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Instruction Reuse is a microarchitectural technique that exploits dynamic
instruction repetition to remove redundant computations at run-time. In this
paper we examine instruction reuse of integer ALU and load instructions in
network processing applications and attempt to answer the following questions:
(1) How much of instruction repetition can be reused in packet processing
applications?, (2) Can the temporal locality of network traffic be exploited to
reduce interference in the Reuse Buffer and improve reuse? and (3) What is the
effect of reuse on microarchitectural features such as resource contention and
memory accesses? We use an execution driven simulation methodology to
evaluate instruction reuse and find that for the benchmarks considered, 1 to
50% of the dynamic instructions are reused yielding performance improvement
between 1 and 20%. To further improve reuse, a flow aggregation scheme
as well as an architecture for exploiting the same is proposed. This scheme is
mostly applicable to header processing applications and exploits temporal
locality in packet data to uncover higher reuse. As a side effect, instruction reuse
reduces memory traffic and improves performance.

KEY WORDS: Network processors; instruction reuse; value prediction; mul-
tiprocessors.



1. INTRODUCTION

Application Specific Integrated Circuits (ASIC) have been traditionally
associated with handling packet-processing tasks (data plane jobs) in
routers to keep up with line rates. The drawbacks of ASIC based designs
such as long design cycles and lack of flexibility have prompted the
network community to opt for special purpose Network Processing Units
(NPU) to handle packet processing tasks. NPUs are programmable and
are capable of supporting multiple standards and Quality of service (QoS)
requirements. However, the increasing network speeds have placed an
enormous burden on the processing requirements of NPUs that are
expected to carry out a variety of tasks ranging from intelligent packet
forwarding/routing to providing QoS in today’s multimedia rich network
traffic. This necessitates the development of new schemes to speedup
packet processing tasks while keeping up with the ever-increasing line
rates. (1) In this paper we investigate dynamic instruction reuse (IR) as a
means of improving the performance of an NPU. The motivation of this
paper is to determine if instruction reuse is a viable option to be considered
during the design of NPUs and to evaluate the performance improvement
that can be achieved due to reuse.

It has been shown that many static instructions produce only a small
number of values and hence multiple executions of these instructions (i.e.,
dynamic instances) leads to the repeated generation of the same set of
values. (2–4) This repetitive pattern in the values generated by instructions is
exploited by techniques such as value prediction (2–4) (which is a specula-
tive technique) and instruction reuse (5) (a non-speculative technique).
Dynamic Instruction Reuse (IR) (5–10) (or computation reuse) improves the
execution time of an application by reducing the number of instructions
that have to be executed dynamically. Although removal of redun-
dant computations is the job of an optimizing compiler, (9, 10) they do
not succeed many a time due to limited knowledge of run-time data.
A dynamic instruction can be reused if it has the same operands and
produces the same output as a previous instruction (usually a previous
instance of the same instruction). During program execution, instructions
are buffered (cached) in a Reuse Buffer (RB) and future dynamic
instances of the same instruction use the results from the RB if they have
the same input operands. Performance gains are achieved since reused
instructions can bypass some pipeline stages with the result that it allows
the dataflow limit to be exceeded. In case of dynamically scheduled pro-
cessors, performance is further improved since subsequent instructions
that are dependent on the reused instruction are resolved earlier and can
be issued earlier.
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Whereas dynamic instruction reuse has been exploited in the context
of general purpose processing applications, to the best of our knowledge,
this is the first paper that evaluates IR in network-processing applications
as well as enhances it with a flow aggregation scheme. Specifically, the
following are the main contributions of this paper—(i) we evaluate
dynamic instruction reuse for a few packet-processing applications and
show that instruction repetition is quite prevalent especially in header pro-
cessing applications. (ii) We propose an aggregation scheme that combines
the high-level concept of network traffic, i.e., ‘‘flows’’ with the low level
microarchitectural feature of programs, i.e., repetition of instructions and
data and propose an architecture that exploits temporal locality in incom-
ing packet data to improve IR. The idea is to store reuse information of
related packets (flows) in separate RB’s (or separate sections of a single
RB) so that interference in the RB’s is reduced. We find that the benefits
that can be achieved by exploiting flow aggregation significantly depends
on the incoming traffic pattern as well as the application being executed.
(iii) We evaluate the impact of IR on resource contention and memory
accesses when flow aggregation is exploited.

