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Abstract. The use of multibody formulations based on Cartesian or natural coordinates lead to
sets of differential-algebraic equations that have to be solved. The difficulty in providing compatible
initial positions and velocities for a general spatial multibody model and the finite precision of such
data result in initial errors that must be corrected during the forward dynamic solution of the system
equations of motion. As the position and velocity constraint equations are not explicitly involved in
the solution procedure, any integration error leads to the violation of these equations in the long run.
Another problem that is very often impossible to avoid is the presence of redundant constraints. Even
with no initial redundancy it is possible for some systems to achieve singular configurations in which
kinematic constraints become temporarily redundant. In this work several procedures to stabilize the
solution of the equations of motion and to handle redundant constraints are revisited. The Baumgarte
stabilization, augmented Lagrangian and coordinate partitioning methods are discussed in terms of
their efficiency and computational costs. The LU factorization with full pivoting of the Jacobian
matrix directs the choice of the set of independent coordinates, required by the coordinate partitioning
method. Even when no particular stabilization method is used, a Newton—Raphson iterative proced-
ure is still required in the initial time step to correct the initial positions and velocities, thus requiring
the selection of the independent coordinates. However, this initial selection does not guarantee that
during the motion of the system other constraints do not become redundant. Two procedures based on
the single value decomposition and Gram—Schmidt orthogonalization are revisited for the purpose.
The advantages and drawbacks of the different procedures, used separately or in conjunction with
each other and their computational costs are finally discussed.
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1. Introduction

In the simulation of multibody systems it is necessary to devise efficient and ver-
satile formulations of the models in order to achieve computational efficiency and
accuracy in the solution of any problem. The choice of the coordinates has a
direct influence in the structure of the equations of the motion that describe the
multibody model and it can be another reason for a method to be more efficient
and accurate than another [1]. Cartesian coordinates based formulations lead to
sets of differential-algebraic equations, which require proper numerical methods to
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ensure the stability and accuracy of the solution [2]. The work presented here is
developed in the framework of Cartesian coordinates.

The numerical solution of the differential equations of motion is an approxima-
tion of the exact solution in which the accuracy depends on the quality of the initial
guess for the positions and velocities, ability to recover from the perturbations
introduced by the solution process, aptitude to deal with redundant constraints,
capability to handle singular positions for the multibody system and eventually the
existence of intermittent and unilateral constraints. The set of differential algebraic
equations of motion does not use explicitly the position and velocity equations
associated to the kinematic constraints. Therefore, small errors in the state variables
of the system due to the integration process or to their initial guess by the user
cannot be corrected in the course of the solution of the dynamic problem. The
strategies generally used to overcome this problem are the coordinate partitioning
method [3], the Baumgarte stabilization method [4] or the augmented Lagrangian
formulation [5].

In general spatial models it is very often impossible to avoid the use of re-
dundant constraints that lead to Jacobian matrices with linear dependent rows.
Consequently, the system of equations formed by the equations of motion and the
constraint acceleration equations has a leading matrix which is singular or that
becomes ill-conditioned [6]. The application of formulations that use a general-
ized inverse of the system non-square matrix, which results from the existence of
redundant constraints, have been proposed in multibody dynamics in recent years
[6-9]. Among these, the Singular Value Decomposition is suitable to solve singu-
lar, overconstrained or undetermined problems. Kim and Vanderploeg [8] use QR
decomposition for the same purpose. Based on the work by Udwadia and Kalaba
[10] a formulation using the K-U formulation has been proposed by Arabyan and
Wu [6]. The advantage of this formulation is that the redundant constraints are
handled in the solution of the system equations of motion and the problems that
involve singular configurations and intermittent constraints, associated with chan-
ging the number of degrees-of-freedom, are managed. However, as the proposed
methodology does not include the position and velocity constraint equations it does
not provide any solution for the constraint violation problem. Therefore, techniques
able to minimize or eliminate the constraint violation errors are still required.

