
Journal of Mathematical Modelling and Algorithms 2: 97–119, 2003.
© 2003 Kluwer Academic Publishers. Printed in the Netherlands.

97

An Analysis of Partially Clairvoyant Scheduling

K. SUBRAMANI�
LCSEE, West Virginia University, Morgantown, WV 26506, U.S.A. e-mail: ksmani@csee.wvu.edu

(Received: 5 March 2002)

Abstract. Real-time scheduling problems confront two issues not addressed by traditional schedul-
ing models, viz., parameter variability and the existence of complex relationships constraining the
executions of jobs. Accordingly, modeling becomes crucial in the specification of scheduling prob-
lems in such systems. In this paper, we analyze scheduling algorithms in Partially Clairvoyant
Real-time scheduling systems and present a new dual-based algorithm for the feasibility problem
in the case of strict relative constraints. We also study the problem of online dispatching in Partially
Clairvoyant systems and show that the complexity of dispatching is logarithmically related to the
complexity of the schedulability problem.

Mathematics Subject Classifications (2000): 90C99, 90B35, 91A05.

Key words: real time, partial clairvoyance, execution time variability, timing constraints.

1. Introduction

An important feature in Real-time systems is parameter imprecision, i.e., the in-
ability to accurately determine certain parameter values. The most common such
parameter is job execution time. A second feature, which is prevalent in Real-
time systems, is the presence of complex relationships between jobs that constrain
their execution. Traditional scheduling models ([13]) do not accommodate either
feature completely: (a) Variable execution times are modeled through a fixed value
(worst-case), and (b) Relationships are limited to those that can be represented
by precedence graphs. The worst-case assumption for execution times is unduly
pessimistic; further depending upon the constraint involved, the worst-case may
be either the smallest value or the largest value for the execution time of the job.
Note that precedence graphs cannot capture relationships involving relative timing
constraints.

Real-time systems (and the associated scheduling problems) can be classified
as Zero-Clairvoyant, Partially Clairvoyant or Totally Clairvoyant, depending upon
the information available at dispatching [18]. In this paper, we focus on Partially
Clairvoyant Real-time systems, wherein the dispatch time of the current job may
depend upon the actual execution time of every job sequenced before it, i.e., it

� This research was conducted in part at Aalborg Universitet, where the author was supported by
a CISS Faculty Fellowship.

98 K. SUBRAMANI

will be a parameterized function of the execution times of jobs sequenced before
it. The primary scheduling goal is to provide an offline guarantee that the input
constraints will be met at run-time, regardless of the actual execution times of the
jobs at run-time.

The scheduling problem for Partially Clairvoyant systems is concerned with the
following two issues.

(1) Deciding the schedulability predicate for a specified Partially Clairvoyant sys-
tem (Section 2), and

(2) Determining the dispatch time of a job, given the start and execution times of
all jobs sequenced before it.

The rest of this paper is organized as follows: We introduce the Partially Clair-
voyant scheduling problem in Section 2 and state the schedulability query. Section
3 motivates the necessity for the schedulability specification, through an exam-
ple from Real-time design. Previous work in the design of Partially Clairvoyant
systems is detailed in Section 4. Section 5 describes our dual-based approach
to solve the Partially Clairvoyant schedulability problem for the special case in
which all constraints are strictly relative. Online dispatching algorithms for arbi-
trarily constrained Partially Clairvoyant systems are discussed in Section 6. Section
7 summarizes our contributions in this paper and discusses directions for future
research.

2. Statement of Problem

2.1. JOB MODEL

Assume an infinite time-axis divided into windows of length L, starting at time
t = 0. These windows are called periods or scheduling windows. There is a set of
nonpreemptive, ordered jobs, J = {J1, J2, . . . , Jn}; the jobs execute in the same
order in each scheduling window.

2.2. CONSTRAINT MODEL

The constraints on the jobs are described by system (1):

A · [s e]T � b, e ∈ E, (1)

where

• A is an m×2 ·n rational matrix; unless explicitly stated otherwise, we assume
no restrictions on the entries in A, i.e., they represent arbitrary constraint sets.

• E is an axis-parallel hyper-rectangle (aph) represented by:

E = [l1, u1] × [l2, u2] × · · · × [ln, un]. (2)

The aph E models the fact that the execution time of job Ji can assume any
value in the range [li , ui], i.e., it is not constant.

AN ANALYSIS OF PARTIALLY CLAIRVOYANT SCHEDULING 99

• s = [s1, s2, . . . , sn] is the start time vector of the jobs.
• e = [e1, e2, . . . , en] ∈ E is the execution time vector of the jobs.

Constraints can express relationships between the start times of jobs, or their
finish times (the finish time of job Ji is si + ei), but since the jobs are nonpre-
emptive, the addition of finish time variables does not enhance the expressiveness
of the constraint model. We also note that the jobs are ordered, i.e., si + ei �
si+1, i = 1, 2, . . . , n − 1; the ordering constraints are part of the constraint system
A · [s e]T � b.

2.3. QUERY MODEL

Suppose that job Ja has to be dispatched. We assume that the dispatcher has access
to the start times {s1, s2, . . . , sa−1} and execution times {e1, e2, . . . , ea−1} of the
jobs {J1, J2, . . . , Ja−1}.

DEFINITION 2.1. A Partially Clairvoyant schedule (or parametric schedule) of
an ordered set of jobs, in a scheduling window, is a vector s = [s1, s2, . . . , sn],
where each si, 1 � i � n, is a function of the execution time variables of jobs
sequenced prior to job Ji , i.e., {s1, e1, s2, e2, . . . , si−1, ei−1}.

Note that s1 must be numeric, since J1 is the first job in the sequence.

DEFINITION 2.2. A Partially Clairvoyant schedule s for the constraint system (1)
is said to be feasible, if for all sequences bseq = 〈s′

1, e
′
1, s

′
2, e

′
2, . . . , s

′
n, e

′
n〉, where

s′
i is chosen as per s and ei ∈ [li , ui], we have, A · [s′ e′]T � b, where s′ and e′ are

the numeric vectors, corresponding to the sequence bseq.

The discussion above directs us to the following formulation of the schedula-
bility query:

∃s1∀e1 ∈ [l1, u1]∃s2∀e2 ∈ [l2, u2], . . . ∃sn∀en ∈ [ln, un] A · [s e]T � b? (3)

Query (3) is called the Partially Clairvoyant schedulability query. The com-
bination of the Job model, Constraint model and the Query model constitutes a
scheduling problem specification within the E-T-C scheduling framework [18]. The
function capturing the dependence of si on {s1, e1, s2, e2, . . . , si−1, ei−1} is called
the dispatch function of job Ji .

