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Abstract. This study examines how uncertainty associated with the spatial scale of climate change
scenarios influences estimates of soybean and sorghum yield response in the southeastern United
States. We investigated response using coarse (300-km, CSIRO) and fine (50-km, RCM) scale climate
change scenarios and considering climate changes alone, climate changes with CO2 fertilization, and
climate changes with CO2 fertilization and adaptation. Relative to yields simulated under a current,
control climate scenario, domain-wide soybean yield decreased by 49% with the coarse-scale climate
change scenario alone, and by 26% with consideration for CO2 fertilization. By contrast, the fine-
scale climate change scenario generally exhibited higher temperatures and lower precipitation in the
summer months resulting in greater yield decreases (69% for climate change alone and 54% with
CO2 fertilization). Changing planting date and shifting cultivars mitigated impacts, but yield still
decreased by 8% and 18% respectively for the coarse and fine climate change scenarios. The results
were similar for sorghum. Yield decreased by 51%, 42%, and 15% in response to fine-scale climate
change alone, CO2 fertilization, and adaptation cases, respectively – significantly worse than with
the coarse-scale (CSIRO) scenarios. Adaptation strategies tempered the impacts of moisture and
temperature stress during pod-fill and grain-fill periods and also differed with respect to the scale of
the climate change scenario.

1. Introduction

Increasing concentrations of greenhouse gases in the atmosphere will likely alter
global temperature and precipitation patterns during the next century (Houghton et
al., 2001). The agricultural impacts of such changes would depend on the magni-
tude and spatial expression of change, and farmers’ ability to adapt. Agriculture in
the southeastern United States could be particularly vulnerable to climatic change:
current summer maximum temperatures in the region often exceed 32 ◦C, evapora-
tion rates exceed growing season precipitation, and agricultural soils typically have
relatively low water-holding capacity and low fertility. Moreover, the profitability
of farming in the Southeast depends on relatively low capital inputs, thus limiting
some options for mitigating the impacts of climate change.

Some of the uncertainty surrounding estimates of regional agricultural response
to future climate change comes from the tools used to measure crop response to
environmental change. The influence of climate change on crop yield has been
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estimated with a variety of crop models that differ with respect to complexity and
the degree to which they incorporate physiological processes (Boote et al., 1996).
Some studies have demonstrated that different crop models produce different yield
response to the same climate conditions (Xie et al., 2001; Wolf, 2002a). Others
have examined the influence of varying soil type (Wassenaar et al., 1999), car-
bon dioxide level (Brown et al., 2000; Haskett et al., 2000), or field management,
including adaptation strategies related to planting date, cultivar, fertilization, and
irrigation (Curry et al., 1990; Rosenzweig and Iglesias, 1998; Alexandrov and
Hoogenboom, 2000; Tubiello et al., 2000; Wolf, 2002b).

Climate change scenarios and the means by which they are incorporated into
crop simulation models present another uncertainty in agricultural impact studies.
Researchers generally recognize such uncertainties and adjust for them in a variety
of ways. For example, it is widely recognized that GCMs were not designed to
make projections at a regional scale. Therefore, many impact studies have used
output from more than one GCM to create a range of possible scenarios, express-
ing the uncertainty associated with regional-scale projections (e.g., Curry et al.,
1995; Alexandrov and Hoogenboom, 2000). It is also clear that GCM grids are
coarse relative to the scale for which crop simulation models were developed.
Researchers have accommodated these scale differences by downscaling GCM
output to individual simulation sites. The latter approach has been accomplished
statistically (Semenov and Barrow, 1997) and by interpolation from the GCM grid
points to smooth changes spatially (Alexandrov and Hoogenboom, 2000). Some
have created a physically-based climate change scenario by nesting relatively finer
scale regional climate models within a GCM (Easterling et al., 2001; Guerena et
al., 2001; Mearns et al., 2001). Preliminary evidence from these studies suggests
that the spatial scale of the climate change scenario influences the magnitude and
spatial patterns of agricultural impacts. Here we investigate that premise further.

