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Abstract. Statistical methodology is devised to model time series of daily weather at individual loca-
tions in the southeastern U.S. conditional on patterns in large-scale atmosphere–ocean circulation. In
this way, weather information on an appropriate temporal and spatial scale for input to crop–climate
models can be generated, consistent with the relationship between circulation and temporally and/or
spatially aggregated climate data (an exercise sometimes termed ‘downscaling’). The Bermuda High,
a subtropical Atlantic circulation feature, is found to have the strongest contemporaneous correla-
tion with seasonal mean temperature and total precipitation in the Southeast (in particular, stronger
than for the El Niño–Southern Oscillation phenomenon). Stochastic models for time series of daily
minimum and maximum temperature and precipitation amount are fitted conditional on an index
indicating the average position of the Bermuda High. For precipitation, a multi-site approach involv-
ing a statistical technique known as ‘borrowing strength’ is applied, constraining the relationship
between daily precipitation and the Bermuda High index to be spatially the same. In winter (the time
of greatest correlation), higher daily maximum and minimum temperature means and higher daily
probability of occurrence of precipitation are found when there is an easterly shift in the average
position of the Bermuda High. Methods for determining aggregative properties of these stochastic
models for daily weather (e.g., variance and spatial correlation of seasonal total precipitation) are
also described, so that their performance in representing low frequency variations can be readily
evaluated.

1. Introduction

Many apparent connections between patterns in large-scale atmosphere–ocean cir-
culation and climate in the southeastern U.S. have been noted in the literature.
Prominent enough to be cited in studies ranging from national to global in scope is a
tendency for winters to have below average temperature and above average precip-
itation during El Niño–Southern Oscillation (ENSO) warm phase events (Kiladis
and Diaz, 1989; Ropelewski and Halpert, 1986). The climate in the Southeast has
also been linked to the hemispheric-scale circulation, including the Pacific/North
American (PNA) pattern (Leathers et al., 1991) and the North Atlantic Oscillation
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(NAO) (Rogers, 1984), and to features of the Atlantic subtropical circulation such
as the Bermuda High (BH) (Stahle and Cleaveland, 1992).

One reason for focusing on the Southeast is that effects of large-scale circula-
tion, particularly the ENSO phenomenon, have been detected in crop yields; for
instance, corn yields tend to be higher during ENSO cold phase events (Hansen et
al., 1998, 1999). These impacts on crop yields have also been quantified indirectly
through use of mechanistic crop models such as EPIC (Erosion Productivity Impact
Calculator; Williams et al., 1989) (Izaurralde et al., 1999; Legler et al., 1999).
In related work, Peters et al. (2003) found that a vegetation index, derived from
remotely sensed data for the Southeast, has a negative response to ENSO warm
phase events. Crop yield can be viewed as a complex integrator of weather over
time. In fact, typical crop–climate models require weather inputs on a daily time
scale, including minimum and maximum temperature and precipitation amount.
Streamflow, another integrator of weather (especially precipitation) over both space
and time, tends to be enhanced in the Gulf of Mexico region during ENSO warm
phase events (Kahya and Dracup, 1993).

The purpose of the present paper is to statistically model the relationship
between daily weather at individual locations in the Southeast and large-scale
atmosphere–ocean circulation. The methodology involves fitting stochastic
weather generators (e.g., Parlange and Katz, 2000; Richardson, 1981; Wilks and
Wilby, 1999) conditional on circulation indices (Katz and Parlange, 1993, 1996;
Woolhiser et al., 1993). Because of difficulties in detecting the weaker circulation
signal in precipitation, the statistical technique known as ‘borrowing strength’ is
applied (Tukey, 1961). This multi-site approach involves constraining the effect of
the circulation index on a daily weather statistic to be the same at all locations
within a specified region.

Among the indices of the BH, NAO, ENSO, and PNA averaged seasonally, the
one having the strongest contemporaneous correlation with seasonal total precip-
itation and mean minimum and maximum temperature at eight locations in the
Southeast is identified. The statistical methodology is then applied to model the
relationship between the selected index and time series of daily minimum and
maximum temperature and precipitation amount at the same locations. Through
this statistical approach, weather data on an appropriate temporal and spatial scale
for input to crop–climate models can be produced, consistent with the relationship
between the circulation index and seasonally aggregated climate data (an exercise
sometimes termed ‘downscaling’; Wilby and Wigley, 1997). Methods for deter-
mining aggregative properties of these stochastic models for daily weather (e.g.,
variance and spatial correlation of seasonal total precipitation as aggregated from
daily weather generated by these models) are also described.
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Table I

List of acronyms for atmosphere–ocean circulation
features and indices

Feature Acronym

Bermuda pressure BER

Bermuda High BH

Bermuda High index BHI

El Niño–Southern Oscillation ENSO

North Atlantic Oscillation NAO

New Orleans pressure NO

New Orleans pressure index NOI

Pacific/North Atlantic pattern PNA

Southern Oscillation SO

2. Background

Several studies have specifically focused on connections between temporally
and/or spatially aggregated climate in the Southeast and large-scale atmosphere–
ocean circulation patterns (Table I lists acronyms for circulation features). Upon
closer examination, the link between ENSO and temperature and precipitation
mentioned in the Introduction actually appears to be somewhat limited in extent
both temporally (i.e., only during winter season) and spatially (i.e., only for part
of Florida, as well as other portions of the Gulf Coast). In a systematic study of
the relationship between large-scale circulation and precipitation in the Southeast,
Henderson and Vega (1996) found a statistically significant correlation with ENSO
only in Florida and only during the winter. In their study of precipitation during
the spring in the southeastern coastal states of Georgia, North Carolina, and South
Carolina, Stahle and Cleaveland (1992) did not detect any statistically significant
correlation with ENSO. Neither did Downton and Miller (1993) for winter mean
(or minimum) temperature averaged over central Florida.

Warmer than normal winters tend to occur in the Southeast with strong zonal
flow over the North Atlantic, a possible connection to the NAO (Rogers, 1984). For
instance, Downton and Miller (1993) obtained statistically significant correlations
between winter mean (or minimum) temperature averaged over central Florida and
the NAO. But no connection to precipitation in the Southeast has been identi-
fied, with Henderson and Vega (1996) finding essentially no correlation. Likewise,
Stahle and Cleaveland (1992) did not detect any correlation between the NAO and
spring precipitation in the southeastern coastal states (not including Florida).