This paper presents a discussion on the use of the different methodologies to
handle the constraint violation correction or their stabilization and the existence of
redundant constraints. Among these methods the use of the K-U formulations for
multibody systems with holonomic constrains is emphasized. Different forms of
calculating this pseudo-inverse based on Singular Value Decomposition and Gram—
Schmidt orthogonalization are presented.
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Figure 1. Schematic representation of a multibody system.

2. Dynamic Analysis of Multibody Systems

A multibody system is a collection of rigid and flexible bodies joined together by
kinematic joints and force elements as depicted in Figure 1. For the ith body of
the system q; denotes a vector containing the translational coordinates r;, and a
set of rotational coordinates p;. A vector of velocities for a rigid body i is defined
as q; and it contains a 3-vector of translational velocities I; and a 3-vector with
the rotational coordinates velocities p;. Another body velocity vector defined as q*
includes the angular velocities w; instead of the time derivatives of the rotational
coordinates. When Euler parameters are used as rotational coordinates the relation
between their time derivatives and the angular velocities is given by 2p = L7 «/,
where matrix L is defined in [1] and «’ represents the angular velocity of the body
expressed in the body fixed coordinate frame. The vector of accelerations for the
body is denoted by ;, the time derivative of q;. For a multibody system containing
nb bodies, the vectors of coordinates, velocities, and accelerations are q, ¢ and
( that contain the elements of q;, q; and ¢;, respectively, fori = 1, ..., nb. The
system velocity and acceleration vectors, using angular velocities and accelerations
instead of the Euler parameters time derivatives are denoted by q* and ¢*.

The constraint equations describing the relative motion between contiguous
bodies arise from the kinematic joints. The kinematic constraints are described
by mr independent equations as

®(q,7) =0. (D

The first and second time derivatives of the position constraint equations yield
the kinematic velocity and acceleration equations, respectively

®(q. 4", 1) =0=®,4" =, 2)

®(q,q% 4", 1) =0 = 0,4 =y, 3)
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Figure 2. Solution procedure for the dynamic analysis of multibody systems.

where ®,, is the Jacobian matrix of the constraints. The equations of motion for the
system of rigid bodies are written as [14]

Mg’ + 0L =g, )

where M is the inertia matrix, A is a vector of unknown Lagrange multipliers, and
vector g = g(q, q) contains the forces, moments and gyroscopic terms.

Equations (3) and (4) form a system of differential-algebraic equations that
must be solved together to obtain the accelerations and Lagrange multipliers. This
system is

ElINEHI ®

The standard numerical solution of these equations proceeds as illustrated in Fig-
ure 2. No special provision is made to correct for the position and velocity con-
straint violations. Moreover, it is assumed that the matrix is not singular or ill-
conditioned.

2.1. STANDARD SOLUTION OF THE SYSTEM EQUATIONS OF MOTION

The system of Equations (5) can be solved by applying any method suitable for
the solution of linear algebraic equations. The existence of null elements in the
main diagonal of the matrix and the possibility of ill-conditioned matrices suggest
that methods using partial or full pivoting are preferred. However, none of these
formulations help in the presence of redundant constraints. The direct solution of
Equation (5) is hereafter designated by the Lagrange Multiplier Method 1 (LM1).
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2.2. DIRECT INVERSION OF THE SYSTEM MATRIX

The left-hand side matrix of the system of Equations (5) can be inverted analyt-
ically. Equation (4) is rearranged to put the acceleration vector in evidence in the
left-hand side and the result is substituted in Equation (3), which is also rearranged
to give

A=@M o) 'oM g — (@M @)y (6)

In these equations it is assumed that the multibody model does not include any
body with null mass or inertia so that the inverse of the mass matrix M exists. The
substitution of Equation (6) in Equation (4) provides the expression for the system
accelerations written as

¢ =M'-M'e (@M 'e)) o.M ']g
+M ol (@M ')y ()
Equations (6) and (7) are now rearranged in a compact form and written as

il _ [M'-M'e(eM e oM '] M '@/ (@M D)
) (@M o)) oM™ —(e M @)

g
X|:y] ®)

The matrix in the right-hand side of Equation (8) is the inverse of the system
matrix that appears in Equation (5). The solution process enunciated by Equa-
tion (8) is referred to as the Lagrange Multiplier Method 2 (LM?2).