3. Motivation

A Partially Clairvoyant system has the ability to schedule at least some job-con-
straint sets, which would be declared infeasible, if the system had no clairvoyance
at all, i.e., if it was Zero-Clairvoyant.

100 K. SUBRAMANI

EXAMPLE 1. Consider the two job system J = {J1, J2}, with start times {s1, s2},
execution times (e1, e2) ∈ [2, 4] × [4, 5] and the following set of constraints:

(1) Job J1 must finish before job J2 commences; i.e., s1 + e1 � s2;
(2) Job J2 must commence within 1 unit of J1 finishing; i.e., s2 � s1 + e1 + 1.

A Zero-Clairvoyant approach would declare the constraint system to be infea-
sible, i.e., there do not exist rational {s1, s2} which can satisfy the constraint set
for all execution time vectors [17]. This is because, in order to satisfy the first
constraint for all values of e1, we must choose e1 = 4, while to satisfy the second
constraint for all values of e1, we must choose e1 = 2. The resulting constraint set
{s1 + 4 � s2, s2 � s1 + 2 + 1} is unsatisfiable. Now consider the following start
time dispatch vector:

s =
[
s1

s2

]
=

[
0

s1 + e1

]
. (4)

This assignment satisfies the input set of constraints, for all values of (e1, e2) ∈
[2, 4] × [4, 5] and is hence a valid schedule. The key feature of the schedule
provided by Equation (4) is that the start time of job J2 is no longer an absolute
time, but a (parameterized) function of the execution time of job J1. This phenom-
enon wherein a Zero-Clairvoyant scheduler declares a constraint system infeasible,
when a Partially Clairvoyant schedule exists is called Loss of Schedulability. Thus,
Partially Clairvoyant scheduling systems have more flexibility than systems which
cannot compute schedules online. Partially Clairvoyant schedulability is particu-
larly useful in Real-time Operating Systems such as Maruti [10, 11] and MARS
[5], wherein program specifications can be efficiently modeled through constraint
matrices, and interactions between processes are permitted through linear rela-
tionships between their start and execution times. In passing, we note that the
constraints in Example 1 cannot be modeled through precedence graphs, since they
would create a cycle.

4. Related Work

The Partially Clairvoyant scheduling problem was proposed for the first time in
[14]; they used the term ‘Parametric Scheduling’; the term Partially Clairvoyant
was proposed in [18] to represent parametric scheduling as one among 3 pos-
sible scheduling systems. In [6], a polynomial time algorithm was presented for
the case in which the constraints are restricted to be ‘standard’, i.e., strict differ-
ence constraints. The principal technique used in their algorithm was the Fourier–
Motzkin elimination procedure to eliminate existentially quantified variables [4].
They showed that when the constraints are standard, the elimination procedure does
not lead to an exponential increase in the set of resolvent constraints, a phenomenon
observed when the constraints are arbitrary [7]. In Section 5, we shall provide a
dual-based algorithm that represents systems of difference constraints as constraint

AN ANALYSIS OF PARTIALLY CLAIRVOYANT SCHEDULING 101

graphs. [1] and [2] extend the results in [6] to handle the case, in which inter-period
constraints (constraints across scheduling windows) are permitted in the job set. In
[20], a dynamic scheduling scheme is presented; however no offline guarantees are
provided. Relative separation constraints, but only in restricted forms, are consid-
ered in [9] and [8]; in their model, certain distance constraints must be satisfied
between successive invocations of a job.

The chief contributions of this paper are as follows:

(1) Development of a ‘dual’ notion of feasibility, in the case of Partially Clairvoy-
ant scheduling systems with standard constraints,

(2) Using the dual notion, to develop a new algorithm for the feasibility problem,
and

(3) Studying the complexity of Online Dispatching.

5. Primal and Dual Algorithms

Algorithm 5.1 represents a simple, deterministic procedure that uses Quantifier
elimination techniques to work through query (3), by eliminating one quantified
variable at a time. This algorithm was first proposed in [6] and will henceforth be
referred to as the Primal Algorithm.

Algorithm 5.2 describes the procedure for eliminating the universally quantified
execution variable ei ∈ [li , ui]. ELIM-EXIST-VARIABLE() is implemented through
the Fourier–Motzkin elimination technique discussed in [19].

Note that A · [s e] � b is a polyhedron in 2·n dimensions the procedures ELIM-
EXIST-VARIABLE() and ELIM-UNIV-VARIABLE() each reduce the dimension of
this polyhedron by 1, while preserving the solution space. Thus, in order to estab-
lish the correctness of Algorithm 5.1, all that we need to show is that the procedures
ELIM-UNIV-VARIABLE(en) and ELIM-EXIST-VARIABLE(sn) preserve the solu-
tion space. We can then use induction to establish the correctness of Algorithm 5.1.
The correctness of Algorithm 5.2 to eliminate the last variable if it is universal, has
been argued in [15], while the correctness of the Fourier–Motzkin elimination pro-
cedure to eliminate the last variable if it is existential is discussed in [4] and [12].

OBSERVATION 5.1. Eliminating a universally quantified execution time variable
does not increase the number of constraints.

OBSERVATION 5.2. Eliminating an existentially quantified variable si in gen-
eral, leads to a quadratic increase in the number of constraints, i.e., if there are
m constraints, prior to the elimination, there could be O(m2) constraints after the
elimination. Thus, the elimination of k existential quantifiers could increase the
size of the constraint set to O(m2k) [15]. Clearly, the exponential size blow-up,
makes the Algorithm 5.1 impractical for general constraint sets.

LEMMA 5.1 Algorithm 5.1 correctly decides the Partially Clairvoyant schedula-
bility query (3).

102 K. SUBRAMANI

Function PARTIALLY-CLAIRVOYANT-SCHEDULER (E,A,b)

1: for (i = n down to 2) do
2: ELIM-UNIV-VARIABLE(ei)

3: ELIM-EXIST-VARIABLE(si)

4: REMOVE-REDUNDANCIES()
5: if (CHECK-INCONSISTENCY()) then
6: return(false)
7: end if
8: end for
9: ELIM-UNIV-VARIABLE (e1)

10: REMOVE-REDUNDANCIES()
11: if (CHECK-INCONSISTENCY()) then
12: return(false)
13: end if
14: if (a � s1 � b, a, b � 0) then
15: return(A Partially Clairvoyant schedule exists)
16: else
17: return(A Partially Clairvoyant schedule does not exist)
18: end if

Algorithm 5.1. A quantifier elimination algorithm for deciding Partially Clairvoyant schedulability.

Function ELIM-UNIV-VARIABLE (A,b)

1: Substitute ei = li in each constraint that can be written in the form ei � ()

2: Substitute ei = ui in each constraint that can be written in the form ei � ()

Algorithm 5.2. Eliminating universally quantified variable ei ∈ [li , ui].