Lower (higher) than normal temperatures over the Southeast are associated with
a meridional (zonal)-like flow pattern over the continental U.S., particularly in
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winter, a possible link to the PNA (Leathers et al., 1991). For example, Down-
ton and Miller (1993) obtained statistically significant correlations between winter
mean (or minimum) temperature averaged over central Florida and the PNA. For
precipitation, any relationship to PNA is anticipated to be weaker and primarily in
winter, with meridional flow being associated with lower than normal precipitation
inland (i.e., west of the Appalachian Mountains), but not necessarily in coastal
areas (i.e., east of the Appalachians) where the relationship might even be reversed
(Leathers et al., 1991). In particular, Henderson and Vega (1996) obtained a statisti-
cally significant negative correlation between the PNA and winter precipitation for
the inland (‘North Central’) portion of the Southeast, but a positive correlation for
Florida, and otherwise no relationship along the East Coast. Stahle and Cleaveland
(1992) could not find any connection between the PNA and spring precipitation for
the southeastern coastal states (not including Florida).

In attempts to identify sources of low frequency variations in the climate of the
Southeast, features of the Atlantic subtropical circulation have recently received
some consideration as well. One such feature is the BH or North Atlantic sub-
tropical anticyclone (Davis et al., 1997). Stahle and Cleaveland (1992) provided
evidence that spring precipitation in the southeastern coastal states (not including
Florida) is lower (higher) than normal if the western edge of the subtropical high
is west (east) of its average position. Henderson and Vega (1996) found more ro-
bust correlations between seasonal total precipitation and the BH than with ENSO,
NAO, or PNA, the relationship always being statistically significant irrespective of
season or subregion of the Southeast. Connections to the temperature in the South-
east have received less attention, but Henderson and Muller (1997) did suggest that
temperature extremes in the adjacent South Central region of the U.S. are related
to the BH.

Although much research has been devoted to the relationship between large-
scale atmosphere–ocean circulation and spatial and/or temporally aggregated
climate, not nearly as much work has been conducted on the corresponding re-
lationships to daily weather data at individual sites, whether for the Southeast or
elsewhere. Usually, the approach has been to let the data ‘speak for themselves’
(e.g., Legler et al., 1999). That is, the daily weather observations are ‘composited’
according to a categorization of circulation patterns (e.g., El Niño, neutral, and La
Niña events), without an explicit examination of the circulation effects on these
scales. The limitations of this approach relate to the non-uniqueness in disag-
gregation (or downscaling). For instance, does a decrease in monthly or seasonal
precipitation correspond to fewer storms, less intense storms, or both?

A few studies have directly examined the relationship between circulation
and daily weather statistics. For example, Wettstein and Mearns (2002) found
relationships between the NAO and daily minimum and maximum temperature
statistics in the northeastern U.S. and Canada. Through resampling, Thompson
and Wallace (2001) established statistically significant links between the NAO
and daily weather statistics at locations across the Northern Hemisphere. A more
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systematic approach consists of fitting a stochastic model to time series of daily
weather conditional on the state of a circulation index. This approach was followed
by Katz and Parlange (1993) in modeling daily precipitation at individual locations
in California conditional on a pressure index and by Woolhiser et al. (1993) in
modeling daily precipitation at individual locations in the southwestern U.S. condi-
tional on ENSO. Subsequent applications include Grondona et al. (2000) to model
the relationship between ENSO and daily precipitation at stations in Argentina and
Uruguay and Kiely et al. (1998) to model daily precipitation at a site in Ireland
conditional on pressure or wind direction.

3. Data and Seasonal Statistics

3.1. DATA

Figure 1 shows the eight locations across the Southeast for which climate data were
obtained, with the station names (and abbreviations) and period of record being
listed in Table II. It should be noted that only one of these locations is in Florida
or near the Gulf Coast. All these sites are first-order stations (as classified by the
U.S. National Weather Service), with the advantage of high quality measurements
(in particular, not much missing data; see Table II for percentage missing data),
but the disadvantage of possible urban influences (e.g., heat island effect). The
daily weather variables considered are minimum and maximum temperature (◦C)
and precipitation amount (mm), with a ‘trace’ (i.e., a positive amount smaller than
0.005 in (≈0.13 mm)) being treated as a zero amount. Seasonal means and totals
are obtained by aggregating the daily data over the appropriate time period, with
the seasonal statistic being computed if three or less days of observations within
the season are missing (otherwise the seasonal value is treated as missing).

To reflect low frequency variation, each circulation measure is aggregated to
a single seasonal value. The source of the data for the BH circulation measure
is the gridded monthly mean sea level pressure from the NCAR/NCEP re-
analysis (http://www.cgd.ucar.edu/cas/catalog/nmc/rean/press/means.html; Kalnay
et al., 1996). The approach of Stahle and Cleaveland (1992) was followed, with an
exploratory analysis in which the pressure at each of the individual grid points in
a region that spans the eastern U.S., Gulf of Mexico, and western Atlantic Ocean
was considered as a candidate. Two grid points were selected: one at 30◦ N, 90◦ W
(near New Orleans), the second at 32.5◦ N, 65◦ W (near Bermuda) (denoted by
NO and BER, respectively; see Figure 1). The New Orleans grid point is the same
as, and the one for Bermuda slightly different from, those selected by Stahle and
Cleaveland (1992).

A seasonal measure of the BH is constructed by first aggregating the monthly
mean pressure to seasonal means and then taking the difference (Bermuda minus
New Orleans). This measure effectively indicates the approximate position of the
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Figure 1. Map of southeastern U.S. showing eight sites of daily weather data, as well as two pressure
grid locations on which BH based.

Table II

List of abbreviations for stations and characteristics of climate data record for winter
season (e.g., winter 1959 = December 1958–February 1959)

Site Abbrev. Time period Missing data (%)

Min. temp. Max. temp. Prec.