3. Solution Methods to Handle Constraints Violations

The initial conditions and the integration of the velocities and accelerations of the
multibody system introduce numerical errors in the new positions and velocities
obtained. These errors are due to the finite precision of the numerical methodolo-
gies and to the position and velocity constraint equations not appearing anywhere
in the solution procedure outlined in Figure 2. Therefore, methods able to eliminate
errors in the constraint or velocity equations or, at least, to keep such errors under
control must be implemented.

3.1. BAUMGARTE STABILIZATION METHOD

Second-order equations, such as Equation (3), are unstable. Small perturbations,
such as the numerical errors introduced by the integration process, cannot be cor-
rected naturally and they only tend to be amplified. The solution is to introduce
feedback terms that penalize the system response if violations on the position or
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velocity constraint equations occur [4]. With this purpose in mind, the right-hand
side of Equation (3) is modified,

Q.G =y —20d - 5’0, )

where o and B are positive constants that weight the violations of the velocity and
position constraint equations respectively. These constants, for a multibody system
made of rigid bodies, are values in the range of 1-10, being «, 8 = 5 values often
used [1].

The use of the Baumgarte stabilization method is done by using Equation (9)
instead of Equation (3) during solution process of the system equations. It should
be noted that the method does not correct the constraint violations but simply keeps
them under control.

3.2. COORDINATE PARTITIONING METHOD

Based on the original work by Wehage and Haug [3], the coordinate partitioning
method eliminates the errors of the velocities and positions that would otherwise
accumulate during the integration process, i.e., the method reduce such errors to
values below a specified tolerance. This method requires that sets of independent
and dependent coordinates are first identified. Then, only the independent accel-
erations and velocities are integrated and the dependent quantities are calculated
using partitions of the velocity and constraint equations.

3.2.1. Automatic Selection of the Independent Coordinates

The definition of the dependent and independent coordinates can be done auto-
matically by using a matrix factorization technique, such as Gaussian elimination
with full pivoting. For a multibody system with m constrains and n coordinates the
Jacobian matrix is m x n and the order of the columns of the matrix corresponds
to the order of elements of vector . Consider an m x n matrix A for which the
factorization results in the form

m—k n—@m-—k)
A — B R m—k . (10)
S D 1k

Assume that there are k redundant rows in the matrix and m — k dependent con-
straints. As a result of the full pivoting procedure used the k redundant constraints
end up in the factorized matrix bottom rows. B is a non-singular (m — k) x (m — k)
matrix associated to the dependent coordinates, and R is the submatrix (m — k) x
(n — m + k) associated to the independent coordinates.

In what follows let it be assumed that A represents the Jacobian matrix ®.
Without loss of generality, we assume that there are no redundant constraints in the
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multibody model, or that these have been identified and eliminated. In such case
the Jacobian matrix can be partitioned into

o, = [®, ®,]. (11)

The Jacobian matrix in Equation (11) has the same form as the submatrix [B R]
of Equation (10). Equation (11) implies the partition of the coordinate vector into
vectors of dependent and independent coordinates, denoted by u and v respectively.
This coordinate partition also implies the partition of the velocity and acceleration
vectors given as ¢ = [a? v']and g = [ii?7 V7] respectively.

3.2.2. Evaluation of the Dependent Coordinates and Velocities

Let it be assumed that the vector of system accelerations is calculated by using of
Equation (5) or (8) alternatively. The integration vector y, appearing in Figure 2,
only includes the independent coordinates and it is written as

y =" V7, (12)

which after integration results in vector y = [v! v'].