We examine the potential impacts of climate change on soybean and sorghum
yield in the Southeast United States using two scenarios of climate change that
differ in spatial resolution. A coarse scenario is produced from GCM output, while
a fine scenario is produced by nesting a regional climate model within the GCM.
This allows us to compare crop response relative to the scale at which we express
climate change. We consider these differences with respect to crop development
and stress, and examine how a wide range of adjustments could mitigate yield
decreases resulting from climate change. Section 2 discusses the crop models and
climate change scenarios used, and outlines the simulation experiments. We present
and interpret our results in Section 3 and make summary remarks in Section 4.
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2. Methods and Data

2.1. CROP MODELS

We simulated soybean and sorghum yield in 414 50-km grid cells across the South-
east using the CROPGRO-Soybean and CERES-Sorghum v. 3.1 crop simulation
models which are part of the International Benchmark Sites Network for Agrotech-
nology Transfer (IBSNAT) suite of crop simulation tools (Tsuji et al., 1994).
These models simulate carbon, water, and nitrogen balances for the plant and soil
(Hoogenboom et al., 1994; Boote et al., 1998). They have been used extensively
in climate impact studies because their structure links plant processes to environ-
mental and management inputs. CROPGRO-Soybean has been validated across
a range of different environmental conditions and has shown skill in predicting
phenological stages, biomass accumulation, and yield (Brisson et al., 1989; Colson
et al., 1995; Kiniry et al., 1997; Boote et al., 1997; Carbone et al., 2003). CERES-
Sorghum has also been calibrated and tested in diverse environments (Birch et
al., 1990; Robertson et al., 1993; Hammer and Muchow, 1994; Castrignano et al.,
1997).

While physiologically based, the IBSNAT crop simulation models require
inputs that are either readily available or can be adequately estimated. These
include meteorological inputs such as daily solar radiation, maximum and mini-
mum temperatures, and precipitation. We acquired daily maximum and minimum
temperatures, and precipitation from the National Weather Service cooperative
network. Solar radiation was estimated stochastically using the synthetic weather
generator, WXGEN (Richardson and Nicks, 1990). Mearns et al. (2003a, this is-
sue) provide further details on the creation of the baseline climate data set. The
crop models also require the following soils information: lower limit of plant-
extractable soil water, drained upper limit soil water content, and saturated water
content for each soil layer. We estimated values for these variables empirically,
using a regression model relating soil texture characteristics to field capacity and
wilting point (Baumer et al., 1994). Soil texture properties from one soil in each
50-km grid was selected from the State Soil Geographic (STATSGO) data base
(Reybold and TeSelle, 1989). We considered only ‘prime farmland’ soils and se-
lected the agricultural soil type that occupied the greatest area of each grid. While
the soils differ between grid cells, some general spatial patterns exist across the
region. Sands and loamy sands cover most of the Atlantic Coastal Plain, sandy
loams dominate areas further inland (in the Piedmont), and silt loams cover most
of the western portion of the study region, including the Mississippi Delta. The
models also need field management inputs, including cultivar, sowing date, plant
population, row spacing, sowing depth, and irrigation scheduling. A series of cul-
tivar coefficients express the duration of growth stages, maximum growth rates,
photoperiod, threshold temperatures, and grain or seed characteristics (Table I).
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Table I

Soybean genotype coefficients for CROPGRO-Soybean simulations

Maturity CSDL PPSEN EM–FL FL–SH FL–SD SD–PM FL–LF

I 13.84 0.203 17.0 6.0 13.0 32.0 26.0

IV 13.09 0.294 19.4 7.0 15.0 34.5 26.0

V 12.83 0.303 19.8 8.0 15.5 35.0 18.0

VII 12.33 0.320 20.8 10.0 16.0 36.0 18.0

CSDL: Critical short day length below which reproductive development progresses with
no daylength effect (hours).
PPSEN: Slope of the relative response of development to photoperiod with time
(hour−1).
EM-FL: Time between plant emergence and flower appearance (photothermal days).
FL-SH: Time between first flower and first pod (photothermal days).
FL-SD: Time between first flower and first seed (photothermal days).
SD-PM: Time between first seed and physiological maturity (photothermal days).
FL-LF: Time between first flower and end of leaf expansion (photothermal days).

In the initial baseline and climate change crop simulations, we used one uniform
planting date (calendar day 150 – approximately May 30) and cultivar across the
entire region. We used published values for soybean coefficients from the generic
maturity group V and sorghum coefficients from Cargill 837 (Tsuji et al., 1994).
While planting date and variety vary over the study period and region, this strategy
allowed us to control for these management variables and focus on the impacts
of climate change. We consulted National Agricultural Statistics Service (USDA,
1997) and state agricultural extension reports, and county agricultural extension
agents to select one planting date and cultivar without straying far from historic and
current management practices. The impact of this strategy was minor as discussed
in the adaptation results below. For all simulations, the CROPGRO model was
run with water balance, soil-N balance, and plant-N balance options turned on.
The Priestley-Taylor method (Priestley and Taylor, 1972) was used to compute
crop potential evapotranspiration. The model was run in ‘sequence mode’ through
consecutive years in order to preserve soil moisture values from one season to the
next. We simulated yield in every grid cell in the entire region. While agricultural
statistics show variability in production across the Southeast, every southeastern
state produces at least some soybean and sorghum, and climatic change could allow
production in areas not currently used.