Atlanta, GA ATL 1959–1996 0 0 0

Augusta, GA AUG 1959–1996 0 0 0

Birmingham, AL BIR 1959–1996 1.8 1.8 2.8

Charlotte, NC CHA 1959–1996 0 0 0

Memphis, TN MEM 1959–1996 0 0 0

Nashville, TN NAS 1959–1996 0.8 0.8 0.8

Raleigh–Durham, NC RDU 1959–1995 0 0 0

Tallahassee, FL TAL 1959–1995 0 0 0.1
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western edge of the Atlantic subtropical high, with higher values indicating a loca-
tion farther east than normal. In most of the subsequent analyses, the BH will be
converted into a simpler two-state index denoted by BHI (i.e., BHI = 1 if BH >

median, BHI = 0 otherwise). The pressure at New Orleans alone (NO) will also
be used as a circulation measure, somewhat cruder but still related to the position
of the subtropical high (in this case, higher values indicate a location farther west
than normal). The corresponding two-state index is denoted by NOI (i.e., NOI = 1
if NO > median, NOI = 0 otherwise).

Three other circulation measures are considered: (i) an index of the NAO
based on the difference in standardized seasonal mean sea level pressure be-
tween Ponta Delgada, Azores and Stykkisholmur/Reykjavik, Iceland (source:
http://www.cgd.ucar.edu/∼jhurrell/nao.html; Hurrell, 1995); (ii) an index of the
PNA derived from the standardized 500 hPa geopotential heights at four grid
points (i.e., 20◦ N, 160◦ W; 45◦ N, 165◦ W; 55◦ N, 115◦ W; 30◦ N, 85◦ W) across
the Pacific Ocean and North America, including one in northern Florida (source:
http://tao.atmos.washington.edu/data_sets/pna/; Wallace and Gutzler, 1981); and
(iii) an index of the Southern Oscillation (SO) based on the difference in stan-
dardized seasonal mean sea level pressure between Tahiti and Darwin (source:
http://www.cpc.ncep.noaa.gov/data/indices/index.html; Trenberth, 1984).

3.2. SEASONAL STATISTICS

Tables III–V list the sample correlations between the circulation indices and winter
mean minimum and maximum temperature and total precipitation at the southeast-
ern sites. These correlations are presented only for the winter season, the time of
the year in which they are greatest (although spring and summer seasons would
be more important for most crops). To check for time trends, the variable ‘Year’ is
included in the tables as well.

The sample correlations of winter temperature with the BH are all statistically
significant at the 5% level, being of a similar magnitude for both the mean min-
imum and maximum (Tables III and IV). But for the NO, all of the correlations
with the maximum and all but two with the minimum are statistically insignificant.
In all cases for the NAO and at all but one location for the PNA, the correlations
with both the minimum and maximum are statistically significant, but they are
systematically smaller in magnitude than the corresponding ones for the BH. The
SO performs worst of all the circulation indices for the minimum temperature, with
all correlations being statistically insignificant, and second worst to the NO for the
maximum, with all but one being insignificant. Linear time trends for minimum
temperature are statistically significant at several locations, most likely associated
with the urban heat island. Nevertheless, these temperature–circulation correlations
do not change much if a linear trend is removed from the temperature time se-
ries. For this reason, the temperature time series are not de-trended in subsequent
analyses.
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Table III

Correlation between circulation indices (as well as time trend) and
winter mean minimum temperature at eight locations in South-
east (a correlation of about 0.32 or greater in absolute value is
statistically significant at the 5% level)

Site BH NO NAO PNA SO Year

ATL 0.661 –0.179 0.604 –0.340 –0.042 0.432

AUG 0.785 –0.314 0.455 –0.492 0.031 0.248

BIR 0.795 –0.380 0.461 –0.586 0.167 0.157

CHA 0.717 –0.212 0.564 –0.426 –0.033 0.458

MEM 0.573 –0.299 0.485 –0.276 –0.082 0.425

NAS 0.713 –0.384 0.525 –0.362 –0.093 0.253

RDU 0.749 –0.290 0.510 –0.473 0.040 0.395

TAL 0.726 –0.293 0.382 –0.500 0.032 0.093

Table IV

Same as Table III except for winter mean maximum temperature

Site BH NO NAO PNA SO Year

ATL 0.636 –0.038 0.633 –0.395 0.171 0.396

AUG 0.689 –0.053 0.474 –0.517 0.242 0.255

BIR 0.734 –0.203 0.505 –0.510 0.262 0.235

CHA 0.651 0.022 0.567 –0.369 0.156 0.245

MEM 0.593 –0.174 0.473 –0.316 0.093 0.292

NAS 0.713 –0.181 0.572 –0.390 0.089 0.166

RDU 0.727 –0.110 0.531 –0.494 0.185 0.272

TAL 0.736 –0.181 0.530 –0.646 0.335 0.296

For winter total precipitation (Table V), the sample correlations with the BH
are not as great as for temperature, but still statistically significant for the ‘inland’
half of the stations (i.e., Atlanta, Birmingham, Memphis, and Nashville). If the NO
pressure alone is used instead, then the correlations with the remaining ‘coastal’
half of the stations (i.e., Augusta, Charlotte, Raleigh–Durham, and Tallahassee)
are at least borderline statistically significant. The pattern in the precipitation cor-
relations with the PNA resembles that for the BH (if the sign is reversed), most
being smaller in magnitude but still attaining at least borderline statistical signif-
icance at the inland locations. The precipitation correlations with the NAO and
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Table V

Same as Table III except for winter total precipitation

Site BH NO NAO PNA SO Year

ATL 0.522 –0.422 0.185 –0.277 0.111 –0.148

AUG 0.235 –0.480 –0.008 0.107 –0.181 –0.156

BIR 0.401 –0.406 0.028 –0.387 0.239 –0.210

CHA 0.341 –0.385 0.086 –0.183 0.021 –0.162

MEM 0.493 –0.088 0.277 –0.419 0.036 0.185

NAS 0.375 –0.166 0.121 –0.430 0.109 –0.055

RDU 0.260 –0.310 0.056 –0.040 –0.029 –0.039

TAL 0.098 –0.280 –0.282 0.023 –0.241 –0.133

SO are all statistically insignificant, although a few for the NAO attain borderline
significance. There is no evidence of a trend in precipitation.