The dependent velocities and positions are calculated using the velocity and
position constraint equations respectively. To evaluate the dependent velocities let
Equation (2) be partitioned

o,u+ OV =rv. (13)
The dependent velocities u are evaluated by solving the system of equations
du=—-d,v+v. (14)

The dependent positions are obtained through the solution of the position constraint
equations, given the independent coordinates, this is,

d(u,v, 1) =0. (15)

The Newton—Raphson method is used for the solution of Equation (15) to obtain
the dependent positions u. To achieve convergence some reliable estimates must
be provided for these coordinates. A good estimation of u’ at time ', to start the
iterative solution procedure, is found by using the information from the previous
time ! as [1]

w =u '+ pa ! +0.50%0 !, (16)

where £ is the integration time step from ¢’ to '~
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3.3. AUGMENTED LAGRANGIAN FORMULATION

The augmented Lagrangian formulation is a methodology that penalizes the con-
straint violations, much in the same form as the Baumgarte stabilization method
[4]. However, this is an iterative procedure that presents a great number of advant-
ages relative to other methods because it involves the solution of a smaller set of
equations, it handles redundant constraints and it can still deliver accurate results
in the vicinity of singular configurations. The augmented Lagrangian formulation
consists in solving the system equations of motion, represented by Equation (5),
by an iterative process. Let index i denote the ith iteration. The evaluation of the
system accelerations in a given time step starts as

Mq' =g (i=0). (17)

The iterative process to evaluate the system accelerations proceeds with the evalu-
ation of

Mg}, = g, (18)

where the generalized mass matrix M and load vector g are given by

T
M = M+<I>qa<I>q,
g = Mg, + @ a(y; —20u®q] — *®;). (19)

In Equation (19) the mass matrix M, the Jacobian matrix ®4 and the right-hand
side of the acceleration equations y are the same as those used in Equation (5).
The penalty terms «, B and w ensure that the constraint violations feedback are
accounted for during the solution of the system equations. The iterative process
continues until

167y, — 671l < e (20)

The augmented Lagrangian formulation involves the solution of a system of
equations with a dimension equal to the number of coordinates of the multibody
system. Though mass matrix M is generally positive semi-definite the leading mat-
rix of Equation (18) M + <I>£oe ®, is always positive definite [5]. Even when the
system is close to a singular position or when in presence of redundant constraints
the system of equations can still be solved.

4. Methods to Handle Redundant Constraints

In many practical situations the multibody systems models include redundant con-
straints. In some multibody systems it also happens that some constraints are in-
termittent or that they simply vanish. Several improved formulations, using the
Moore—Penrose generalized inverse, that are suitable for these kinds of multibody
systems, are revisited here.
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4.1. THE MOORE-PENROSE GENERALIZED INVERSE

Let the accelerations of the unconstrained multibody system be ¢*, . = M™!q,
where it is assumed again that all bodies of the system have non-null masses and
inertias. Equation (7) is rewritten as

q" =G, + M@l (@M ' e]) (y — @44}, 21)

Let the inverse of the mass matrix be written as M~! = M~'/2M~1/2 where M!/2
is a diagonal matrix with coefficients equal to the square root of the corresponding
coefficients in the diagonal M matrix. Equation (21) becomes

0" = G +M2M 200 (@M PMT20 ) T (y — @i, (22)
An auxiliary variable D = <I>qM_1/ 2
tion (22) leads to

is defined, which upon substitution in Equa-

" = G + MT2DT DD TNy — Pyisy)- (23)
The Moore-Penrose generalized inverse of D, denoted by D* has the properties
(6]

DD'D =D,

D'DD" =D, (24)
D*D and DD* both being symmetric matrices. Consequently

p’ (D! = DT (DH'D" = (D'D)'D" =D'DD" = D. (25)
The result expressed by Equation (25) is substituted in Equation (23) leading to

" = G + MT2DT(r — Dy, (26)

The solution of Equation (26), hereafter designated by MPI, always exists be-
cause the Moore—Penrose pseudo-inverse exists even when the inverse of the lead-
ing matrix of Equation (5) does not exist. This means that in the presence of
redundant constraints or in the presence of constraints that vanish instantaneously,
such as the unilateral constraints, the pseudo-inverse matrix D7 still exists.

4.2. COMPUTATION OF THE GENERALIZED INVERSE
4.2.1. Singular Value Decomposition

The calculation of the system accelerations using Equation (26) assumes that the
pseudo-inverse matrix DT can be calculated. Let D be an m x n non-square matrix.
Its Singular Value Decomposition (SDV) leads to

D =USV7, (27)
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where U and V are m x n and n x n square orthogonal matrices respectively. The
non-square matrix S has non-zero elements only on its diagonal and, therefore, the
calculation of its pseudo-inverse S™ is trivial [11]. The pseudo-inverse of D is

Dt = VSTU7, (28)

where the relations U7 = U~! and VI = V!, valid for orthogonal matrices, have
been used.