We simulated baseline soybean and sorghum yields for the 36-year period,
1960–1995 using observed daily meteorological data from the National Weather
Service cooperative network. One station was selected to represent each of the
regional climate model 50-km grids on the basis of proximity to the grid center and
data quality (see Mearns et al., 2003a). Then we reran the models for three cases:
(1) climate change only; (2) climate change plus direct CO2 fertilization effects –
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referred hereafter as the ‘elevated-CO2 case’; and (3) the elevated-CO2 case with
adaptation. We used an ambient CO2 value of 330 ppm for the baseline and climate
change only cases, and 540 ppm for the elevated-CO2 cases. CROPGRO-Soybean
and CERES-Sorghum consider the effects of CO2 fertilization by adjusting photo-
synthesis and leaf stomatal resistance in response to ambient CO2 concentrations
(Boote and Pickering, 1994; Pickering et al., 1995). Pickering et al. (1995) re-
ported modeled photosynthesis increases of 30% and potential evapotranspiration
decreases of 5% in response to a doubling of ambient CO2. We performed simu-
lations for control and climate change scenarios using both dryland and irrigated
options. While we will report primarily on dryland simulations, the irrigated runs
provide a standard to investigate the influence of water stress.

2.2. CLIMATE CHANGE SCENARIOS

Climate change scenarios for the southeastern United States were constructed at
two different spatial resolutions. Controlled and doubled CO2 equilibrium exper-
iments of the Australian CSIRO Mk2 GCM (Watterson, 1998; Watterson et al.,
1999) were used to generate a coarse resolution (approximately 3.2◦ latitude ×
5.6◦ longitude) scenario with 11 grid boxes across the Southeast. A nested regional
climate model (RCM), driven by the CSIRO boundary conditions, was used to
create a fine resolution (50-km) scenario for 414 grid boxes across the region.
The general features of the two scenarios are similar, but important differences
often exist at the subregional scale (Giorgi et al., 1998; Mearns et al., 2003a).
For example, the CSIRO model predicts greatest June, August, and September
temperature increases in the western portion of the study region, while June–
September RCM temperature increases are highest near the Atlantic. While both
models simulate increases in summer temperature, the RCM increases are greater.
CSIRO simulates increases in June precipitation for most of the Southeast, whereas
RCM simulates mainly decreases. Both models simulate precipitation decreases
during July, August, and September, but the decreases are more severe for the
RCM, especially along the Atlantic Coastal Plain and Piedmont. Temperature and
precipitation changes from RCM are more spatially variable than those produced
by CSIRO. Mearns et al. (2003a) provide further details on the climate change
scenarios.

Output from CSIRO and RCM, representing climate change with CO2 doubling,
was used to adjust the maximum and minimum temperature, precipitation, and
solar radiation of a 36-year (1960–1995) observed climate data set. Observed data
from one station within each 50-km RCM grid were used. In the coarse-resolution
scenario, monthly mean temperature differences (2 × CO2 – baseline) or precipita-
tion ratios (2 × CO2/baseline) from the CSIRO model were imposed uniformly on
all 50 km grids encompassed within each CSIRO grid. The high-resolution scenario
was created by imposing the regional model changes uniquely on observations in
each 50-km grid.
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To provide input for an agricultural economic model of the U.S., simulations
were also run for stations elsewhere in the United States to account for simul-
taneous climate change impacts outside the Southeast. We used observed data
from selected stations from the period 1961–1985 to simulate baseline yield in
other important soybean- and sorghum-growing regions. Climate change scenarios
were created for these other stations using the same GCM results and additional
runs with the same RCM in other areas of the U.S. We measured the impacts of
climate change at these other stations by comparing baseline yield against the two
climate change scenarios. Yield changes for these other regions are also discussed
in Mearns et al. (2003b). The results were incorporated into the Agricultural Sector
Model (ASM; see Adams et al., 2003).

2.3. ADAPTATION CASES

In an additional series of simulations, we adjusted planting date and cultivar char-
acteristics – two adaptation strategies that growers could use to mitigate the impacts
of climate change. For soybean, we simulated yield using four different maturity
groups (I, IV, V, and VII), each with eight planting dates (calendar days 100,
110, 120, 130, 140, 150, 160, and 170). These adjustments were designed to alter
growing season length and change the timing of phenological events relative to the
most stressful part of the growing season. Table I outlines how crop coefficients
vary among the four cultivars. For sorghum, we adjusted crop growth parameters
to shorten the juvenile and grain-filling stages, and moved the planting date from
calendar day 150 to calendar day 100 to avoid the hottest part of the summer.
For both crops, we determined the combination of cultivar and planting date that
produced the highest 36-year average yield at both the grid cell and state-wide level
and used this yield value to measure the impacts of climatic change with adaptation.
Table II summarizes all cases.