The rest of the paper is organized as follows. In Section 2, we provide
a brief overview of IR. We discuss the concept of network flows and how
flow aggregation can be used to improve IR in Section 3. In Section 4, we
describe the simulation methodology used to report results and conclude in
Section 5.

2. DYNAMIC INSTRUCTION REUSE—AN OVERVIEW

In this section we briefly describe the methodology used by Sodani
and Sohi (5) to exploit IR. We employ the same technique to analyze base
IR in this paper. Research has shown that over 80% of the dynamic
instructions executed in SPEC programs are repeated and this repetition is
caused by a few static instructions. (7) It has been argued (7) that the repeti-
tive nature of values being generated by instructions is due to (i) external
inputs being repetitive, (ii) concise program representation (e.g., loop
structures in which the index variables execute with same values) and (iii)
non-scalar variables being represented using data structures (e.g., instruc-
tions accessing the data structure are often executed before the actual data
variable is accessed). In other words, instruction/data repetition is an arti-
fact of the way in which a program is represented and is less dependent on
input data. In case of packet-processing applications, we find that IR
(especially the flow based reuse proposed in Section 3) is significantly
affected by the nature of traffic pattern (input data) too.
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IR is exploited using a RB which is similar to a small cache. The RB is
used to store the operand values and result of instructions that are executed
by the processor. In this scheme denoted by Sv (v for value), the RB con-
sists of a tag, input operands, result, address, and memvalid fields. (5) When
an instruction is decoded (or register read is complete), its operand values
are compared with those stored in the RB. The Program Counter (PC) of
the instruction is used to index into the RB. If a match occurs in the tag
and operand fields, the instruction under consideration is said to be reused
and the result from the RB is utilized. It is assumed that the reuse test can
be performed in parallel with instruction decode/register read. (5) In some
architectures, the register read operation is deferred to a later stage in the
pipeline ( just before execution) in which case, the reuse test has to be ini-
tiated at this point in time. One must remember that the reuse test (access
to the RB to determine if an instruction can be reused) can be carried out
only if all operands of the instruction concerned are available. The reuse
test according to the authors of Ref. 5 will usually not lie in the critical
path since the accesses to the RB can be pipelined. The tag match can be
initiated during the instruction fetch stage since the PC value of an instruc-
tion is known by then. It has been found that load and store operations
frequently fetch/write to the same address locations, often with the same
values. (3, 4) Execution of load instructions involves an address computation
and then accessing the memory location specified by the address. The
address computation part of a load instruction can be reused if the
instruction operands match an entry in the RB, while the actual memory
value can be reused if the addressed memory location was not written by a
store instruction. The memvalid field indicates whether the value loaded
from memory is valid while the address field indicates the memory address.
When the processor executes a store instruction, the address field of each
RB entry is searched for a matching address, and the memvalid bit is reset
for matching entries.

Since the result value of a reused instruction is available from the RB,
the execution phase is avoided reducing the demand for resources. In case
of load instructions, reuse (outcome of load being reused) reduces port
contention, number of memory accesses (11) and bus transitions. In most
current day processors that have hardware support for clock gating, this
could lead to significant savings in energy in certain parts of the processor
logic. (12) This could be significant in statically scheduled processors where
instructions dependent on reused instructions cannot be issued earlier. In
dynamically scheduled processors, IR allows dependent instructions to
execute early which changes the schedule of instruction execution resulting
in clustering or spreading of request for resources. This leads to either an
increase or decrease in resource contention; (6) where resource contention is
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defined as the ratio of the number of times resources are not available for
executing ready instructions to the total number of requests made for
resources.

In this paper we assume that the RB is updated by instructions that
have completed execution and are ready to update the register file. This
ensures that precise state is maintained with the RB containing only the
results of committed instructions (i.e., squash reuse (5)—IR due to control
independent instructions executed along a wrong path when the RB is
updated with speculative instructions—is not exploited). We consider only
integer ALU and load instructions since floating point instructions seldom
occur in network applications. We also use separate RB’s for load and
ALU instructions since it reduces the overall storage. For the rest of the
paper we refer to the instruction reuse scheme mentioned above (i.e., pro-
posed in Ref. 5) as the base reuse scheme.