4.2.2. Gram-=Schmidt Orthogonalization

The Gram—Schmidt orthogonalization process (GS) can also be used to compute
the pseudo-inverse matrix D*. With this method, matrix D is decomposed in [11]

D = QR, (29)

where Q is an m X n matrix whose columns are orthogonal to each other, i.e.,
Q7Q = I, and R is an n x n upper triangular matrix. The computation of the
pseudo-inverse is then obtained as

Dt =R!Q". (30)

The use of the Gram—Schmidt orthogonalization requires that all columns of matrix
D are independent.

5. Application Examples

The virtues and shortcomings of the different methods proposed are based on ap-
plications to several simple mechanical systems for both kinematic and dynamic
analysis. All models are simulated until an error condition happens, so that the
simulation has to be stopped, or until the simulation time reaches 20 s.

5.1. KINEMATIC ANALYSIS OF MULTIBODY SYSTEMS

Typically the solution of a kinematic analysis consists in first solving Equation (1)
using the Newton—Raphson method and after solving the linear systems of Equa-
tions (2) and (3). Alternatively, it is possible to carry the kinematic analysis by
using the dynamic equilibrium equations provided that all degrees of freedom of
the multibody system are driven by kinematic constraints. In this case the resulting
motion of the system components is independent of the rigid body inertial prop-
erties and of the external applied forces. Therefore, in the applications that follow
the system mass matrix is assumed to be the identity matrix and the forces in the
system are assumed to be non-existing. All methodologies presented throughout
this work are used to solve each of the different applications. The methods that use
the generalized inverse, in particular, require the solution of Equation (26). Based
on the assumptions described for the kinematic analysis, Equation (26) reduces to

j=D"y. (€19
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Figure 3. Parallel four-bar linkage.

The vector of accelerations is obtained by solving Equations (5), (7), (17-19)
or (31), that correspond to the procedures designated by LM1, LM2, ALF and MPI
respectively. The acceleration vector is integrated together with the velocity vector
to obtain new velocities and positions, using the sequence depicted by Figure 2.
This procedure, by itself, does not ensure that the position and velocity constraint
equations are fulfilled. Therefore, the use of a methodology to stabilize or eliminate
the constraint violations is still required.

5.1.1. Four-Bar Linkage

Consider a four-bar linkage, shown in Figure 3, with a = b = 0.5 m. Let the bar
2 have a constant angular velocity, w, = 124.8 rad/s. Though the motion of the
four-bar linkage is planar, the system model includes two revolute joints, in points
A and D, and two universal joints, in points B and C, that are defined in a three-
dimensional space. The crank is constrained to rotate with a prescribed angular
velocity.

The model is described by four rigid bodies, which account for 24 coordin-
ates, and by two revolute and two universal joints, one ground body and one
driving constrains, which account for 25 constraints. The system has one degree-
of-freedom, which is guided by the driving constraint. Therefore, one of the system
constraints is redundant. The existence of this redundant constraint can be elimin-
ated by substituting of one of the universal joints by a spherical joint. However,
that is not done here in order to use the example to demonstrate the results of
the proposed methodologies. In different analysis several initial positions for the
initial orientation of body 2 are considered alternatively, i.e., 6, = nm; 6, = /4
and 8, = /2. The system is simulated using the methods described in the previous
sections. For the MPI method, the pseudo-inverse is calculated by using the Sin-
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Table I. Comparison of the outcome of the use of different methods to simulate the four-bar linkage.

Methods Initial position
6 =nmw 6 =m/4 0 =m/2
LM2 Fail (r = 05)4 Fail (r = 0s)4 Fail (r =0 )¢

LM2 + Baumg. stab.

LM2 + Coord. part.
ALF

ALF + Coord. part.
MPI (SDV)

MPI (SDV)+ Baumg. stab.
MPI (SDV)+ Coord. part.