To examine the conditional distribution of seasonally aggregated climate, the
two-state BHI and NOI are used. Figures 2–5 show boxplots of the conditional
distribution of minimum and maximum winter mean temperature given the BHI
state (for ease of display the stations are divided into the inland and coastal groups).
Although the conditional median is higher at all eight locations given BHI = 1, a
consistent effect is not evident for variability, as measured in terms of the interquar-
tile range (i.e., height of box) (plus the shifts in the conditional standard deviation
are not always in the same direction as for the interquartile range). For winter
total precipitation, both the conditional median and interquartile range are higher
at the four inland locations given BHI = 1 (Figure 6); likewise, at the four coastal
locations given NOI = 0 (Figure 7). In summary, warmer and wetter than normal
conditions on the average (along with higher precipitation variability) during the
winter in the Southeast tend to be associated with the western edge of the Atlantic
subtropical high being east of its average position. The statistical significance of
these apparent effects will be evaluated more systematically in Sections 4 and 5.

Table VI lists the sample correlations between the different atmospheric–ocean
circulation indices in winter. The BH has statistically significant correlations with
the NAO and PNA, but not with the SO. The correlation between the pressure at
the two grid points, BER and NO, on which the BH is based is not statistically
significant, with the BH itself being more strongly related to the BER than to the
NO. The only statistically significant trend is for the NAO, whose apparent non-
stationarity has been noted in the literature (Hurrell, 1995).

Making use of multiple regression analysis, the inclusion of the SO (or other
circulation variables) as an additional predictor, along with the BH, generally does
not result in a statistically significant improvement in the fit to seasonal temper-
ature or precipitation. Likewise, replacing the BH with the two gridded pressure
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Figure 2. Boxplots (i.e., sample minimum, lower quartile, median, upper quartile, and maximum) of
conditional distribution of winter mean minimum temperature at four inland locations given state of
BHI (BHI = 1 indicated by ‘+’ after station abbreviation, BHI = 0 by ‘–’).

Figure 3. Same as Figure 2 except at four coastal locations.
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Figure 4. Boxplots of conditional distribution of winter mean maximum temperature at four inland
locations given state of BHI.

Figure 5. Same as Figure 4 except at four coastal locations.
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Figure 6. Boxplots of conditional distribution of winter total precipitation at four inland locations
given state of BHI.

Figure 7. Same as Figure 6 except at four coastal locations given state of NOI.
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Table VI

Correlations between circulation indices in winter (a correlation of
about 0.32 or greater in absolute value is statistically significant at
the 5% level)

Index Year BER BH NO NAO PNA

BER 0.166 – – – – –

BH 0.040 0.781 – – – –

NO 0.177 0.221 –0.437 – – –

NAO 0.427 0.656 0.475 0.203 – –

PNA 0.103 –0.504 –0.565 0.157 0.011 –

SO –0.156 0.309 0.220 0.102 0.051 –0.402

variables, BER and NO (or introducing BER into the regression along with the NO
in the case of seasonal precipitation for the coastal sites), usually produces only
marginal improvements in the fit. Consequently, the subsequent analyses of time
series of daily weather are restricted to conditioning on only the BHI or NOI.

4. Daily Temperature: Single-Site Approach

Stochastic weather generators typically model the minimum and maximum tem-
perature at the same site as a bivariate time series, incorporating both the cross
correlation on the same day and the serial correlation from one day to the next.
Usually, dependence between temperature and precipitation is introduced by shift-
ing the temperature means and standard deviations conditional on precipitation
occurrence (e.g., Richardson, 1981). In the present paper, to simplify matters the
daily minimum and maximum temperature are analyzed separately, with no depen-
dence on precipitation occurrence. The temperature is treated at one location at a
time, conditioning on the two-state BHI and focusing on the winter season.

4.1. METHODS

Let {Xt, t = 1, 2, . . . , T } denote the time series of daily temperature (either mini-
mum or maximum) during a given season of length T days in a particular year at a
single location. This time series is assumed stationary (i.e., the annual cycle is as-
sumed small enough to ignore within a season). The temporal dependence structure
of daily temperature is modeled as a first-order autoregressive [AR(1)] process,
but with the parameters varying with the BHI state. Given BHI = i, the daily
temperature time series is assumed to be an AR(1) process with conditional mean
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µi , standard deviation σi , and first-order autocorrelation coefficient φi , i = 0, 1.
That is, the temperature today Xt is related to the temperature yesterday Xt−1 by

Xt = µi + φi(Xt−1 − µi) + σa(i)at , at ∼ N(0, 1). (1)

Here the error component at is serially uncorrelated and has a standard normal
distribution (denoted by N(0, 1) in (1)). The standard deviation σi of the temper-
ature variable is related to the standard deviation of the error component σa(i) of
the AR(1) process by

σ 2
i = σ 2

a (i)/(1 − φ2
i ) (2)

(e.g., Mearns et al., 1984). The assumption that, conditional on BHI, the daily
temperature time series can be modeled as an AR(1) process is not as restrictive
as it might appear. Unconditionally, such an approach induces a model for daily
temperature that is more complex than AR(1) (Katz and Parlange, 1996).

Special cases of the dependence of these AR(1) parameters on the BHI can
be fitted by this modeling approach, ranging from ‘no effect’ to ‘full effect’, by
imposing the following constraints in (1):

(i) no effect [µ0 = µ1, σa(0) = σa(1), φ0 = φ1]
(ii) mean effect [σa(0) = σa(1), φ0 = φ1]

(iii) mean and variance effect (φ0 = φ1)

(iv) full effect (no constraints).

A description of the methodology involved in fitting such models appears in Ap-
pendix A. In essence, the approach uses multiple regression analysis with least
squares parameter estimation to fit (1) under the constraints imposed by models
(i)–(iv). In this way, the autocorrelation of the temperature time series is explicitly
taken into account.

Which of these alternative forms of model best fits the data is decided on the
basis of the Bayesian information criterion (BIC) (see Appendix A). This technique
balances the improved fit of more complex models against the need to estimate
additional parameters (Schwarz, 1978). According to this criterion, the model with
the smallest BIC value is preferred.

4.2. RESULTS

The assumption that the minimum and maximum temperature time series are
stationary within the winter is indirectly examined through the comparison of
boxplots for the distribution of the corresponding monthly means. Figure 8 shows
these boxplots for the months of December, January, and February at Atlanta. On
average, January is the coolest of the three months, February the warmest. No
pattern in variability, as measured by the interquartile range, is evident. Similar
patterns in monthly mean minimum and maximum temperature during the winter
are evident in the boxplots (not shown) for the other locations. By allowing some
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Figure 8. Boxplots of distribution of monthly mean minimum and maximum temperature during
winter at Atlanta.

of the parameters in (1) to depend on the time of year, it would be straightforward
to introduce annual cycles into the methodology described in Section 4.1.