Proof. Follows from the discussion above. ✷
For the rest of this section, we confine our discussion to the class of standard

constraints; this class was introduced in [6] to describe strict relative constraints
between jobs.

DEFINITION 5.1. A constraint is said to be standard, if it represents a strict
difference constraint between exactly 2 jobs.

As per Definition 5.1, the relationships between job Ji and job Jj are standard,
if they fall into one of the following categories:

(1) A difference constraint between the start time of Ji and the start time of Jj ,
e.g., si � sj + c.

(2) A difference constraint between the start time of Ji and the finish time of Jj ,
e.g., si � sj + ej + c.

(3) A difference constraint between the finish time of Ji and the start time of Jj ,
e.g., si + ei � sj + c.

AN ANALYSIS OF PARTIALLY CLAIRVOYANT SCHEDULING 103

(4) A difference constraint between the finish time of Ji and the finish time of Jj ,
e.g., si + ei � sj + ej + c.

Note that absolute constraints, i.e., constraints of the form si � a can also be
treated as relative constraints through the addition of a dummy job J0, with start-
time s0 and execution time e0 ∈ [0, 0]. Without loss of generality, we assume that
all constraints are strictly relative; doing so, keeps the analysis uniform.

The above restriction is called <aph|stan|param> within the E-T-C scheduling
framework [18].

Observe that standard constraints are in fact difference constraints between jobs;
consequently, they do have a constraint graph structure [3]. In Section 5.1, we
shall show how to construct the constraint graph corresponding to a set of standard
constraints.

5.1. CONSTRUCTION OF THE CONSTRAINT GRAPH FOR STANDARD

CONSTRAINTS

Given a set of n jobs, with standard constraints imposed on their execution, we
construct a graph G = 〈V,E〉, where V is the set of vertices and E is the set of
edges.

(1) V = 〈s1, s2, . . . , sn〉, i.e., one node for the start time of each job,
(2) For every constraint of the form: si + k � sj , construct an arc si ❀ sj , with

weight −k,
(3) For every constraint of the form: si + ei � sj + k, construct an arc si ❀ sj ,

with weight k − ei ,
(4) For every constraint of the form: si � sj + ej + k, construct an arc si ❀ sj ,

with weight ej + k,
(5) For every constraint of the form: si+ei � sj +ej +k, construct an arc si ❀ sj ,

with weight ej − ei + k.

OBSERVATION 5.3. In the constraint graph, there are n vertices and m edges,
corresponding to a job set with n jobs and m standard constraints on their execution.

OBSERVATION 5.4. There are at most 4 edges from node si to sj ; we classify
them as:

(1) Type 1. An edge si ❀ sj with weight k1, representing temporal distance
between the start times of Ji and Jj ,

(2) Type 2. An edge si ❀ sj with weight −ei + k2, representing temporal distance
between the finish time of Ji and the start time of Jj ,

(3) Type 3. An edge si ❀ sj with weight ej + k3, representing temporal distance
between the start time of Ji and the finish time of Jj ,

(4) Type 4. An edge si ❀ sj with weight ej − ei + k4, representing temporal
distance between the finish times of Ji and Jj .

104 K. SUBRAMANI

COROLLARY 5.1. In the case of standard constraints, the constraint graph has
at most O(n2) edges.

Proof. Follows from the fact there are exactly n · (n − 1) vertex pairs, with at
most 4 edges between each vertex pair. ✷
EXAMPLE 2. We construct the dual graph for a 4-job set {J1, J2, J3, J4}, subject
to a set of standard constraints.

4 � e1 � 8, 6 � e2 � 11, 10 � e3 � 13, 3 � e4 � 9

s4 + e4 � 56

s4 + e4 � s3 + e3 + 12

s2 + e2 + 18 � s4

s3 + e3 � s1 + e1 + 31

0 � s1, s1 + e1 � s2, s2 + e2 � s3, s3 + e3 � s4 (5)

Figure 1 represents the corresponding constraint graph.

Given an instance of <aph|stan|param>, we use the procedure in Section 5.1
to construct the constraint graph, which is provided as input to Algorithm 5.3.

OBSERVATION 5.5. The class of standard constraints is closed under execu-
tion time variable elimination, i.e., the elimination of the execution time variables
does not alter the network structure of the graph; likewise, the class of standard
constraints is closed under vertex contraction. A naive implementation of VERTEX-
CONTRACT() would cause the number of edges between the two vertices to in-
crease quadratically; however, observe that there can exist precisely one nonredun-
dant constraint of each of the 4 types between any pair of nodes in the constraint
graph. Further, the redundant edge can be identified and eliminated in O(1) time,
when a new edge is created, as demonstrated by Algorithm 5.5.

OBSERVATION 5.6. The only manner in which infeasibility is detected is through
the occurrence of a negative cost self-loop on any vertex (step (5) of Algorithm 5.4).
These loops could occur in two ways:

Figure 1. Constraint graph of system (5).

AN ANALYSIS OF PARTIALLY CLAIRVOYANT SCHEDULING 105

Function PARTIALLY-CLAIRVOYANT-STANDARD (G = 〈V,E〉)
1: for (i = n down to 1) do
2: Substitute ei = ui on all edges where ei is prefixed with a negative sign
3: Substitute ei = li on all other edges {We have now eliminated ei in

∀ei ∈ [li , ui]}
4: G′ = 〈V ′, E′〉 = VERTEX-CONTRACT(si)
5: end for
6: return(A Partially Clairvoyant schedule exists)

Algorithm 5.3. The dual-based algorithm for <aph|stan|param>.

Function VERTEX-CONTRACT (G = 〈V,E〉, si)
1: for each edge sj ❀ si , with weight wji do
2: for each edge si ❀ sk , with weight wik do
3: Add an edge (say enew) sj ❀ sk with weight wji + wik

4: if j = k then
5: if (wji + wik < 0) then
6: return(A Partially Clairvoyant schedule does not exist)

{See Observation 5.6}
7: end if {Eliminating self-loops}
8: else
9: Discard enew

10: continue {We do not add self-loops to the edge set}
11: end if
12: E′ = E ∪ enew
13: REMOVE-REDUNDANT(G = 〈V,E′〉, sj , sk, enew)
14: end for
15: E′ = E′ − (sj ❀ si)

16: end for
17: for each edge si ❀ sk , with weight wik do
18: E′ = E′ − (si ❀ sk)

19: end for
20: V ′ = V − {si} {We have now eliminated si in ∃si}

Algorithm 5.4. Vertex contraction.