MPI (GS)

Fail (t = 05s)4
Fail (t = 0 s)¢
Fail (t = 0s)?
Fail (t = 0's)”
Fail (r = 0.054 s)¢
Fail (r = 0.052 s)¢
Convergence

Fail (r = 0.050 s)¢

Fail (t = 05s)4
Fail (t = 0 s)*
Fail (t = 0.006 s)?
Fail (1 = 0.006 s)?
Fail (t = 0.031 s)c
Fail (t = 0.031 s)¢
Convergence

Fail (t = 0.031 s)¢

Fail (t = 05s)¢
Fail (t = 0 s)¢
Fail (1 = 0.012 5)”
Fail (+ = 0.012'5)”
Fail (t = 0.037 s)°
Fail (+ = 0.037 s)¢
Convergence

Fail (+ = 0.037 s)¢

MPI (GS)+ Baumg. stab.
MPI (GS) + Coord. part.

Fail (r = 0.050 s)¢
Convergence

Fail ( = 0.031 s)¢
Convergence

Fail (r = 0.063 s)¢
Convergence

4Matrix is singular due to the redundant constraints.
5The method does not converge because a singular position is reached.
“The constraint violations exceed the allowable tolerance.

gular Value Decomposition (SDV) or the Gram—Schmidt orthogonalization (GS).
The Baumgarte stabilization or the coordinate partitioning methods are also used
in order to maintain the constraint violations under control. The comparison of the
results using combinations of the different methodologies is presented in Table I.

The results show that the existence of redundant constraints prevents the LM?2
method to deliver any results, as expected. The ALF method handles the constraint
redundancy and it is able to provide results even close to the singular positions.
However, when the mechanism singular positions are actually reached the ALF
method fails. This failure of the MPI methods is attributed to the small constraint
violations that built up during the simulation, which are sufficient to prevent the
method to converge near the singular positions due to the mechanism locking. The
configurations of the four-bar linkage, for the cases that correspond to the initial
crank position of 8, = 7 /2, are presented in Figure 4 from the simulation start until
its failure time. All sequences in Figure 4 end with the position of the mechanism
in which the methodology used failed.

The MPI methods lead to the correct solution of the system accelerations but
the use of coordinate partitioning is required in order to ensure that the system po-
sition and velocity constraint equations are always fulfilled. This suggests that the
constraint violations are in fact the responsible for the failure of the methodologies
in the vicinity of the singular positions. Figure 5 shows the maximum constraint
violations for MPI method, using the GS and SDV techniques, without the ap-
plication of the coordinate partitioning method. In Figure 6 the same maximum
constraint violations are presented when the MPI method is used in conjunction
with the coordinate partitioning strategy. In any of the cases, when the mechanism
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Figure 4. Instantaneous position of the four-bar linkage using different methods: (a) ALF;
(b) MPI (GS) and MPI (SDV); (c) MPI (GS) + B.
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Figure 5. Maximum constraint violations observed when using the GS or the SDV methods
to evaluate the leading matrix pseudo-inverse. The coordinate partitioning is not used.

passes by a singular position there is no preferred branch of the motion for the
system to take.

Table I shows that unless the coordinate partitioning method is used, all simula-
tions eventually fail due to excessive constraint violations, even when a constraint
stabilization methodology is used. In all cases solved it is observed that the use
of different penalization parameters in the Baumgarte stabilization method or in
the Augmented Lagrangian Method can, at the most, delay the moment for which
the constraint violations exceed the allowable tolerance or become large enough to
lead to the mechanism lockup, but they never avoid the problem.
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Figure 7. Parallel five-bar linkage.

5.1.2. Parallel Five-Bar Linkage

Consider the five-bar linkage presented in Figure 7. This mechanism has the kin-
ematic structure proposed for the four-bar linkage presented in Figure 3 plus an
extra rigid body, which is pinned to bodies 2 and 4 by two revolute joints. In this
case the system continues to exhibit only one degree-of-freedom but its model uses
six more coordinates, corresponding to the extra body, and ten more constraints,
due to the new revolute joints. The model for the mechanism has five redundant
constraints that need to be dealt with during the solution of its kinematic equations.
The results of the simulation of the five-bar linkage with the combinations of the
different methodologies are presented in Table II. Sequences of the configurations
observed for mechanism, simulated using the different procedures proposed, are
presented in Figure 8 from their initial positions until the solution process fails.