3. IMPROVING REUSE BY AGGREGATING FLOWS

A flow may be thought of as a sequence of packets sent between a
source/destination pair following the same route in the network. A router
inspects the Internet Protocol (IP) addresses in the packet header and
treats packets with the same source/destination address pairs as belonging
to a particular flow. A router may also use application port ( layer 4)
information in addition to the IP addresses to classify packets into flows.
When packets with a particular source/destination IP address pair traverse
through an intermediate router in the network, one can expect many more
packets belonging to the same flow (i.e., having the same address pair) to
pass through the same router (usually through the same input and output
interfaces) in the near future. All packets belonging to the same flow will
be similar in most of their header (both layer 3 and layer 4) fields and
many a time in some portions of their payload too (e.g., when packets are
encapsulated, many fields which belonged to a header will now be part of
the payload of the new packet). For example, the source/destination IP
addresses, ports, version, header length and protocol fields in an IP packet
header will be the same for all packets of a particular connection/session.
It is also reasonable to assume that packets of the same connection have
the same packet length. Packet header processing applications such as
firewalls, route lookup, network address translators, intrusion detection
systems etc, are critically dependent on the above fields and have the
potential to uncover higher reuse if flow aggregation is exploited. IR can be
improved if the processor that processes these packets somehow identifies
the flow to which the packet belongs to, and uses different RB’s for differ-
ent flows. The idea is to have multiple RB’s (or a single RB which is
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suitably partitioned), each catering to a flow or a set of flows so that
similarity in data values (at least header data) is preserved ensuring that
evictions in the RB is reduced.

Flow aggregation may be viewed as a data placement scheme that
places related or similar data at similar locations (in the same RB or same
sections of an RB). This ensures that queries to a RB will result in a high
probability of hits leading to higher IR. It must be noted that while
instruction (and data) repetition is prevalent, it has to be captured or
uncovered using an appropriate RB to obtain performance benefits. The
aggregation strategy in network applications works at the granularity of
packets, i.e., given a packet, the processor must determine which RB (or
section of a RB) to query to exploit IR for instructions that will operate on
that packet. In case of multiprocessor systems, an application is partitioned
into tasks that are mapped to multiple processors which implies that the
total number of dynamic instructions executed is divided between the PEs.
Since now there are fewer instructions to be executed on each PE, fewer
data values will be generated/used yielding better hit rate if a RB is used.

A simple example (see Fig. 1) is used to illustrate how flow aggrega-
tion reduces the possibility of evictions in a RB and enhances reuse. For
simplicity, let us assume that an ALU operation (say addition) is computed

 a1 b1     a1+b1

 a2 b2     a2+b2

 a3 b3     a3+b3

 a4 b4     a4+b4

Operand Result 

 a1 b1     a1+b1

 a2 b2     a2+b2

Operand Result 

 a3 b3     a3+b3

 a4 b4     a4+b4

Operand Result 

a1 b1 a2 b2 a3 b3 a4 b4 a5 b5 a1 b1 

Pkt1 Pk t4  Pkt5  Pkt6 Pkt3 Pkt2 

Time 

Miss, Evict 

LRU entry 

Miss, Evict 

LRU entry 
Hit 

Reuse Buffer 

RB1  RB2 

# Hits = 0 

# Evictions = 2 

# Hits = 1 

# Evictions = 1 

(a)  (b)

Fig. 1. An example comparing (a) normal instruction reuse with (b)
flow based reuse.
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by the NPU on incoming packet data ai, bi. Figure 1(a) shows the IR
scheme without flow aggregation using a single 4 entry RB while Fig. 1(b)
exploits flow aggregation using two RB’s. Assume that incoming packets
are classified into two flows—Pkt1, Pkt2, and Pkt6 belong to flowA while
Pkt3, Pkt4, and Pkt5 belong to flowB. The RB (Fig. 1(a)) is updated by
instructions that operate on the first four packets. When the contents of
Pkt5 is processed (there is no hit in the RB), the LRU entry (i.e., a1, b1 is
evicted and overwritten with a5, b5. This causes processing of the next
packet Pkt6 to also miss (since the contents were just evicted) in the RB.
Now assume that a flow aggregation scheme is used with multiple (or par-
titioned) RB’s so that program instructions operating on packets belonging
to flowA query RB1 and those operating on flowB query RB2 for exploiting
IR. This allows more reuse to be uncovered since instructions operating on
Pkt5 will be mapped to RB2 (which will again be a miss) while instructions
operating on Pkt6 mapped to RB1 will cause a hit and enable the result to
be reused leading to an overall improvement in IR. The amount of IR that
can be uncovered depends on the nature of traffic and data values, and it is
quite possible that IR could decrease if smaller RB’s are used or if ill-
behaved traffic patterns occur (more on this in Section 4.2).