(1) The contraction of a vertex results in a negative cost self-loop on another ver-
tex. For instance, consider the constraint graph, corresponding to the constraint
set {s1 +8 � s2, s2 � s1 +7}; the contraction of vertex s2 results in a self-loop
at s1 of weight −1;

(2) The contraction of a vertex results in a self-loop of the following form: −ea+c

(or ea−c), on vertex sa . For instance, consider the constraint graph correspond-
ing to the constraint set {s1 + e1 + 7 � s2, s2 � s1 + 12}; the contraction of
vertex s2 results in the self-loop: −e1 + 5. For this loop to have nonnegative

106 K. SUBRAMANI

Function REMOVE-REDUNDANT(G = 〈V,E′〉, sj , sk, enew)

1: {enew is an edge from sj to sk , with weight wji + wjk}
2: Let t denote the type of enew {Recall that any edge in the constraint graph is one of

the four types described in Observation 5.4}
3: if (there is precisely one edge between sj and sk in G of type t) then
4: {In this case, enew is the first edge of type t between sj and sk and hence there is

nothing to be done.}
5: return
6: end if
7: {In this case, there are two edges between sj and sk of type t ; one of the edges

existed prior to the contraction of vertex si and enew is the new edge.}
8: Retain the edge with the smaller numeric coefficient and delete the other edge {For

instance, let the 2 edges be of Type 4, with l1 having weight ek − ej + k1 and l2
having weight ek − ej + k2. If k1 � k2 retain l1, otherwise retain l2.}

Algorithm 5.5. Removing redundant edges in the constraint graph.

cost, we must have −e1 + 5 � 0, i.e., e1 � 5. In this case, either u1 � 5,
in which case the edge can be discarded (since it is redundant), or u1 > 5 in
which case, the system is infeasible.

5.2. CORRECTNESS

In order to prove the correctness of Algorithm 5.3, we need to develop a few
concepts.

DEFINITION 5.1. Let

∃s1∀e1 ∈ [l1, u1] ∃s2∀e2 ∈ [l2, u2], . . . ∃sn∀en ∈ [ln, un] A · [s e]T � b (6)

represent a Partially Clairvoyant system of standard constraints. Let G = 〈V,E〉
represent the constraint graph of this constraint system, constructed as per the dis-
cussion in Section 5.1. Let C denote a simple, directed cycle in G, on the vertices
{si1 , si2 , . . . , sik } with {i1, i2, . . . , ik} ∈ {1, 2, . . . , n}. Without loss of generality, we
assume that i1 < i2 < i3 < · · · < ik. Note that an edge in C can exist between any
pair of vertices. The Partially Clairvoyant cost of C is defined as the numeric value
returned by Algorithm 5.6, with C as input.

It is not hard to see that Algorithm 5.6 is similar to Algorithm 5.3; the input to
Algorithm 5.6 must be a cycle and it computes and returns the Partially Clairvoyant
cost of that cycle. Note that the ordering information is crucial, in that the vertices
must be eliminated in the order {sik , sik−1 , . . . , si1}. It is understood that when the
execution time variables are eliminated through substitution, the weights on the
edges are adjusted accordingly.

AN ANALYSIS OF PARTIALLY CLAIRVOYANT SCHEDULING 107

Function COMPUTE-PARTIALLY-CLAIRVOYANT-COST (C, {i1, i2, . . . , ik})
1: {The list 〈i1, i2, . . . , ik〉 is a list of vertex indices, with each ij ∈ {1, 2, . . . , n},

j = 1, 2, . . . , k. Without loss of generality, we assume that i1 < i2 < · · · < ik .}
2: if (k = 2) then
3: {There are precisely 2 vertices and 2 edges in the cycle C; recall that C is a simple

cycle in G.}
4: {Since C is a simple cycle, there is precisely one edge into vertex si2 and one edge

into si1 .}
5: Adjust weight wi2i1 to reflect the substitution ei2 = ui2 and weight wi1i2 to reflect

the substitution ei2 = li2 .
6: Let cost = wi1i2 + wi2i1 .
7: Adjust cost to reflect the substitution ei1 = ui1 if cost is a decreasing function of ei1

and ei1 = li1 otherwise.
{It is important to note that if ei1 appears in cost, it is either as ei1 or as −ei1 .}

8: return(cost)
9: else

10: {We eliminate sik from the cycle.}
11: Let sip and siq denote the vertices in C to which sik is connected; further, we

assume that the edges of C are sip ❀ sik and sik ❀ siq .
12: Adjust wipik to reflect the substitution eik = lik and wikiq to reflect the substitution

eik = uik .
13: Create a new edge sip ❀ siq having weight wipiq = wipik + wikiq .
14: {Since C is a cycle, there did not exist an edge from sip to siq prior to the above

step.}
15: Let C′ denote the new cycle, thus created.
16: return(COMPUTE-PARTIALLY-CLAIRVOYANT-COST (C, {i1, i2, . . . , ik−1}).)
17: end if

Algorithm 5.6. Computing the Partially Clairvoyant cost of a simple, directed cycle.

For the rest of this section, we assume that Q(s, e) A · [s e]T � b is a Partially
Clairvoyant system of standard constraints, where

Q(s, e) = ∃s1∀e1 ∈ [l1, u1]∃s2∀e2 ∈ [l2, u2] . . . ∃sn∀en ∈ [ln, un]
and G is the corresponding constraint graph.

When G is presented to Algorithm 5.3, steps (2:) and (3:) eliminate variable en
and step (4:) eliminates vertex sn to give a new constraint graph G′.

LEMMA 5.2 The elimination of variable en through steps (2:) and (3:) of Algo-
rithm 5.3 preserves simple cycles having negative Partially Clairvoyant cost, i.e.,
the constraint graph G has a simple cycle having negative Partially Clairvoyant
cost before the execution of steps (2:) and (3:) if and only if it has a simple cy-
cle having negative Partially Clairvoyant cost, after the execution of steps (2:)
and (3:).

108 K. SUBRAMANI

Proof. Let C denote a simple, directed cycle in G, having negative Partially
Clairvoyant cost. We first observe that if C does not include sn, then the theorem is
trivially true, since edges of cycles not involving sn, cannot have weights depending
on en (as per our definition of relative timing constraints) and hence the execution
of steps (2:) and (3:) leaves C unaltered. Now consider the case in which C does
pass through sn. From Algorithm 5.6, it is clear that any negative cost Partially
Clairvoyant cycle through sn, must have en set to un on all edges where en is
prefixed with a negative sign and to ln on all other edges, i.e., C is retained. For
the same reason, if G does not have a negative cost Partially Clairvoyant cycle, the
execution of steps (2:) and (3:) of Algorithm 5.3 cannot create one. ✷

We now assume that steps (2:) and (3:) of Algorithm 5.3 have been executed
on G.

LEMMA 5.3 There exists a negative cost Partially Clairvoyant cycle through sn
if and only if either there exists a negative cost Partially Clairvoyant cost cycle
in the graph G′ returned by step (4:) of Algorithm 5.3 or Algorithm 5.4 executes
Step (6:).