2.4. MEASURING YIELD RESPONSE

We calculated the 36-year average yield for all 50-km grid cells for the three cases
and two climate change scenarios. Percentage yield change (from the baseline
simulation) for each was calculated as:

�Y = Y − Yb

Yb

,

where Y = average simulated yield using one of the six cases specified in Table II
and Yb = baseline yield (36-year average yield using the observed 1960–1995
climate record).

For each crop, we used linear modeling techniques to test the hypothesis that
mean yields from all scenarios and cases were equal. If this hypothesis was re-
jected, we conducted pairwise comparisons to test whether selected pairs of cases
produced significantly different mean yields. Since standard analysis of variance
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Table II

Soybean simulation scenarios

Case Climate Ambient Soybean Sorghum

change CO2 Planting Cultivar Planting Cultivar

scenario available date date

to crop

(ppm)

Baseline (B) 1960– 330 150 Generic 150 Cargill 837

1995 MG V

observed

CSIRO climate CSIRO 330 150 Generic 150 Cargill 837

change only (C) MG V

RCM climate RCM 330 150 Generic 150 Cargill 837

change only (R) MG V

CSIRO climate CSIRO 540 150 Generic 150 Cargill 837

change and MG V

elevated CO2

(C2)

RCM climate RCM 540 150 Generic 150 Cargill 837

change and MG V

elevated CO2

(R2)

CSIRO climate CSIRO 540 Optimal Optimal 100 Shortened juvenile

change and and grain-fill periods

elevated CO2

w/adaptation

(C2a)

RCM climate RCM 540 Optimal Optimal 100 Shortened juvenile

change and and grain-fill periods

elevated CO2

w/adaptation

(R2a)

(ANOVA) methods require independent sample data, and simulated yields are
correlated in both space and time, we used a mixed models approach (Littel et
al., 1996) to account for spatial and temporal autocorrelation. We conducted sepa-
rate analyses to determine which climate variables contributed most to differences
between soybean yields simulated with the CSIRO and RCM scenarios. This in-
cluded eight CSIRO grids that comprise approximately 95% of the study area. For
each CSIRO grid, yield differences were regressed on climate variable differences
during the growing season. Finally, we examined yield changes with regard to
temperature and moisture stress during important physiological stages.
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Figure 1. Dryland simulated soybean yield for each climate scenario and case. Table II describes
each case. In this figure, and all other box plots, the outer dots represent the 5th and 95th percentiles,
the whiskers represent the 10th and 90th percentiles, the edges of the box represent the 25th and 75th
percentiles, and the central line represents the median.

3. Results and Discussion

3.1. SOYBEAN

Southeast dryland soybean yield, simulated with the 1960–1995 control climate,
averaged 2.38 t ha−1. This baseline value closely approximates observed yields
during this period. A few grids at the higher elevations of the southern Appalachi-
ans, had low average yield because of below-optimal temperatures and occasional
freezes during the growing season.

Both CSIRO and RCM climate change scenarios led to large regional soybean
yield decreases. Southeast mean yield dropped by 49% (CSIRO) and 69% (RCM)
when considering climate change alone (Figure 1). The decreases were not uni-
formly distributed. For the CSIRO scenario, they were worst in Arkansas, northern
portions of Louisiana, Mississippi, and Alabama, and across the Piedmont portions
of Georgia and the Carolinas. Yield decreases exceeded 60% in these areas and
were smaller along the Gulf and Atlantic coasts. ANOVA results show that yield
was significantly (α = 0.01) lower than baseline yield in all southeastern states.
Curry et al. (1990) reported comparable yield decreases using climate change
scenarios of similar magnitude.

Mean yield decreases were tempered by incorporating the direct effects of CO2

fertilization. The regional average yield was 26% (CSIRO) and 54% (RCM) lower
than baseline yield. Yield losses varied regionally. In the CSIRO scenario with
elevated CO2, soybean yield decreased by more than 80% in portions of Arkansas
and Louisiana and more than 40% across a broad region extending across northern
Mississippi and Alabama, and the Piedmont portions of Georgia, and the Carolinas.
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Figure 2. Percentage dryland simulated soybean yield change for climate change with elevated CO2
for CSIRO and RCM climate change scenarios.