3.1. Flow Identification

One can relax the previous definition of a flow (Section 3) and classify
packets related in some other sense as belonging to a flow. For instance,
the input interface through which packets arrive at a router and the output
interface through which packets are forwarded could be used as possible
alternatives. This is a natural way of flow classification since in most cir-
cumstances packets of the same flow travel along the same path from the
source to the destination. For every packet that arrives, the NPU must
determine the RB to be associated with instructions that operate on that
packet. Flow classification based on the output port involves some compu-
tation to determine the egress interface. This egress interface is determined
using the Longest Prefix Match (LPM) algorithm and is computed for
every packet irrespective of whether IR is exploited or not. (13) Most routers
employ route caches to minimize computing the LPM for every packet
thereby ensuring that the output interface is known very early. Classifica-
tion of flows based on the input port involves little or no computation
(since the input interface through which a packet arrives is known) but
uncovers a smaller percentage of reuse for some applications. In case of
routers that have a large number of ports, a many-to-one mapping between
interfaces and RB’s to be queried by instructions is necessary to ensure that
the solution is practical. Although a very accurate classification scheme is
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usually not required, consistency must be maintained in mapping packet
flows to RB’s for appreciable improvement in results.

3.2. Architecture Proposal

For single processor systems the architecture proposed in Ref. 5 with a
few minor changes is sufficient to exploit flow based IR. However, for
multiprocessor and/or multithreaded systems which are generally used in
designing NPUs, (14, 15) extra modifications are required. The description
given in this section is a proposal of an architecture that enables flow
aggregation to be exploited and does not mimic the architecture used by
us to report results in the paper. A more realistic evaluation using a
multiprocessor simulation environment and an in-depth study of various
architectural alternatives is currently being carried out as part of future
work.

The NPU is essentially a chip multiprocessor consisting of multiple
Processing Elements (PE’s) each of which could support multiple threads of
execution. Figure 2 shows the microarchitecture of a single PE. Each PE
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Fig. 2. A possible microarchitecture to exploit IR using the flow aggregation scheme.
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has a RB array consisting of N+1 RB’s (or a single RB that is partitioned
into N+1 portions)—RB0,..., RBN. RB0 is the default RB that is queried
by instructions before the flow id of a packet is computed (for output port-
based scheme only). The NPU also consists of a Flow id table that indicates
the flow id for a packet and a mapper that identifies the RB to be used for
that packet. The Flow id table and the mapper are accessible by all PE’s of
the NPU and also by the memory controller which is responsible for filling
an entry on the arrival of a new packet. The flow id field is initialized to a
default value (say 0) which maps to the default RB − RB0. This field is
updated once the actual flow id is computed based on any of the schemes
mentioned previously. One scheme for implementing flow based IR is to
tag packets that arrive at the router or NPU. This tag serves as a packet
identifier, which after mapping, becomes the RB identifier and is used by
instructions operating on the packet to query the appropriate RB. Another
scheme would be one in which the packet id of the packet currently being
processed by a thread is obtained by tracking the memory being accessed
by read/load instructions (we assume that a packet is stored in contiguous
memory). This scheme is described in more detail in this paper.

The essence of the problem at hand is to determine the appropriate
RB to be queried by instructions operating on a packet and switch between
RB’s when necessary. This implies that the hardware must know which
packet a thread is processing at any instant in time. The packet currently
being processed by a thread is not known to the hardware since accesses to
a packet are seen as load/store instructions to some memory address. This
memory address has to be associated with a packet id for the Flow id table
to be accessed. This is achieved by introducing an address range table that
is maintained by the memory controller. The address range table contains a
packet id, lo_addr and hi_addr fields. The lo_addr entry corresponds to the
starting address in memory where the packet is stored. The hi_addr, which
denotes the ending address of the packet depends on the packet length and
is known to the memory controller (from the link layer information).