Tables VII and VIII list the sample conditional mean, standard deviation, and
first-order autocorrelation coefficient for the daily time series of minimum and
maximum temperature in winter at the eight locations in the Southeast. For the
minimum temperature (Table VII), the conditional mean is 1–2 ◦C higher when
BHI = 1, whereas the shifts in conditional standard deviation and autocorrelation
are relatively small and inconsistent in direction. For the maximum temperature
(Table VIII), the increases in conditional mean when BHI = 1 generally are
only slightly smaller than the corresponding ones for the minimum temperature.
The daily time series of minimum and maximum temperature possess substantial
sample autocorrelations, usually between 0.6 and 0.7.

Tables VII and VIII include a summary of the results of applying the model
fitting and selection procedure to the winter daily time series of minimum and
maximum temperature at the eight locations in the Southeast. With only two ex-
ceptions, the BIC selects model (ii) (i.e., varying the mean with the BHI state) as
best. For the maximum temperature at Charlotte and Raleigh–Durham, model (iii)
(i.e., varying both the mean and variance) is selected instead. In no case is model (i)
(i.e., no effect) or model (iv) (i.e., varying the mean, variance, and autocorrelation)
selected.

How the model selection criterion performs in practice is demonstrated for the
example of the daily maximum temperature in winter at Atlanta. The BIC values
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Table VII

Conditional mean, standard deviation, and autocorrelation of winter daily minimum
temperature at eight locations in Southeast given state of BHI

Site Mean (◦C) Std. dev. (◦C) Autocorrelation

BHI = 0 BHI = 1 BHI = 0 BHI = 1 BHI = 0 BHI = 1

ATL 0.4 a 2.1 a 5.85 5.60 0.724 0.709

AUG 0.3 a 2.1 a 5.62 5.74 0.624 0.656

BIR 0.3 a 1.9 a 6.25 6.31 0.650 0.664

CHA –0.7 a 0.9 a 5.41 5.41 0.688 0.655

MEM 0.1 a 1.2 a 6.16 6.04 0.702 0.683

NAS –2.3 a –0.5 a 6.61 6.52 0.692 0.680

RDU –1.7 a 0.0 a 5.84 5.71 0.671 0.615

TAL 3.6 a 5.5 a 6.30 6.55 0.657 0.697

a Vary with BHI state (according to BIC).

Table VIII

Same as Table VII except for winter daily maximum temperature

Site Mean (◦C) Std. dev. (◦C) Autocorrelation

BHI = 0 BHI = 1 BHI = 0 BHI = 1 BHI = 0 BHI = 1

ATL 11.3 a 12.5 a 6.05 5.91 0.668 0.661

AUG 14.1 a 15.3 a 5.79 5.98 0.650 0.650

BIR 12.1 a 13.4 a 6.21 6.13 0.674 0.660

CHA 10.5 a 11.8 a 5.77 a 5.94 a 0.659 0.629

MEM 10.0 a 11.1 a 6.93 6.81 0.687 0.658

NAS 8.6 a 10.2 a 6.99 6.95 0.678 0.633

RDU 10.2 a 11.5 a 6.14 a 6.36 a 0.637 0.613

TAL 17.4 a 19.1 a 5.15 5.13 0.623 0.652

a Vary with BHI state (according to BIC).

for all four candidate models are listed in Table IX, with the model having the
smallest value only varying the mean with the BHI, the second-best model varying
both the mean and variance. The model with no dependence on the BHI is ranked
as better than the one with full dependence. For the minimum temperature at At-
lanta, a similar ordering of BIC values is obtained, except that the model with no
dependence on the BHI is ranked the worst. The mean and variance effect model
ranks second best for both the minimum and maximum temperature in nearly all
cases at the other locations.
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Table IX

Model selection for winter daily maximum temperature at Atlanta (m = 38 yr)

Model Number Error variance (◦C)2

parameters BHI = 0 BHI = 1 BIC

No effect 3 20.102 20.102 10,189.7

Mean effect 4 20.053 20.053 10,185.0 a

Mean and variance effect 5 20.254 19.851 10,188.4

Full effect 6 20.253 19.850 10,192.0

a Minimum.

Figure 9. Q–Q plot of residuals for winter daily maximum temperature at Atlanta, along with straight
line.

To check the assumption that the error term in (1) is normally distributed,
quantile–quantile (Q–Q) plots are constructed. For the daily maximum temperature
in winter at Atlanta, Figure 9 shows a Q–Q plot of the residuals (i.e., estimated error
terms) for the model in which only the mean depends on the BHI (i.e., the model
selected by the BIC). Because the plot is approximately linear, the assumption of
normality appears reasonable. For the Atlanta minimum temperature, the linearity
of the Q–Q plot (not shown) is less clear, with some evidence of a departure from
normality in the extreme lower and upper tails of the distribution. Similar patterns
are evident in the Q–Q plots (not shown) for the other locations, with the normal
approximation being better for the maximum than for the minimum temperature.
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5. Daily Precipitation: Multi-Site Approach

The analysis of the effects of circulation on daily precipitation is complicated
by several factors. For one thing, the intermittency of the precipitation process
necessitates separate treatment of two component processes, the occurrence and
intensity. There is no way of anticipating whether effects of the BH (or NO) on
seasonal total precipitation correspond to effects on the daily occurrence alone,
the daily intensity alone, or on both. For another, the correlations between the
BH (or NO) and seasonal total precipitation are weaker than the corresponding
ones for temperature. As will be seen, a single-site analysis of precipitation is not
sufficiently powerful to obtain statistical significance when examining these effects
on a daily time scale.