Proof. Let C be a simple, directed cycle in G, having negative Partially Clair-
voyant cost through vertex sn. Consider the case in which C does pass through
vertex sn. The following cases arise.

(1) C consists of 2 vertices, i.e., vertex sn and some other vertex, say sp. When
sn is contracted C becomes a loop around vertex sp and this loop has negative
Partially Clairvoyant cost. Consequently, this loop is detected in steps (4:)–(6:)
of Algorithm 5.4.

(2) C consists of more than 2 vertices. Note that step (3:) of Algorithm 5.4 com-
bines edge-pairs going through sn, so C exists in the constraint graph after the
execution of step (3:). However, an edge created in step (3:) could be thrown
out at step (13:), if it is deemed redundant (see Figure 2), thereby destroying C.

Figure 2. Contracting vertex sn.

AN ANALYSIS OF PARTIALLY CLAIRVOYANT SCHEDULING 109

But this means that there is a simple, directed cycle in G having Partially
Clairvoyant cost, even lower than C (the cycle that includes the dashed edge
from si to sk , that shortcuts sn); it follows that negative Partially Clairvoyant
cost cycles are preserved. For the same reason, it follows that contracting sn
does not create negative cost Partially Clairvoyant cycles, if none exist. ✷

Although Lemmas 5.2 and 5.3 were proved for the elimination of en and sn
respectively from the constraint graph, it is easy to see that the argument can be
applied inductively to conclude that

THEOREM 5.1 Algorithm 5.3 returns (A Partially Clairvoyant schedule
does not exist) if and only if the constraint graph G has a simple cycle having
negative Partially Clairvoyant cost.

Proof. Note that any cycle in the constraint graph, including one having negative
Partially Clairvoyant cost, has length at most n. Steps (2:)–(4:) of Algorithm 5.3
preserve negative cost Partially Clairvoyant cycles, while reducing the number of
vertices in the constraint graph by 1. Let C be a simple cycle in G having negative
Partially Clairvoyant cost; as discussed in Lemma 5.3, when the length of C is
reduced to 2, it is detected by the VERTEX-CONTRACT() operation.

If there is no negative cost Partially Clairvoyant cycle in G, then Algorithm 5.3
falls through to step (6:) and returns (A Partially Clairvoyant schedule
exists). ✷
THEOREM 5.2 A Partially Clairvoyant system of standard constraints, as spec-
ified in system (6) has a feasible schedule, if and only if the corresponding con-
straint graph does not have a simple cycle having negative Partially Clairvoyant
cost.

Proof. Let Q(s, e) A · [s e]T � b represent the system of standard constraints,
where

Q(s, e) = ∃s1∀e1 ∈ [l1, u1]∃s2∀e2 ∈ [l2, u2] . . . ∃sn∀en ∈ [ln, un]
and let G denote the corresponding constraint graph.

We first assume that G has a simple, directed cycle C on the vertices {si1 , si2 , . . . ,
sik }, having negative Partially Clairvoyant cost, where i1 < i2 < · · · < ik. Observe
that as per the construction procedure in Section 5.1, the subset of constraints in
the constraint system A · [s e]T � b, corresponding to C can be represented as:

∃si1∀ei1 ∈ [li1 , ui1]∃si2∀ei2 ∈ [li2 , ui2] . . . ∃sik∀eik ∈ [lik , uik]
si1 − si2 � f1(ei1 , ei2)

si2 − si3 � f2(ei2 , ei3)

...
...

sik−1 − sik � fk−1(eik−1 , eik)

sik − si1 � fk(eik , ei1). (7)

110 K. SUBRAMANI

The notation f1(ei1 , ei2) represents the fact that the weight of the edge between
vertex si1 and si2 is, in general, a function of ei1 and ei2 ; f2(), f3(), . . . , fk()
have similar explanations. Let us say that the constraint system (7) is provided
as input to Algorithm 5.1. Algorithm 5.1 proceeds by eliminating eik from the last
two constraints and then adding them together to eliminate sik . In the succeeding
iteration, eik−1 is eliminated from the last two constraints in the resultant constraint
set and then sik−1 is eliminated by adding them together. This process continues, till
we reach the contradiction 0 � −a, where a > 0; we must reach this contradiction,
since the cycle C has negative Partially Clairvoyant cost. Thus, Algorithm 5.1
would declare the constraint system corresponding to C to be infeasible. How-
ever, the addition of constraints to an infeasible constraint system cannot make it
feasible. It therefore, follows that the initial system of standard constraints, viz.,
Q(s, e) A · [s e]T � b does not have a Partially Clairvoyant schedule.

We now assume that G does not contain a cycle having negative Partially Clair-
voyant cost. We use induction on the number of jobs n to argue that the system
Q(s, e) A · [s e]T � b has a Partially Clairvoyant schedule.

It is clear that the base case of the induction is n = 2, since if there is only
one job, there cannot be any constraints; recall that we allow only strict difference
constraints. Accordingly, we denote the Partially Clairvoyant system as:

∃s1∀e1 ∈ [l1, u1]∃s2∀e2 ∈ [l2, u2] A · [s e]T � b. (8)

The corresponding constraint graph G has 2 nodes s1 and s2 with the edges between
them, representing the constraints on the jobs. The hypothesis assumes that there
are no negative cost Partially Clairvoyant cycles in G. Observe that e2 can be elimi-
nated from G, using steps (2:) and (3:) of Algorithm 5.3, without creating negative
cost Partially Clairvoyant cycles. Let the resultant constraint graph be denoted by
G′ and the corresponding Partially Clairvoyant specification be denoted by:

∃s1∀e1 ∈ [l1, u1]∃s2 A′ · [s e1]T � b′. (9)

Let Sin denote the set of constraints which are represented by edges going from
s1 to s2 in G′. Note that each constraint li ∈ Sin can be written in the form s1 − s2 �
fi(), i.e., in the form s2 � s1 − fi(), for appropriately chosen fi(). Similarly, let
Sout denote the set of constraints which are represented by edges going from s2 to s1

in G′. Note that each constraint mj ∈ Sout can be written in the form s2 −s1 � gj (),
i.e., in the form s2 � s1 +gj (), for appropriately chosen gj (). Observe that the fi()
and gj () are functions of e1 only.

Consider the point

s =
[
s1

s2

]
=

[
0

maxSin{s1 − fi()} � s2 � minSout{s1 + gj ()}
]
.

We claim that s represents a feasible schedule for the Partially Clairvoyant sys-
tem (9).