When a new packet arrives, it is transferred from the MAC controller
to the memory by the memory controller. The number of bytes to be
transferred is indicated by the link layer to the memory controller. (13) The
memory controller updates a new entry in the address range table for the
packet just received and fills up the lo_addr and hi_addr fields. Instructions
(except loads) that operate on the new packet to determine its flow id access
the default RB (as mentioned before, instructions belonging to a thread for
which the flow id is not known access the default RB). When the PE exe-
cutes load instructions, the address range table is accessed (in parallel to the
default RB which is queried for exploiting reuse) to determine if the effec-
tive address of the load instruction matches any one of the entries. A match

Effectiveness of Flow Aggregation in Improving Instruction Reuse 477



in the address range table is said to occur when the effective address
computed lies between lo_addr and hi_addr. This implies that the load
instruction accessed some data from the packet whose id is given by the
packet id field in the table. This packet id field is stored in a register
within the thread context that executed the load instruction. All sub-
sequent instructions belonging to the same thread continue to use the
same packet id. Each thread stores the packet id of the packet currently
being processed, the thread id and the flow id to which the packet belongs
in local thread registers. The selection of the RB based on the flow id is
made possible by augmenting the instruction queue and Reorder Buffer
(RoB) with the thread id and the RB id (the mapper gives the flow id to
RB id mapping). Instructions belonging to different threads access the
Flow identifier table that indicates the RB to be queried by that instruc-
tion. The flow id field indicates the default RB (RB0) initially. After a
certain amount of processing, the thread that determines the output port
(for output-port based scheme) updates the flow id entry in the Flow iden-
tifier table for the packet being processed. This information is known to
all other threads operating on the same packet through the centralized
Flow identifier table. Once the flow id is known, the mapper gives the
exact RB id (RB to be used) which is stored in thread registers as well as
in the instruction queue.

When the processing of the packet is complete, it is removed from
memory, i.e., it is forwarded to the next router or sent to the host processor
for local consumption. This action is initiated by some thread which resets
the flow id field in the Flow identifier table. In summary, IR is always
exploited with instructions querying either the default RB or a RB specified
by the flow id. The main drawback of the above scheme is the complexity
(number of read/write ports, table size which depends on the number of
packets that can be stored at any instant in the NPU) involved in designing
the centralized Flow identifier table and address range table that could be
the potential bottleneck in the system. Also, the address range table is also
not always indicative of the correct packet being processed since it makes
certain assumptions about the underlying architecture.

An alternative architecture that is popular (and more practical) in
many NPUs and that would solve many of the above problems is to intro-
duce a classification step that sends all packets of the same flow to the
same processor. (16) In such an architecture, explicit mapping of the flow id
to the RB to be queried is not required and many of the hardware struc-
tures shown in Fig. 2 can be done away with. The main drawback of this
scheme is that the PE’s could be non-uniformly loaded (e.g., when packets
of some flows arrive at a faster rate than others) resulting in performance
degradation.
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4. SIMULATION METHODOLOGY AND RESULTS

The goal of this paper is to understand if placing data in different
RB’s (data placement is done indirectly by determining which RB to
query/update) using the high level concept of packet flows is beneficial or
not. At the time of writing this paper, a complete multiprocessor simula-
tion environment (as proposed in the previous section) was not yet avail-
able. Hence, we use a single processor model in our evaluations.

Before proceeding any further we shall briefly digress to understand
the state-of-the-art in network processor benchmarks. This will enable us to
understand the current problems facing the network processor benchmark-
ing community and justify our use of certain benchmarks in this paper.
Benchmarking network processors is a challenging problem since they
employ widely varying (heterogeneous) hardware architectures with diverse
programming models encompassing a myriad of applications (17, 18) Efforts
are being made by the NPF Benchmarking Working Group (19) to stan-
dardize benchmarks for NPUs that is widely acceptable to vendors and
that allows a fair comparison between NPUs. Benchmarks for NPU can be
classified in a hierarchical manner into system-level, function-level, micro-
level and hardware-level classes. Two popular NPU benchmarks that are
publicly available are CommBench (20) and NetBench. (21) The benchmark
programs in both are divided into Header and Payload Processing Appli-
cations (HPA/PPA) and consist of small program kernels belonging to the
micro-level and function-level categories that are more ‘‘general-purpose’’
than network specific.