5.1. METHODS

Let {Jt , t = 1, 2, . . . , T } denote the time series of daily precipitation occurrence
(i.e., Jt = 1 indicates a ‘wet’ day, Jt = 0 ‘dry’ day). This time series is assumed
stationary within the winter season. To model the tendency of wet or dry spells
to persist, a two-state, first-order Markov chain is assumed as a model for {Jt},
but with the parameters varying with the BHI or NOI (e.g., Katz and Parlange,
1993). Conditional on circulation index state i, the time series of daily precipitation
occurrence is assumed to be a first-order Markov chain with transition probabilities

Pjk(i) = Pr{Jt = k | Jt−1 = j}, j, k = 0, 1. (3)

Let the probability of a wet day be denoted by πi = Pr{Jt = 1} and
the first-order autocorrelation coefficient (or ‘persistence’ parameter) by di =
corr(Jt−1, Jt ), likewise conditional on index state i. These quantities are related
to the transition probabilities by

πi = P01(i)/(1 − di), di = P11(i) − P01(i) (4)

(e.g., Katz, 1996). The two transition probabilities that appear in (4), P01(i) and
P11(i), are sufficient to specify the probabilistic properties of the Markov chain.
The assumption that the daily precipitation occurrence time series, given the circu-
lation index, is a first-order Markov chain is not as restrictive as it might appear.
Unconditionally, this approach induces a model for daily precipitation occurrence
that is more complex than a first-order Markov chain (Katz and Parlange, 1996).

Let Pjk(i, s) denote the transition probability defined in (3) at site s, s =
1, 2, . . . , S, where S denotes the total number of sites in the region. The borrowing
strength approach constrains the effect of the circulation index on the transition
probability Pjk(i, s) to be the same for all sites within a given region. Specifically,
it is assumed that the ratio of the transition probability under the two index states,

�jk(s) = Pjk(1, s)/Pjk(0, s), (5)
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Table X

Conditional probability of occurrence, transition probabilities, and median intensity for winter daily
precipitation at four inland locations given state of BHI

Site Prob. of occurrence Transition prob. (P01) Transition prob. (P11) Median intensity (mm)

BHI = 0 BHI = 1 BHI = 0 BHI = 1 BHI = 0 BHI = 1 BHI = 0 BHI = 1

ATL 0.324 0.377 0.252 0.295 0.479 0.520 5.59 5.84

BIR 0.312 0.374 0.241 0.293 0.468 0.514 6.86 6.35

MEM 0.296 0.346 0.233 0.278 0.451 0.482 5.59 5.84

NAS 0.327 0.373 0.265 0.296 0.457 0.507 4.83 5.33

is constant, say �jk(s) = �jk , for all locations s, s = 1, 2, . . . , S. Such a con-
straint might well be a plausible approximation in the present circumstances, in
which the indices are based on large-scale circulation features. The assumption
(5) imposes no constraint on how the precipitation climatology varies across sites
(e.g., probability of wet day), only on its relationship with the circulation index.
The advantage of this approach is that fewer parameters need to be estimated
(e.g., with four locations, conditioning on a two-state index introduces only one
additional parameter instead of four for a given transition probability), so that there
is a higher chance of detecting an effect that is stable across space.

Details on how to estimate the transition probabilities of the Markov chain
model for precipitation occurrence under the constraint (5) are discussed in Ap-
pendix B. The BIC is again used to select the appropriate form of conditioning on
circulation (see Appendix B). The key requirement is that, conditional on the state
of the circulation index, daily precipitation occurrence be spatially independent.
The hope is that, if the conditioning variable has a strong enough relationship
with precipitation occurrence, then sufficient unconditional dependence would be
induced (e.g., Hughes et al., 1999). This assumption will be scrutinized further
in Section 6. Instead of (5), an alternative approach would be to impose the con-
straint in terms of the logistic transformation of precipitation probability (Katz and
Parlange, 1995; Stern and Coe, 1984; Woolhiser et al., 1993).

5.2. RESULTS

The assumption that the precipitation occurrence time series is stationary is in-
directly examined through the comparison of boxplots for the distribution of the
corresponding monthly precipitation totals. Figure 10 shows these boxplots for the
months of December, January, and February at Atlanta. No consistent pattern in
either the median or the interquartile range is evident, nor in the boxplots (not
shown) for the other locations.

Table X includes sample estimates of the conditional probability of occurrence
of precipitation and intensity (i.e., precipitation amount on wet days) median in
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Figure 10. Same as Figure 8 except for total precipitation at Atlanta.

Table XI

Same as Table X except at four coastal locations given state of NOI

Site Prob. of occurrence Transition prob. (P01) Transition prob. (P11) Median intensity (mm)

NOI = 0 NOI = 1 NOI = 0 NOI = 1 NOI = 0 NOI = 1 NOI = 0 NOI = 1

AUG 0.342 0.299 0.272 0.233 0.481 0.459 6.10 5.08

CHA 0.352 0.301 0.273 0.248 0.497 0.430 5.33 4.83

RDU 0.331 0.304 0.267 0.243 0.461 0.445 5.84 5.08

TAL 0.317 0.273 0.259 0.228 0.444 0.392 8.13 6.60

winter at the four inland locations given the state of the BHI. The estimated proba-
bility of a wet day ranges from 14–20% higher when BHI = 1. On the other hand,
the shift in the sample median precipitation intensity with the BHI is relatively
small and inconsistent in direction. Table XI includes the same statistics at the four
coastal locations given the state of the NOI. Consistent shifts in the probability of
precipitation are again obtained, being 9–17% higher when NOI = 0. The median
intensity is always higher when NOI = 0, with these shifts still being relatively
small but somewhat larger in magnitude than those associated with the BHI at the
inland locations.

Table X also provides the estimated transition probabilities at the inland lo-
cations given the BHI state, with P01 and P11 being 12–21% and 7–11% higher,
respectively, when BHI = 1. Table XI gives the same statistics at the coastal
locations conditional on the NOI, with P01 and P11 being 10–17% and 4–16%
higher, respectively, when NOI = 0. Using same methodology as in Katz and Par-
lange (1993) applied to a single site at a time (i.e., maximum likelihood estimates
of transition probabilities and BIC for model selection), these shifts in transition
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Table XII

Model selection for winter daily precipitation occurrence at inland locations conditional on
BHI (m = 38 yr, S = 4 sites)

Model Number Proportionate effect

parameters �01 �11 BIC

No effect 8 1 1 16,676.5

Borrow strength (P01) 9 1.171 1 16,661.3

Borrow strength (P11) 9 1 1.091 16,673.3

Borrow strength (P01, P11) 10 1.171 1.091 16,658.1 a

Full effect 16 [1.115, 1.214] [1.070, 1.111] 16,687.3

a Minimum.

probabilities were not found statistically significant at either the inland locations
conditional on the BHI or the coastal locations conditional on the NOI.