The worst yield reductions associated with the RCM scenario are found in the same
Piedmont region as well as Alabama and parts of Mississippi and Louisiana near
the Mississippi River (Figure 2). ANOVA results show that these yield decreases
are statistically significant (α = 0.01) in all southeastern states.

Table III summarizes yield response to climatic change at the state level – the
scale used in the agricultural sector model (see Adams et al., 2003). The trend
and magnitude of yield response to each scenario reflect the spatial patterns de-
scribed above. The coefficient of variation reported in the table measures how
state-averaged yield varied over the 36-year simulation period for each scenario.
Several conclusions can be drawn from these data: (1) Without adaptation, the
CSIRO and RCM climate change scenarios cause significant increases in inter-
annual yield variability. (2) Direct CO2 effects don’t influence yield variability.
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Figure 3. Soybean pod-fill water stress for each scenario and case. Growth rates are reduced linearly
with increasing moisture stress from 0 (no stress) to 1 (complete stress).

There was essentially no difference in the yield results between climate change
alone and climate changes with CO2 fertilization. (3) Adaptation strategies (dis-
cussed below) generally reduced variability. For the CSIRO scenarios, variability
modestly decreased in most states, but significantly decreased in Arkansas and
Tennessee. For the RCM scenarios, variability significantly decreased in all states.
While interannual yield variability in some states was higher for the adaptation
cases than the baseline climate, it was the same or lower in many states.

The spatial pattern of yield decrease related closely to the greatest changes in
maximum temperature and precipitation. These two variables combine to cause
higher water stress during the pod-fill period in nearly every grid cell and year. Wa-
ter stress during pod-fill significantly influences subsequent soybean yield (Haskett
et al., 2000). CROPGRO-Soybean reduces photosynthesis and growth rates linearly
as a function of computed water stress. Water stress during pod-fill is significantly
higher for each of the climate change scenarios (Figure 3). It was associated with
44–68% of the simulated yield variance depending on scenario. Interestingly, CO2

fertilization did not affect water stress. CO2 enrichment increased leaf area index
and, therefore, photosynthetic production. However, evapotranspiration remained
essentially the same for the climate change only and elevated CO2 scenarios
because model adjustments for stomatal closure at higher CO2 levels offset the
influence of greater leaf area. When CO2 was increased to 540 ppm, average plant
biomass and yield increased by at least 20% in every grid cell. Consequently, water
use efficiency, defined as either biomass or yield divided by evapotranspiration,
increased for both climate change scenarios (Figure 4). This finding is consistent
with Phillips et al. (1996).

Water stress during reproductive stages did not explain all low yields. In some
cases, it was related to high temperatures during reproductive stages. CROPGRO-
Soybean optimizes development rate (including processes related to photosynthetic
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Figure 4. Soybean water use efficiency (WUE) as a function of CO2 fertilization for CSIRO and
RCM scenerios. WUE is measured as biomass or yield divided by evapotranspiration.

growth, node formation, seed growth, pod addition, and partition to pods) when
hourly temperatures range between 22 and 34 ◦C, and it reduces these processes
linearly at temperatures below and above these values (Boote et al., 1998). While
it is impractical to reconstruct hourly temperature for each grid cell and growing
season, several summary variables (e.g., average bloom or pod-fill temperature)
can be used to identify periods of potential temperature stress that explain yield
decrease. Average bloom-period maximum temperatures were nearly always lower
than 34 ◦C in the baseline scenario, and usually exceeded 34 ◦C for the two cli-
matic change scenarios (Figure 5). While average maximum temperature during
bloom serves only as a proxy for modeled temperature stress, the relationship
between this variable and final yield approximates the model function linking
temperature to development rate (Boote et al., 1998). As average bloom-period
maximum temperature increases (from the baseline, to CSIRO, to RCM scenarios)
fewer and fewer cases fall within the optimum temperature range, and yield drops
significantly. We also found that yield dropped when average pod-fill maximum
temperature exceeded certain thresholds. In the RCM scenario, when yield fell
below 1.00 t ha−1 with low water stress, it was often because pod-fill temperature
exceeded 38 ◦C (Figure 6). These results echo the findings of Ferris et al. (1998)
whose greenhouse experiments showed reductions in photosynthetic rate at high
temperatures. Results from irrigated simulations further support the argument that
high reproductive-stage temperatures suppress yield. In these simulations mois-
ture stress was eliminated. Yield increased in nearly every grid, but percentage
change varied as a function of maximum temperature. The greatest increases occur
in the coolest regions, and the smallest increases occur in areas with the greatest
maximum temperature changes. Regression analysis, designed to show differences
between CSIRO and RCM soybean yields, reinforced many of the explanations
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Figure 5. Soybean average bloom-period maximum temperature for each climate scenario.

above. July, August, and September precipitation, and August and September
maximum and minimum temperature were the most consistent predictor variables
accounting for yield differences between the CSIRO and RCM scenarios.