Table I. Base IR and Speedup for Different RB Configurations. R=% Instructions

Reused; S=% Improvement in IPC. Reduction in Memory Traffic for a (32,8) RB Is

Shown in the Last Column

32,4 32,4 128,4 128,4 1024,4 1024,4 Mem
Benchmark R S R S R S Traffic

FRAG 7.9 3.7 20.4 4.9 24.4 8.3 42.1
DRR 12.6 0.16 15.5 0.5 18.2 0.86 11.6
RTR 15.2 3.8 33.2 6.1 47.6 8.1 71.3

REED ENC 19.8 2 20.3 2.05 25.2 2.95 8.7
REED DEC 6.6 1.76 11.8 4 16.6 5.6 4.9

CRC 19.1 19.6 20.7 19.84 21.8 19.84 35.1
MD5 1.4 1.3 3.5 2.3 14.2 8.3 34.3
URL 18.8 9.4 19.9 11.2 22.2 12.7 42
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We modified the SimpleScalar (22) simulator (MIPS ISA) and used the
default configuration (22) to evaluate IR on a subset of programs represen-
tative of different classes of applications from CommBench (20) and Net-
Bench (21) (see Table I) (these were used primarily due to lack of stan-
dardized set of NPU benchmark programs). It must be noted that we use
SimpleScalar since it is representative of an out-of-order issue pipelined
processor with dynamic scheduling and support for speculative execution.
In other words, we assume that the NPU is based on a superscalar RISC
architecture which is representative of many NPUs available in the market.
Further, using Simplescalar enables easy comparison with some statistics
obtained in Refs. 20 and 21 that use the same environment. Though IR can
be exploited in statically scheduled processors as well as in in-order issue
processors, the returns obtained will be much lower since dependent
instructions cannot be issued early.

We assume that the reuse test can be performed in parallel with
instruction decode just as in Ref. 5. The simulator is modified so that
instructions query the RB’s during the decode/register read stage. Basi-
cally, the flow aggregation scheme requires the flow id of every packet to be
determined and an appropriate RB to be queried. The RB to be used by
instructions operating on a packet is determined by computing the LPM
for the packet and storing it in a table. Packets are processed in sequence
since Simplescalar is a uniprocessor single threaded simulator. Every
application has a certain function (or piece of code) that reads a new
packet. When the PC of an instruction matches the PC of the function that
reads a new packet, the output port for the packet is read from a pre-
computed table of output ports. This identifies the RB to be used for the
current set of instructions being processed. The RB identifier is stored in
the Register Update Unit (RUU) along with the operands for the instruc-
tion and the appropriate RB is queried to determine if the instruction can
be reused.

The inputs provided with the benchmarks were used in all the experi-
ments except FRAG for which randomly generated packets with fragment
sizes of 64, 128, 256, 512, 1024, 1280, and 1518 bytes were used. (23) We
evaluate IR for ALU and Load instructions for various sizes of the RB.
We denote the RB configuration by the tuple (x, y) where x represents the
size of the RB (number of entries) and y the associativity (number of dis-
tinct operand signatures per entry)—x takes on values of 32, 128, and 1024
while y takes on values of 1, 4, and 8. Statistics collection begins after
0.1 million instructions and the LRU policy is used for evictions since it
was found to be the best scheme. A realistic evaluation of network pro-
cessing applications is possible if benchmarks that truly represent real
world applications are available. Traffic traces available at various sites in
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the Internet are usually anonymized (sometimes with a lot of fields
removed) making it difficult to analyze IR which is highly data dependent.
For some of our experiments, we use the traffic traces collected at the
University of Buffalo and Columbia University (these traces are available
at http://pma.nlanr.net/PMA/) since they have more realistic packet con-
tents (although anonymized, including interface numbers which can be
used for aggregation) compared to other traces.