For the borrowing strength approach, the BIC values are included in Table XII
for the daily precipitation occurrence transition probabilities at the four inland loca-
tions conditional on the BHI. The best model involves varying both of the transition
probabilities, P01 and P11, conditional on the BHI, but constraining their effect to
be same at each location (i.e., borrowing strength in both cases). The second-best
model involves borrowing strength for P01, but with P11 not depending on the BHI.
It is noteworthy that the alternative model in which both transition probabilities at
all four locations vary with the BHI, but the borrowing strength constraint is not
imposed (i.e., consistent with a single-site approach), is inferior to no conditioning
on the BHI. The same ordering of BIC values is obtained for the precipitation
occurrence transition probabilities at the four coastal locations conditional on the
NOI (not shown).

These effects on the transition probabilities (e.g., �01 is estimated as about 1.17
and �11 as 1.09 for the inland locations conditional on BHI; 0.89 and 0.92, respec-
tively, for the coastal locations conditional on NOI) can be converted via (4) into the
corresponding effects on the probability of occurrence and persistence parameter.
In this case, they correspond primarily to shifts in π (smoothed versions of the
unconstrained estimates listed in Tables X and XI, not d). An analogous borrowing
strength approach could be applied to precipitation intensity, but the effects of BHI
and NOI are too small to attain statistical significance.

6. Aggregative Properties of Stochastic Weather Models

An AR(1) model, as in (1), can be used to generate daily time series of minimum or
maximum temperature and these daily values then aggregated to seasonal means.
For this reason, the aggregative properties of such models are of interest. The daily
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mean parameter in (1) is equivalent to the seasonal mean. However, the variance of
the seasonal mean temperature depends not only on the daily variance, but also on
the first-order autocorrelation coefficient (e.g., chapter 17 in von Storch and Zwiers,
1999). The shift in the mean of daily minimum and maximum temperature, but not
necessarily in the variance or autocorrelation, with the BHI (Tables VII and VIII) is
consistent with the corresponding result that only the median (or mean) of seasonal
mean temperatures is apparently related to the BHI (Figures 2–5).

Likewise, the aggregative properties of stochastic models for time series of daily
precipitation amount are of interest. It is convenient to assume a ‘chain-dependent
process’ as a stochastic model for daily precipitation amount, a model that includes
two components: (i) a first-order Markov chain model for occurrence as in (3); and
(ii) intensities that are independent and identically distributed (Katz and Parlange,
1993; Stern and Coe, 1984). The mean of seasonal total precipitation is directly
proportional to both the probability of occurrence of precipitation and the mean
intensity (see Appendix C). Yet the seasonal variance is not only directly propor-
tional to the intensity variance, but also nonlinearly related to the probability of
precipitation, the persistence parameter of the Markov chain, and the mean inten-
sity (see Appendix C). In particular, an increase in just the probability of a wet day
with the BHI or NOI (i.e., as supported by the results in Tables X and XI) will
produce an increase in both the mean and variance of seasonal total precipitation
as in Figures 6 and 7 (Katz, 1993).

Previous studies of the aggregative properties of stochastic weather models have
primarily focused on the tendency for daily stochastic models to underestimate the
variance of monthly or seasonal total precipitation (e.g., Mavromatis and Hansen,
2001). This underestimation has sometimes been attributed to the neglect of low
frequency sources of variability (Hansen and Mavromatis, 2001), with one pro-
posed remedy being to condition on large-scale circulation measures (Katz and
Parlange, 1993, 1996).

Table XIII lists the seasonal standard deviation of winter total precipitation
at the four inland locations in the Southeast, as ‘induced’ by a chain-dependent
process for daily precipitation amount with different degrees of conditioning on
the BHI. This conditioning includes: (i) no dependence of parameters (denoted
by ‘none’ in the table); (ii) only the transition probabilities of the Markov chain
model for occurrence vary according to the constraint (5) (denoted by ‘borrow’);
and (iii) unconstrained variation of the transition probabilities, as well as of the
intensity mean and variance (denoted by ‘full’). Appendix C sketches how these
induced standard deviations can be obtained (also see Katz and Parlange, 1993,
1996). Unlike the situation in some other regions (e.g., U.S. West Coast in win-
ter; Katz and Parlange, 1993), the chain-dependent process with no conditioning
does not underestimate the observed standard deviation (also listed in the table)
by very much, except perhaps at Nashville. Moreover, neither type of conditioning
increases the standard deviation much relative to that for no conditioning. This
behavior is attributable to the relatively weak effect of the BHI on precipitation in
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Table XIII

Standard deviation (mm) of winter total precipitation at four inland loca-
tions, as induced by conditional stochastic models for daily precipitation
given BHI

Site Conditioning Observed

None Borrow Full

ATL 99.5 103.1 109.2 103.9

BIR 108.7 112.3 111.3 111.9

MEM 109.5 112.7 117.2 115.7

NAS 87.9 90.9 96.0 103.1

Table XIV

Spatial correlation of winter total precipitation between pairs of
the four inland locations, as induced by conditional stochastic
models for daily precipitation given BHI (observed correlation in
parentheses)

Site ATL BIR MEM

BIR 0.09 (0.74) – – – –

MEM 0.15 (0.28) 0.07 (0.35) – –

NAS 0.15 (0.32) 0.07 (0.43) 0.12 (0.77)

the Southeast, perhaps reflecting a more general lack of evidence of any substantial
source of low frequency variation.