The very high temperatures during reproductive stages in the climate change
scenarios also extended the average growing season length (defined as the period
from germination to physiological maturity). This counter-intuitive result contrasts
with some previous work (e.g., Alexandrov and Hoogenboom, 2000) showing that
warmer temperatures hasten both vegetative and reproductive stages, thereby short-
ening the growing season. In our climate change scenarios, we find that growing
season gets longer where temperature increases the most. For the CSIRO scenario,
this occurs predominantly in the western part of the study area, while in the RCM
scenario it is most pronounced in the eastern portions. Growing season was short-
ened only along the northern edge of the study region and at high elevations where
baseline climate temperatures were below the optimal range for photosynthetic
growth and, therefore, benefitted from the temperature increase imposed by the
CSIRO and RCM scenarios. This point is illustrated by the relationship between
growing season length and average maximum temperature during the bloom period
(Figure 7). Below about 34 ◦C, growing season length generally decreases with in-
creasing maximum temperatures during the bloom period. At temperatures higher
than 34 ◦C, growing season length generally increases with increasing temperature.
Average maximum temperature during most bloom periods in the baseline scenario
are lower than 34 ◦C, but are higher than 34 ◦C in the CSIRO and RCM scenarios.
These findings relate directly to the method by which CROPGRO-Soybean calcu-
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Figure 6. The relationship between pod-fill water stress and yield for the RCM, elevated CO2 case
and its dependence on temperature. Cases are separated on the basis of average pod-fill period
maximum temperatures above or below 38 ◦C.

lates physiological development rates. Development in each stage is determined by
sensitivity to temperature, photoperiod, and water and nitrogen stresses. Under op-
timal conditions for these variables, one physiological day is accumulated for each
calendar day (Boote et al., 1989, 1998). Less than one physiological day was ac-
cumulated on every calendar day when temperature exceeded optimal conditions.
Peart et al. (1989) and Curry et al. (1990) reported similar model behavior with high
temperatures during reproductive stages. These findings, and the model structure
itself, are further supported by both theoretical (Boote et al., 1998) and empirical
(Ferris et al., 1999) studies examining the relationship between temperature and
development rate.
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Figure 7. Growing season length vs. average bloom-period maximum temperature.

Figure 8. Dryland simulated sorghum yield for each climate scenario and case. Table II describes
each case.

3.2. SORGHUM

Sorghum yield decreased significantly in response to the various climate change
scenarios (Figure 8). In the climate change only cases, the CSIRO and RCM
scenarios produced mean regional decreases of 36% and 51% respectively. Yield
decreased from the baseline simulations in over 90% of all grid cells. As with
soybean, interannual variability (measured by the coefficient of variation for state-
averaged yield over the 36-year period) also increased in both climate change
scenarios without adaptation (Table IV).

The spatial pattern of yield decreases closely matched that for soybean as both
crops were influenced by the CSIRO and RCM patterns of maximum temperature
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Figure 9. Sorghum growing season length for each climate scenario and case.

increases and precipitation decreases. The areas that fared best were the Gulf Coast,
the north-central portion of the study region, and several Appalachian grids (where
yield actually increased). The Gulf Coast had more modest temperature and precip-
itation changes than the rest of the Southeast. In the north-central and Appalachian
grids, temperature increases had a less deleterious affect because baseline temper-
atures were lower than in other parts of the region. Regression analysis showed
that July temperature and July and August precipitation were the most important
predictor variables distinguishing the yield differences between CSIRO and RCM
scenarios. The higher temperatures found in both the CSIRO and RCM scenarios
shortened the grain-fill period and growing season by approximately 7 and 15 days,
respectively (Figure 9). This finding was similar to that of Singh et al. (1998).
When higher maximum temperatures were combined with lower precipitation, wa-
ter stress also increased during the grain-fill period. Grain-fill water stress under
the climate change cases was higher than the baseline case in nearly every year and
grid cell (Figure 10).

