoaz, F. Gabbay, S. Jourdan, M. Kalaev, and R. Ronen, Early load
address resolution via register tracking, Proceedings of the 27th Annual International
Symposium on Computer Architecture, ACM Press, pp. 306–315 (2000).

20. A. Roth, A. Moshovos, and G. Sohi, Dependence based prefetching for linked data
structures, Proceedings of the 8th International Conference on Architectural Support for
Programming Languages and Operating Systems, ACM Press, pp. 115–126 (1998).