The spatial correlations between winter total precipitation at the inland loca-
tions, as induced by the stochastic models for daily precipitation, can also be
examined. An explanation of how to obtain these induced spatial correlations is
provided in Appendix C (also see Katz, 2002). Table XIV lists the induced spatial
correlations for pairs of the four inland locations in the case of full conditioning
(i.e., not imposing the constraints of the borrowing strength approach) of the para-
meters of the chain-dependent process on the BHI state, along with the observed
correlation values. Despite the relatively weak connection with the BH, this ap-
proach does produce some positive spatial correlations, but the values are much
smaller than those observed. These results cast some doubts on the assumption of
conditional spatial independence of precipitation occurrence given the BHI state,
made in conjunction with the borrowing strength approach (Section 5).
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7. Discussion

This paper deals with the development of a statistical methodology to model time
series of daily weather at individual locations conditional on patterns in large-scale
atmosphere–ocean circulation. Exploiting the stability of the relationship between
circulation and a daily weather statistic across a region, the methodology includes
a multi-site approach based on the statistical technique of borrowing strength. The
approach is applied to model daily time series of daily minimum and maximum
temperature and precipitation amount at locations in the Southeastern U.S. condi-
tional on indices of the Bermuda High. It is established that in winter the daily mean
minimum and maximum temperature and probability of precipitation occurrence
all tend to be higher when the position of the Bermuda High is farther east than
average. No relationship with other daily weather statistics, such as the minimum or
maximum temperature variance or the median precipitation intensity, is identified.

Such results may appear disappointing, perhaps even in conflict with previously
published results on the relationship between circulation indices and spatially and
temporally aggregated climate data. Yet they most likely reflect the difficulties that
arise in disaggregation (or downscaling), particularly for variables like precipita-
tion. In particular, determining the extent to which a correlation with seasonal total
precipitation corresponds to effects on storm frequency or intensity is a challenging
statistical problem.

The methodological approach presented here could be extended in several re-
spects. In the borrowing strength technique, the assumption of conditional spatial
independence for precipitation occurrence could be relaxed and spatial dependence
explicitly modeled. Rather than restricting attention to indices that assume only a
small number of states, it would be straightforward to condition on a continuous
index (Woolhiser et al., 1993). Finally, an alternative approach that should result
in much stronger relationships involves conditioning on high, instead of low, fre-
quency information about circulation (i.e., smaller-scale circulation indices that
vary on a daily time scale) (Bellone et al., 2000; Tebaldi, 2000).
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Appendix A: Model Fitting for Daily Temperature

The stochastic model for time series of daily temperature (1) can be reexpressed
as:

Xt = β0 + β1Xt−1 + β2i + β3iXt−1 + εt (i), var[εt (i)] = σ 2
ε (i). (A1)

Here β0, β1, β2, and β3 are regression parameters, σε(i) the standard deviation of
the error term (i.e., equivalent to σa(i) in (1)), and i the circulation index state (i.e.,
0 or 1). Models (i)–(iv) listed in Section 4.1 can all be fitted by multiple regression
analysis, imposing constraints in (A1): (i) β2 = β3 = 0, σε(0) = σε(1); (ii) β3 = 0,
σε(0) = σε(1); (iii) β3 = 0; and (iv) no constraints.

For a regression model of the form (A1), the BIC selects the model for which the
following quantity is a minimum (e.g., Chapter 6 in Venables and Ripley, 1999):

BIC(p) = n0 ln s2
ε (0) + n1 ln s2

ε (1) + p ln m. (A2)

Here sε(i) denotes the root mean square error for the fitted model on the subset
of the data for which the index = i (consisting of a total of ni days). The first
two terms on the right-hand side of (A2) constitute the goodness-of-fit component,
whereas the last term is a penalty for the number of parameters p estimated and
depends on the sample size of m years as well (for a discussion of how to choose
the appropriate sample size, see Kass and Wasserman, 1995).

Appendix B: Borrowing Strength for Daily Precipitation Occurrence

Let njk(i, s) denote the ‘transition count’ (i.e., number of times precipitation oc-
currence state j is followed by state k) given circulation index state i at site s. The
common effect �jk is estimated from njk(i, s) by

�̂jk = [njk(1,� )/nj �(1,� )]/[njk(0,� )/nj �(0,� )]. (B1)

Here njk(i,
�) = �snjk(i, s), nj �(i, �) = �snj �(i, s) and nj �(i, s) = nj0(i, s) +

nj1(i, s).
Then Pjk(i, s) can be obtained from �jk and Pjk(s) (i.e., the transition

probability without conditioning on the index) through the relationship

Pjk(1, s) = [�jkPjk(s)]/[1 − wj(s) + �jkwj(s)] (B2)

and (5). Here wj(s) = [w nj �(1, s)]/[(1 − w)nj �(0, s) + w nj �(1, s)], where w

denotes the fraction of years for which the index assumes state 1.
The BIC selects the Markov chain model for which the following quantity is a

minimum (e.g., Katz and Parlange, 1993):

BIC(p) = −2�s,i,j,k njk(i, s) ln P̂jk(i, s) + p ln(mS). (B3)



214 RICHARD W. KATZ ET AL.

Here p denotes number of parameters a given model requires be estimated and m

the number of years of data at the S sites. In (B3), P̂jk(i, s) is the estimate obtained
by first estimating �jk through (B1) and then substituting this estimate into (B2)
and (5) (Pjk(s) in (B2) is estimated by conventional maximum likelihood (e.g.,
Katz and Parlange, 1993).

Appendix C: Induced Variance and Correlation for Seasonal Total
Precipitation

Let ST denote the daily precipitation amount totaled over T days; that is, ST =
Z1 + Z2 + · · · + ZN(T ), where Zl denotes the precipitation intensity on the lth wet
day and N(T ) the total number of wet days. The conditional mean and variance of
ST given a circulation index state i can be expressed by (e.g., Katz and Parlange,
1993):

E(ST | i) = T πiµZ(i),

var(ST | i) ≈ T {πiσ
2
Z(i) + πi(1 − πi)[(1 + di)]/(1 − di)]µ2

Z(i)},
for large T .

(C1)

Here µZ(i) and σ 2
Z(i) denote the mean and variance of daily intensity given index

state i.
The unconditional (or ‘induced’) variance is related to the conditional means

and variances (C1) by (Katz and Parlange, 1996):

var(ST ) = (1 − w)var(ST | 0) + w var(ST | 1)

+w(1 − w)[E(ST | 1) − E(ST | 0)]2.
(C2)

Let the total precipitation at two sites be denoted by ST and S ′
T , respectively. Under

the assumption that ST and S ′
T are conditionally independent given the index, the

induced correlation between ST and S ′
T is related to the conditional means and

variances (C1) by (Katz, 2002):

corr(ST , S ′
T ) = {w(1 − w)[E(ST | 1) − E(ST | 0)][E(S ′

T | 1)

−E(S ′
T | 0)]}/[var(ST )var(S ′

T )]1/2.
(C3)
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