Yield decreases were mitigated somewhat in the elevated-CO2 cases, but not as
dramatically as with soybean. This was expected, given that sorghum is a C4 plant,
and model adjustments relating ambient CO2 concentration to photosynthetic rate
differ between CERES-Sorghum and CROPGRO-Soybean accordingly. Nonethe-
less, CO2 fertilization increased sorghum yield in nearly every year and grid cell
(Figure 11). While an accelerated photosynthetic rate increased leaf area, stomatal
resistance decreased in the simulation, limiting water losses. Consequently, water-
use efficiency increased and grain-fill water stress was reduced in the elevated-CO2
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Figure 10. Sorghum grain-fill water stress for each scenario and case. Growth rates are reduced
linearly with increasing moisture stress from 0 (no stress) to 1 (complete stress).

cases. This finding agrees with field studies of other C4 species (Samarakoon and
Gifford, 1996).

3.3. YIELD RESPONSE IN OTHER US REGIONS

We also simulated soybean and sorghum yield outside the Southeast using output
from the same CSIRO simulations and RCM simulations for the western U.S.
(Giorgi et al., 1998) and Great Lakes region (Bates et al., 1995). Output from
these crop simulations was used in the agricultural sector model (ASM; see Adams
et al., 2003) to measure net U.S. productivity in response to the two climate
change scenarios. Soybean yield increased with the CSIRO and RCM climate
changes projected in the Great Plains as precipitation increased during the spring
and summer months. In the southern Great Lakes region, soybean yield generally
increased, responding to the CSIRO increases in June and July precipitation, but
decreased with the precipitation decreases of the RCM scenario. Sorghum yield
increased in Nebraska and the Texas High Plains with the CSIRO scenario, but
decreased in Kansas, Nebraska, Oklahoma, and the eastern half of Texas. These
responses correspond closely with precipitation changes in June, July, and Au-
gust. In the RCM scenario, precipitation increases caused modest sorghum yield
increases across most of the Southern Plains. The only exception was in the Texas
High Plains where RCM precipitation decreased, reducing yield. Given the impor-
tance of these soybean- and sorghum-growing regions, yield increases outside the
Southeast influenced the results of the agricultural sector model.
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Figure 11. Sorghum yield differences between climate change only and climate change with elevated
CO2 for CSIRO and RCM climate change scenarios.

3.4. ADAPTATION CASES

3.4.1. Soybean
Adjusting planting date and cultivar significantly reduced the impact of climate
change on simulated soybean yield. In the elevated-CSIRO case, average soybean
yield increased from 1.76 t ha−1 to 2.20 t ha−1 when planting date and cultivar were
altered in order to maximize state-level yield. Such adjustment produced higher
yield than the baseline case in about half of the simulated years and grid cells, but
because of extremely low yields in specific years and grid cells, domain-average
yield was still 7.6% lower than the baseline case. Optimizing planting date and
cultivar also improved yield response to the elevated RCM case. Simulated yield
increased from 1.09 t ha−1 using the baseline planting date (calendar day 150) and
cultivar (maturity group V), to 1.94 t ha−1 using dates and cultivars that optimized
state-level yield. Given the more extreme temperature and precipitation changes
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of the RCM scenario, adaptation yield was higher than the baseline simulations in
fewer than a third of all years and grid cells; regional average yield was still 18.3%
lower than in the baseline simulations. Interannual variability also decreased in the
adaptation levels such that it was approximately the same as the baseline scenario
(Table III).

While optimal adjustments in planting date and maturity group varied spatially
as a function of the intensity of each climate change scenario and soil type, two
general strategies mitigated yield decreases due to climate change: planting lower
maturity groups (I or IV) earlier in the season (mid-April) or planting higher matu-
rity groups (V or VII) later in the season (mid-June). For the CSIRO scenarios, the
former strategy improved yield in nearly half of all grid cells. It was particularly
effective where the CSIRO-prescribed temperature and precipitation changes were
greatest (Figure 12). In other regions, the highest yields resulted from the latter
strategy – planting maturity group V or VII in mid-June. For the RCM scenarios,
early planting with a low maturity group also reduced yield decreases. Seventy-
five percent of all grid cells had the highest 36-year average yields using April
10 (calendar day 100) and maturity group (I or IV). Maturity group I worked
best in the northern half of the domain, while maturity group IV dominated the
southern half (Figure 12). Boote (1981) demonstrated that lower maturity groups
could produce acceptable yield in the Southeast when planted early in the season.
Yield in a number of grids benefitted from a shift to maturity group VII with a June
planting date. This strategy worked best along the Coastal Plain of the Carolinas.