AN ANALYSIS OF PARTIALLY CLAIRVOYANT SCHEDULING 111

Assume the contrary and let e′
1 ∈ [l1, u1] be an execution time such that for

s1 = 0 and e1 = e′
1, System (9) cannot be satisfied by any value of s2. This means

that at e1 = e′
1, we have maxSin{s1 − fi()}|ei=e′

1
> minSout{s1 + gj ()}|e1=e′

1
. It

immediately follows that maxSin{fi()}|e1=e′
1
+ minSout{gj ()}|e1=e′

1
< 0, i.e., we have

a simple negative cost cycle in G′. From Algorithm 5.6, it is clear, that the existence
of a simple negative cost cycle implies the existence of a simple negative cost
Partially Clairvoyant cycle. However, this violates the hypothesis, which assumed
that G′ did not have a simple cycle of negative Partially Clairvoyant cost. Thus, s
is a feasible schedule for the Partially Clairvoyant system (9).

We now need to show that s is also a feasible schedule for system (8). Let se′
1

be the (numeric) vector corresponding to e′
1 ∈ [l1, u1]. Observe that a constraint in

system (8) that can be written in the form e2 � () is satisfied by se′
1

with e2 = u2

and hence for all values of e2 ∈ [l2, u2]. Likewise, a constraint in system (8) that
can be written in the form e2 � () is satisfied by se′

1
with e2 = l2 and hence for

all values of e2 ∈ [l2, u2]. It follows that s represents a feasible schedule for the
Partially Clairvoyant system (8). The base case of the induction is proven.

We now assume that Theorem 5.2 is true for all job sets of size at most k. Now
consider a job set of size k + 1. Accordingly, the Partially Clairvoyant system is:

∃s1∀e1 ∈ [l1, u1]∃s2∀e2 ∈ [l2, u2] . . .
∃sk+1∀ek+1 ∈ [lk+1, uk+1] A · [s e]T � b. (10)

Let G denote the corresponding constraint graph. By Lemma 5.2, we know that
ek+1 can be eliminated from G without creating negative cost Partially Clairvoyant
cycles. Let G′ denote the resulting constraint graph and the corresponding Partially
Clairvoyant specification is denoted by:

∃s1∀e1 ∈ [l1, u1]∃s2∀e2 ∈ [l2, u2] . . . ∃sk+1 A′ · [s e′]T � b′, (11)

where e′ = [e1, e2, . . . , ek]T.
Let Sin denote the set of constraints which are represented by edges going into

sk+1 and let Sout denote the set of constraints which are represented by edges going
out of sk+1. Observe that each constraint lai ∈ Sin can be written in the form sa −
sk+1 � f a

i (), i.e., in the form sk+1 � sa − f a
i (), for suitable a ∈ {1, 2, . . . , k} and

suitably chosen f a
i (). Likewise, every constraint mb

j ∈ Sout can be written in the
form sk+1 − sb � gbj (), i.e., sk+1 � sb + gbj (), for suitable b ∈ {1, 2, . . . , k} and
suitably chosen gj (). Note that the indices a and b will change depending upon the
vertex from which the edge originates or ends. Fix sk+1 as

max
Sin

{sa − f a
i ()} � sk+1 � min

Sout
{sb + gbj ()}. (12)

Now contract vertex sk+1 and eliminate the redundant constraints as described
in Algorithm 5.4 to get a new constraint graph G′′; the corresponding Partially
Clairvoyant constraint system is denoted as:

∃s1∀e1 ∈ [l1, u1]∃s2∀e2 ∈ [l2, u2] . . .
∃sk∀ek ∈ [lk, uk] A′ · [s′ e′]T � b′′, (13)

112 K. SUBRAMANI

where s′ = [s1, s2, . . . , sk]T. Observe that G′′ cannot contain a negative cost Par-
tially Clairvoyant cycle, as per Lemma 5.3. By the inductive hypothesis, system
(13) has a Partially Clairvoyant schedule, ssol, which can be recursively constructed
as follows: ssol[1] = 0, while ssol[i], 2 � i � k, is a parameterized function of
the execution times {e1, e2, . . . , ei−1}, constructed in precisely the same manner as
sk+1, in relation (12). It is clear from this description that each ssol[i], 2 � i �
k, evaluates to a nonempty, numeric interval, when s1, e1, . . . , si−1 and ei−1 are
provided.

Now consider the point

s =
[

ssol

sk+1

]
(14)

with sk+1 constructed as per relation (12). We claim that s is a Partially Clairvoyant
schedule for system (11).

Assume the contrary and let it be the case that s is not a valid Partially Clair-
voyant schedule. It follows that there is a sequence bseq = 〈s1, e1, s2, e2, . . . , sk,

ek, sk+1〉, where the sis are chosen according to system (14) and ei ∈ [li , ui],
such that the constraint system A′ · [s e′] � b′ in system (11) is violated. From
the manner in which the sis are recursively constructed, it must the case that there
exists a first job Jj , such that the interval to choose sj is empty. We first observe
that j �� k, since that would violate the inductive hypothesis which assumed that
ssol was a valid Partially Clairvoyant schedule for system (13). Therefore, j = k+1
and the interval to choose sk+1 is empty.

Let lai ∈ Sin be the constraint which is maximized by bseq; likewise, let mb
j ∈

Sout be the constraint which is minimized by bseq. Observe that as a result of the
VERTEX-CONTRACT() operation, the edge in G′′ corresponding to lai is merged
with the edge corresponding to constraint mb

j to obtain an edge eab between ver-
tex sa and sb in G′′. Let lab denote the corresponding constraint between jobs
Ja and Jb. Since G′′ does not have a negative cost Partially Clairvoyant cycle,
by the inductive hypothesis, bseq must respect the constraint lab. (If edge eab is
deemed redundant, then bseq respects an even stronger constraint!) This means that
maxSin{sa − f a

i ()}|bseq � minSout{sb + gbj ()}|bseq, i.e., there is a nonempty interval
to choose sk+1.

Finally, we need to show that s is also a valid, Partially Clairvoyant schedule
for system (10); we use the same argument that was used in the base case. For
each sequence bseq = 〈s1, e1, . . . , sk, ek, sk+1〉, the constraint in system (10) that
contains ek+1 in the form ek+1 � () is met with ek+1 = lk+1 and therefore for all
values of ek+1 ∈ [lk+1, uk+1]; likewise, the constraint in system (10) that contains
ek+1 in the form ek+1 � () is met ek+1 = uk+1 and therefore for all values of
ek+1 ∈ [lk+1, uk+1].

By applying the principle of mathematical induction, we conclude that if the
constraint graph does not have a negative cost Partially Clairvoyant cycle, the
corresponding constraint system has a Partially Clairvoyant schedule. ✷

AN ANALYSIS OF PARTIALLY CLAIRVOYANT SCHEDULING 113

The correctness of Algorithm 5.3 follows immediately from Theorems 5.1
and 5.2.