4.1. Reuse and Speedup—Base Case

Table I shows IR uncovered by different RB configurations and
speedup for the benchmark programs considered. Results indicate that
network-processing applications exhibit substantial IR which depends on
the correlation in packet data. The locality of data in network traffic varies
depending on where packets are collected. For example, we can expect high
locality at edge routers while the actual advantage that can be derived from
locality depends on the working set sizes which is usually large in most
applications. (24) It should also be noted that there is no direct relation
between hits in the RB and the speedup achieved since speedup is governed
not only by the amount of IR uncovered but also by the availability of free
resources and the criticality of the instruction being reused. Though
resource demand is reduced due to IR, resource contention becomes a
limiting factor in obtaining higher speedup. An appropriate selection of
both the number entries in the RB and the associativity of the RB are cri-
tical in obtaining good performance improvements. DRR is rather unin-
teresting yielding a very small speedup even with an (1024,4) RB. A closer
examination of the DRR program reveals that though it is loop intensive, it
depends on the packet length that varies widely in our simulations. A more
significant reason for the low gain in speedup is due to the high resource
contention (see Fig. 4). On increasing the number of integer ALU units
to 6, multiply units to 2 and memory ports to 4 (we shall refer to this con-
figuration as the extended configuration), a speedup of around 5.1% was
achieved in DRR for a (32,8) RB.

4.2. Flow Aggregation Results

Instruction reuse and speedup that can be achieved due to flow
aggregation depends significantly on the traffic pattern. We carried out the
simulation using 8 network interfaces (ports) with randomly generated
addresses and network masks (mask length varies between 16 and 32). We
use separate RB’s for ALU and load instructions since only load instruc-
tions utilize the memvalid and address fields in the RB. We find that the
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flow aggregation scheme with 2 RB’s is sufficient to uncover significant IR
for most benchmarks considered. We report results only for those cases for
which the returns are considerable (best case results). The flow aggregation
scheme is based on the output port with a simple mapping scheme (for
RTR benchmark we use the input port scheme since this is the program
that computes the output port). We map instructions operating on packets
destined for port 0 and 1 to RB1, 2, and 3 to RB2 and so on. This type of
mapping is clearly not optimal and better results can be expected if other
characteristics of network traffic are exploited in determining a mapping.
Since most traffic traces are anonymized, this kind of analysis is difficult to
carry out and we do not explore this design space.

Figure 3 shows the best-case speedup improvement due to flow aggre-
gation for FRAG and RTR programs over the base scheme. A breakdown
of the contribution due to reusing ALU and load instructions is also
shown. Flow aggregation is capable of uncovering significant amount of
IR; sometimes even when smaller RB’s are used (this is highly dependent
on the input data). For example, in case of the FRAG program, three RB’s
with (128,8) configuration results in the same speedup as a single RB with a
(1024,8) configuration. We carried out experiments with other traces and
obtained varying amounts of IR and speedup. While IR invariably increa-
ses due to the flow aggregation scheme (we also obtained results in which
base reuse is better than flow aggregation for some programs), speedup,
being dependent on other factors (such as criticality, availability of resour-
ces), shows little improvement in many cases. To examine the effect of
reducing resource contention on speedup, we tried the extended configura-
tion and obtained a 4.8% improvement in speedup for RTR (2.3% for
FRAG) over the flow-based scheme (with (32,8) RB). Determining IR and
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Fig. 3. Speedup improvement due to IR for FRAG and RTR.
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speedup due to flow aggregation for payload processing applications is
rather difficult since most network traffic traces are anonymized (with the
payload portion being removed). We used the inputs provided with the
benchmarks as well as data traffic from our LAN environment to carry out
experiments related to payload applications. This obviously is not very
precise and does not emulate real world traffic since packets within a LAN
environment are usually highly correlated resulting in optimistic results.
Speedup improvement between 2 to 4% (best case results) was obtained for
these benchmarks. Results of IR with flow aggregation for payload pro-
cessing applications are not shown in this paper since it requires further
evaluation with realistic traffic payload.