Two grid cells help to illustrate how planting and cultivar adaptations miti-
gate yield decreases associated with CSIRO and RCM climate change scenarios.
One is located in Arkansas along the Mississippi River. The grid falls within a
CSIRO cell where temperature increased between 3 and 6 ◦C from June through
September, and precipitation decreased by 25–50% in July and August. The 36-
year average CSIRO yield decreased by nearly 60% without adaptation. Planting
maturity group IV earlier in the season (calendar day 100) provided one of the best
adaptation strategies for this grid, as reduced pod-fill water stress and increased
seed number and weight improved yield considerably. Despite the adjustments,
the 36-year average was still 11% lower than the baseline yield. A second grid,
located on the Coastal Plain of South Carolina, provides a less optimistic example.
The projected RCM growing-season maximum temperature increase in this cell
was over 8 ◦C; projected precipitation decreases ranged from 25 to 50%. Without
adjustment, yield dropped by 70%. While no strategy could avoid the impacts of
such changes, it is instructive to examine how early planting with a lower maturity
group, or delayed planting with a higher maturity group, affected the timing of
phenological stages relative to temperature. Figure 13 shows that the prolonged
period of extreme temperatures would affect important growth stages for a wide
range of adjustments. Planting quick-maturing varieties early, or slower-maturing
varieties late in the growing season reduced heat and moisture stress, but yield was
still 50% lower than in the baseline scenario. In this case, the RCM climate change
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Figure 12. Optimal maturity group and planting date for the CSIRO and RCM climate change
scenarios.

scenario presented extremes that the adaptation strategies considered here did not
overcome.

3.4.2. Sorghum
Shortening the juvenile and grain-filling stages and advancing planting date re-
duced the impact of climate change on sorghum yield. In the elevated-CSIRO case,
average yield increased from 4.76 t ha−1 to 5.78 t ha−1 when the thermal time of the
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Figure 13. Maximum temperatures in the 36-year RCM time series for a 50-km grid in the South
Carolina Coastal Plain. Dates of the first flower (F), pod (P), seed (S), and maturity (M) are shown
for three adaptation strategies: (a) maturity group I, April 10 sowing; (b) maturity group V, May 20
sowing; and (c) maturity group VII, June 19 sowing.

juvenile stage was reduced by 100 degree days (base 8 ◦C) and planting date was
shifted from May 30 to April 10. While these adjustments produced higher yield
than the baseline case in about half of the simulated years and grid cells, average
yield was still 9.9% lower than the baseline case. Optimizing planting date and
cultivar also improved yield response to the elevated RCM case. Simulated yield
increased from 3.73 t ha−1 to 5.44 t ha−1 with adjustments, but the Southeast av-
erage sorghum yield remained 15.2% lower than the baseline simulations. Equally
important, our adaptation strategies decreased the interannual variability of yield
such that it was comparable in magnitude to the baseline case. As with soybean,
the adjustments to sorghum planting date and threshold thermal periods improved
yield (Figure 8) by shifting the growing season to avoid water stress during grain
fill (Figure 10). Unlike with soybean, however, the grain-fill period was shortened,
reducing yield and countering some of the benefits of the adaptations.

4. Summary

This study examined how the spatial scale of climate change scenarios influences
estimates of climate change impacts. Both the general circulation model and re-
gional climate model used to create climate change scenarios for the southeastern
United States projected temperature and precipitation changes that were associ-
ated with significant decreases in simulated soybean and sorghum yield. While
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consideration for direct CO2 fertilization and for adjustments in planting date and
cultivar mitigated yield decreases, regional averages remained lower than those
simulated under baseline (1960–1995) conditions. Yield response to the projected
climate changes was explained with respect to important physiological processes
captured by the CROPGRO-Soybean and CERES-Sorghum models. Both crops
were clearly influenced by water stress during important phenological stages (e.g.,
pod fill and grain fill). Successful adaptation strategies minimized water stress
during these stages. Some of our results differ from other impact studies in the
Southeast: for example, high maximum temperature slowed photosynthetic pro-
duction and increased growing season length of soybean. This finding illustrates
how certain thresholds, built into CROPGRO-Soybean, influence final yield in a
manner consistent with other theoretical and empirical studies.

The spatial scale of climate change scenarios matters considerably. The magni-
tude and spatial patterns of yield response differed significantly between climate
change scenarios. Again, such differences can be explained in the context of plant
response to specific climate changes. The magnitude of temperature and pre-
cipitation projections varied between the CSIRO and RCM scenarios, producing
different patterns of moisture stress in the two scenarios. Moreover, differences in
the timing of temperature and precipitation change influenced yield response since
soybean and sorghum showed sensitivity to water or temperature stress during
particular growth stages. The influence of scale extends to adaptation strategies.
In some cases, yield was maximized with dramatically different planting date
and cultivar choices depending on climate change scenario. Our findings suggest
that magnitude of uncertainty associated with the spatial scale of climate change
projections warrants full consideration in climate impact studies.
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