5.3. COMPLEXITY

The elimination of a universally quantified execution time variable ei takes time
proportional to the degree of vertex si , since ei occurs only on those edges that
represent constraints involving si . Hence eliminating ei takes time O(n) in the
worst case. The total time taken for execution time variable elimination over all
n vertices is thus O(n2). The contraction of a single vertex takes time O(n2) in the
worst-case, since every pair of incoming and outgoing edges has to be combined. In
fact O(n2) is a lower-bound on the contraction technique, for appropriately chosen
constraint sets (see [16]). However, the total number of edges in the graph is always
bounded by O(n2); the total time spent in vertex contraction is therefore O(n3).

Thus the complexity of Algorithm 5.3 is O(n3). Note that constraint sets can be
chosen so that the running time of Algorithm 5.3 is !(n3).

5.4. DIFFERENCES BETWEEN THE PRIMAL AND DUAL ALGORITHMS

The principal differences between Algorithm 5.3 and Algorithm 5.1 are as follows:

(1) The primal algorithm operates by eliminating one column of the constraint
matrix after another; columns are eliminated for both execution time variables
and start time variables. In contrast, the elimination of an execution time vari-
able in the dual algorithm, does not affect the structure of the constraint graph,
while the elimination of a start time variable results in the elimination of a
vertex and the possible creation of new edges. The primal algorithm requires
space !(n3) on a constraint set having n jobs and O(n2) constraints, whereas
the dual algorithm can be implemented in O(n2) space on all constraint sets,
having n jobs.

(2) Implementation of existential variable elimination – Algorithm 5.1 eliminates
an existentially quantified variable, through pivot operations, whereas Algo-
rithm 5.3 eliminates existentially quantified variables by vertex contraction;
this is a graph operation that can be implemented in time proportional to the
product of the in-degree and out-degree of the vertex being contracted;

(3) Checking inconsistencies – In the primal approach, an inconsistency is identi-
fied when we have a pair of constraints of the form: si � 3, si � 4; in the dual
algorithm, the focus is on Partially Clairvoyant negative cost loops. There are
exactly two types of loops:
(a) E-domain loops – Suppose that vertex si and sj i < j are constrained as:

si + ei + 8 � sj , sj � si + 10; the contraction of sj results in a loop with
weight 2 − ei . Such a loop (called an E-domain loop) is either redundant
or inconsistent.

114 K. SUBRAMANI

(b) S-domain loops – Suppose that the vertex si has constraints of the form
si � 7, si � 5. These constraints are edges of the form s0 − si � −7, si −
s0 � 5. When si is contracted, we get a loop of cost −2, which indicates
infeasibility.

In other words, the dual algorithm is a (negative) loop identification algo-
rithm. This dual characterization of Partially Clairvoyant infeasibility may
have additional applications.

Remark 5.1. The dual-based algorithm is applicable only in case of difference
constraints; it is not known whether arbitrarily constrained sets have duals.

5.5. ILLUSTRATION OF THE DUAL ALGORITHM

EXAMPLE 3. Consider an instance of <aph|stan|param>, in which the underly-
ing constraint system is represented by Figure 1 and the schedulability specification
is given by query (15). Figures 3–5 display the application of Algorithm 5.3 to the
constraint graph.

∃s1 ∀e1 ∈ [4, 8] ∃s2 ∀e2 ∈ [6, 11]
∃s3 ∀e3 ∈ [10, 13] ∃s4∀e4 ∈ [3, 9] {(5)} ?

(15)

The final output is 0 � s1 � 10.

6. Complexity of Online Dispatching

As discussed in the previous section, the start time of each job is a parameterized
function of the start and execution times of the jobs sequenced before it. (Table (I)
provides a typical example.) During actual execution, s1 can take on any value in
the range [a, b]. Upon termination of job J1, we know e1 which along with s1 can
be plugged into f1() and f ′

1(), thereby providing a range [a′, b′] for s2 and so on,
till job Jn is scheduled and completes execution.

The principal problem with the creation of the function lists is that we cannot
a priori bound the length of these lists. In the case of standard constraints, it can be
argued that the length of these lists is at most O(n). However, there appears to be
no easy way to bound the length of the function lists, when the constraint matrix
is arbitrary. We argue here that explicit construction of the parameterized function
lists is unnecessary; determination of feasibility is sufficient, thereby eliminating
the need for storing the parameterized function lists. Observe that at any point in
the scheduling window, the first job that has not yet been scheduled has a start time
that is independent of the start and execution times of all other jobs. Once this job
is executed, we can determine a rational range, (say) [a′, b′] for the succeeding
job and the same argument applies to this job. In essence, all that is required to be
determined is the start time of the first unexecuted job in the sequence.

AN ANALYSIS OF PARTIALLY CLAIRVOYANT SCHEDULING 115

Figure 3. Algorithm 5.3 on query (15).

Let us assume the existence of an oracle, �, that decides query (3) in time T (�).
Algorithm 6.1 can then be used to determine the start time of the first unexecuted
job (say Jρ) in the schedule. Note that at commencement, ρ = 1.

The end of the period, L, is the deadline for all jobs in the job set. We must have
0 � sρ � L. The goal is to determine the exact value that can be safely assigned to
sρ without violating the current constraint set. Observe that the constraint system
A · [s e]T � b can also be written as: G · s + H · e � b. Let

Gρ.sρ + Hρ.eρ � bρ (16)

116 K. SUBRAMANI

Figure 4. Algorithm 5.3 on query (15) (contd.).

Figure 5. Algorithm 5.3 on query (15) (contd.).

Table I. List of parametric functions

Lower bound function � Start time � Upper bound function

a s1 b

f1(s1, e1) s2 f ′
1(s1, e1)

f2(s1, e1, s2, e2) s3 f ′
2(s1, e1, s2, e2)

.

..
.
..

.