For some other traffic traces (e.g., that collected from the University
of Buffalo) the returns due to flow aggregation are not too large (see
Table II). In many of the simulations with the FRAG benchmark, we
found that a non-partitioned RB results in better hits indicating that the
normal IR scheme is good enough. This usually happens when the size of
the RB is less than 1024 entries. We observe that flow aggregation with 2
RB’s of (512,2) configuration yields a larger number of RB hits than a
single RB (base reuse) of (1024,2) configuration. The results indicate (as
expected) that for small size RB’s, a single signature per PC (i.e., (x, 1) RB
configuration) uncovers higher reuse as the RB now contains a larger set of
static instructions. As the RB size is increased and the working set of
instructions is nearly captured in the RB, the number of different instances
per PC (values generated) significantly influences the amount of reuse that
can be exploited. A comparison between results obtained for FRAG indi-
cates that traces collected at the University of Buffalo (Table II) have
higher repeatability (and larger hit rates) in data values compared to the
randomly generated values used in Table I.

Table II. A Comparison between Normal IR and Reuse Due to Flow-Aggregation

Based on the Input Interface for the FRAG Benchmark

Base Reuse (1 RB) Flow Reuse (2 RB)

RB Config % hits RB Config % hits

(32,1) 8.86 (16,1) 7.15
(16,2) 4.58 (8,2) 2.81
(128,1) 19.98 (64,1) 14.5
(64,2) 17.35 (32,2) 10.6

(1024,1) 20.11 (512,1) 18.42
(512,2) 25.8 (256,2) 26.12
(2048,1) 20.11 (1024,1) 18.42
(1024,2) 25.91 (512,2) 26.34
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Fig. 4. Resource demand and contention due to IR.

4.3. Impact of IR on Resources

Figure 4 shows that resource demand due to flow aggregation is lower
than in the base IR scheme. Resource demand is calculated by normalizing
the number of resource accesses with IR to that without IR. The figure also
shows resource contention normalized to the base case. As mentioned in
Section 2, contention may increase or decrease due to IR. We find that
resource contention comes down drastically on using the extended configu-
ration. Load instruction reuse also reduces memory traffic (11) significantly,
(see last column of Table I) which decreases the activity factor over the
high capacitance buses making it a possible candidate for low power.
Energy savings can also be obtained due to reduced number of executions
when an instruction is reused. However, certain amount of energy is spent
in accessing the RB. Previous work (12, 25, 26) has shown that an average
power improvement of 5.4% can be achieved by exploiting IR. Since a
reused instruction executes and possibly commits early, it occupies a RUU
slot for a smaller amount of time. This reduces the stalls that would occur
as a result of the RUU being full. Flow based reuse has the ability to
further improve IR thereby reducing the RUU occupancy (1.5 to 3%) even
more compared to the base scheme.

5. CONCLUSIONS AND FUTURE WORK

In this paper we examined instruction reuse in a few packet-processing
applications. To further enhance the utility of reuse by reducing inter-
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ference, a flow aggregation scheme that exploits correlation in packet data
was proposed. The flow-based scheme utilizes multiple RB’s (or a single
partitioned RB) to uncover larger reuse and speedup. A best-case speedup
improvement varying between 1 and 20% was obtained when both ALU
and load instructions were exploited. Further, since the flow aggregation
scheme reduces memory accesses even more, the number of bit transitions
on the processor memory bus decreases further reducing energy consump-
tion. This is probably compensated to some extent due to accesses to the
Reuse Buffer. We find that the hit rate in the RB with flow aggregation is
higher than base reuse only when the size of the RB is sufficiently large.
This however varies between applications and input data sets. We are in
the process of carrying out a detailed evaluation of the architecture pro-
posed along with suitable power models to estimate the effectiveness of the
flow-based scheme. Initial results on a multiprocessor simulator indicate
that reuse is higher within each processing element due to localization of
instructions and data.

Exploiting flow aggregation to recover larger reuse is not restricted to
header processing applications alone. Internet traffic studies show that
significant temporal correlation exists in network traffic which could be
exploited by the flow based scheme for payload processing applications
too. We will investigate this more extensively in future work. The only
problem we foresee is in obtaining real packets whose headers and payload
are both not anonymized. An important issue that is worth considering is
to determine which instructions really need to be present in the RB. Inter-
ference in the RB can be reduced if critical instructions are identified and
placed in the RB. Similarly, rather than using the plain LRU replacement
policy, a policy that combines LRU and the notion of criticality will yield
better results. Further, a detailed exploration of various mapping schemes
is necessary to evenly distribute related data between RB’s. These will be
carried out as part of future work.
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