..

fn−1(s1, e1, s2, e2, . . . , sn−1, en−1) sn f ′
n−1(s1, e1, s2, e2, . . . , sn−1, en−1)

AN ANALYSIS OF PARTIALLY CLAIRVOYANT SCHEDULING 117

Function DETERMINE-START-TIME (Gρ,Hρ,bρ, [al, ah])
1: {Initially [al, ah] = [0, L]; the interval is reduced to half its original length at each

level of the recursion}

2: Let m′ = ah + al

2
3: if (�(Gρ,Hρ,bρ, sρ � m′)), then
4: {We now know that there is a valid assignment for sρ in the interval [m′, ah]; the

exact point in time needs to be determined}
5: if (�(Gρ,Hρ,bρ, sρ = m′)), then
6: sρ = m′
7: return
8: else
9: if (al = ah) then

10: {The recursion has bottomed out; there does not exist a valid time to assign
to sρ .}

11: return(‘sρ cannot be assigned’)
12: end if
13: {m′ is not a valid point; however we can still recurse on the smaller interval}
14: DETERMINE-START-TIME (Gρ,Hρ,bρ, [m′, ah])
15: end if
16: else
17: {We know that the valid assignment for sρ must lie in the interval [al,m′]}
18: DETERMINE-START-TIME (Gρ,Hρ,bρ, [al,m′])
19: end if

Algorithm 6.1. Partially Clairvoyant Dispatcher to determine sρ .

denote the current constraint system, where

• Gρ is obtained from G, by dropping the first (ρ−1) columns; G1−ρ represents
the first (ρ − 1) columns of G,

• Hρ is obtained from H, by dropping the first (ρ−1) columns; H1−ρ represents
the first (ρ − 1) columns of H,

• sρ = [sρ, sρ+1, . . . , sn]T; s1−ρ = [s1, s2, . . . sρ−1]T,

• eρ = [eρ, eρ+1, . . . , en]T; e1−ρ = [e1, e2, . . . eρ−1]T, and

• bρ = b − (G1−ρ · s1−ρ + H1−ρ · e1−ρ).

Algorithm 6.1 exploits the local convexity of sρ , i.e., if sρ � a is valid and
sρ � b is valid, then any point sρ = λ · a + (1 − λ) · b, 0 � λ � 1 is valid.
The cost of this strategy is O(logL) calls to the oracle �, i.e., O(T (�) · logL).
We have thus established that the principal complexity of the Partially Clairvoyant
scheduling problem is in deciding query (3). This result is significant because it
decouples dispatching complexity from decidability, i.e., Algorithm 6.1 assures us
that efficient dispatching is contingent only upon efficient decidability.

118 K. SUBRAMANI

7. Conclusion

In this paper, we presented a new dual-based algorithm for the problem of de-
ciding whether a system of strictly relative constraints has a Partially Clairvoyant
schedule. The basis of the dual-based algorithm was Theorem 5.1, which is the full
first-order logic equivalent of the theorem in [3] for a system of simple, difference
constraints.

The analysis of the dual-based algorithm provided new insights into the imple-
mentation of Partially Clairvoyant schedulers; in particular, we showed, through
a reduction that the dispatching problem was not harder than the schedulability
problem. This result is important in situations in which it is not known how to
a priori bound the length of the dispatch function lists.

Some of the important open problems in Partially Clairvoyant scheduling are:
(1) Does there exist an algorithm that runs in O(m ·n), for the problem of deciding

whether a system of relative constraints has a Partially Clairvoyant schedule?
Both the primal and dual algorithms take have running time !(n3) on appro-
priately chosen constraint sets; it follows that a new approach is required to
improve the running time.

(2) A detailed implementation profile of the primal and dual algorithms on various
classes of constraint sets.

References

1. Choi, S.: Dynamic time-based scheduling for hard real-time systems, PhD thesis, University of
Maryland, College Park, June 1997.

2. Choi, S.: Dynamic time-based scheduling for hard real-time systems, J. Real-Time Systems,
2000.

3. Cormen, T. H., Leiserson, C. E. and Rivest, R. L.: Introduction to Algorithms, 6th edn, MIT
Press and McGraw-Hill, 1992.

4. Dantzig, G. B. and Eaves, B. C.: Fourier–Motzkin elimination and its dual, J. Combin. Theory
(A) 14 (1973), 288–297.

5. Damm, A., Reisinger, J., Schwabl, W. and Kopetz, H.: The real-time operating system of
MARS, ACM Special Interest Group on Operating Systems 23(3) (1989), 141–157.

6. Gerber, R., Pugh, W. and Saksena M.: Parametric dispatching of hard real-time tasks, IEEE
Trans. Comput., 1995.

7. Huynh, Joskowicz, Lassez and Lassez: Reasoning about linear constraints using parametric
queries, FSTTCS: Foundations of Software Technology and Theoretical Computer Science 10
(1990).

8. Han, C. C. and Lin, K. J.: Scheduling distance-constrained real-time tasks, In: Proceedings,
IEEE Real-time Systems Symposium, Phoenix, Arizona, December 1992, pp. 300–308.

9. Han, C. C. and Lin, K. J.: Scheduling real-time computations with separation constraints,
Inform. Process. Lett. 12 (1992), 61–66.

10. Levi, S. T., Tripathi, S. K., Carson, S. D. and Agrawala, A. K.: The Maruti hard real-time
operating system, ACM Special Interest Group on Operating Systems 23(3) (1989), 90–106.

11. Mosse, D., Agrawala, A. K. and Tripathi, S. K.: Maruti a hard real-time operating system, In:
Second IEEE Workshop on Experimental Distributed Systems, IEEE, 1990, pp. 29–34.

AN ANALYSIS OF PARTIALLY CLAIRVOYANT SCHEDULING 119

12. Nemhauser, G. L. and Wolsey, L. A.: Integer and Combinatorial Optimization, Wiley, New
York, 1999.

13. Pinedo, M.: Scheduling: Theory, Algorithms and Systems, Prentice-Hall, Englewood Cliffs,
1995.

14. Saksena, M.: Parametric scheduling in hard real-time systems, PhD thesis, University of
Maryland, College Park, June 1994.

15. Schrijver, A.: Theory of Linear and Integer Programming, Wiley, New York, 1987.
16. Subramani, K. and Kovalchick, L.: Contraction versus relaxation: A comparison of two ap-

proaches for the negative cost cycle detection problem, In: P. M. A. Sloot et al. (eds),
Proceedings of the 3rd International Conference on Computational Science (ICCS), Lecture
Notes in Comput. Sci., Springer-Verlag, June 2003.

17. Subramani, K.: An analysis of zero-clairvoyant scheduling, In: J.-P. Katoen and P. Stevens
(eds), Proceedings of the 8th International Conference on Tools and Algorithms for the Con-
struction of Systems (TACAS), Lecture Notes in Comput. Sci. 2280, Springer-Verlag, April
2002, pp. 98–112.

18. Subramani, K.: A specification framework for real-time scheduling, In: W. I. Grosky and
F. Plasil (eds), Proceedings of the 29th Annual Conference on Current Trends in Theory and
Practice of Informatics (SOFSEM), Lecture Notes in Comput. Sci. 2540, Springer-Verlag,
November 2002, pp. 195–207.

19. Chandru, V. and Rao, M. R.: Linear programming, In: Algorithms and Theory of Computation
Handbook, CRC Press, 1999.

20. Wolfe, V., Davidson, S. and Lee, I.: Rtc: Language support for real-time concurrency, In:
Proceedings IEEE Real-Time Systems Symposium, December 1991, pp. 43–52.