STABILIZATION METHODS FOR INTEGRATION OF DAE 95

Table 1I. Comparison of the outcome of the different methods
used to simulate the five-bar linkage.

Methods

LM2 Fail (t = 0 s)¢
LM2 + Baumgarte stabilization Fail (t = 05s)4
LM2 + Coordinate partition Fail (r = 0 s)4
ALF Fail (1 = 0.012 5)?
ALF + Coordinate partition Fail (+ = 0.012 s)b
MPI (SDV) Fail (r = 0.095 s)¢
MPI (SDV) + Baumgarte stabilization  Fail (r = 0.095 s)¢
MPI (SDV) + Coordinate partition Fail (t = 3.538 s)d
MPI (GS) Fail (r = 0.059 s)¢
MPI (GS) + Baumgarte stabilization Fail (+ = 0.059 s)¢
MPI (GS) + Coordinate partition Convergence

“Matrix is singular due to the redundant constraints.

5The method does not converge because a singular position is
reached.

“The constraint violations exceed the allowable tolerance.
dThe integration process fails to converge.

As expected, the simulation methodology that uses the LM2 formulation is un-
able to handle the redundant constraints and, therefore, it fails to start the solution
procedure. The remaining methodologies behave similarly for the simulations of
the five and four-bar linkages. The drifts of the system constraints with larger
violations that are observed during the simulations are similar to those presented
for the four-bar linkage in Figure 5, if the coordinate partitioning method is not
used, or in Figure 6 if that procedure is applied. Though the nature of the problem
that causes the different methodologies to succeed or fail in the solution of the
system equations is the same for simple or complex systems the results suggest
that, at this level of complexity of the multibody models, the number of redundant
constraints present in the models does not pose extra numerical difficulties.

A close look at the configurations of the five-bar linkage, displayed in Figure 8,
shows that the MPI methods are still able to obtain a solution for the system equa-
tions even when the constraint violations are large. In fact, the simulation process
is halted because the constraint violations exceed the allowable tolerances and not
because the SDV or the GS methodologies fail to deliver a solution for the system
equations. When the coordinate partitioning method is used together with the MPI
formulations a feasible solution for the complete motion of the system is obtained.
The failure of the MPI method that uses the SDV with coordinate partitioning for
the singular position of the mechanism that occurs for 3.538 s is due to the difficulty
of the integration process to converge.
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Figure 8. Instantaneous position of the five-bar linkage: (a) MPI (GS); (b) MPI (SDV);
(c) MPI (SDV) + CP.

5.1.3. Spatial Slider Crank

The application of the spatial kinematic analysis to a simple spatial multibody
system is presented for the study of the offset slider crank shown in Figure 9. The
crank rotates about Y with a constant angular velocity w = 124.8 rad/s. The slider
translates in a direction parallel to ¥ with an offset d with respect to this axel. The
kinematic joints of the multibody system include one revolute joint between the
ground and the crank, a universal joint between the crank and the rod, a spherical
joint between the rod and the slider and a translation joint between the slider and
the ground. The mechanism is modeled with 24 coordinates, which result from four
rigid bodies, and 23 constraint equations, due to the kinematic constraints. Because
the system has only one degree-of-freedom the model used to represent it has no
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Figure 9. Slider-crank 3D.

redundant constraints. The kinematic analysis is carried on with the methodologies
proposed and their outcome is resumed in Table II1.

The results presented in Table III show that if the coordinate partitioning method
is not used all methodologies fail after some time. The use of the Baumgarte stabil-
ization method in conjunction with the different procedures applied in the solution
of the system equations simply delays the time at which the constraint violations
become too large. The ALF is able to control the drift of the kinematic constraints
violations allowing for the normal termination of the simulation process. When the
coordinate partitioning method is used, together with any of the proposed proced-
ures to solve the system equations, the analysis is successfully carried on for long
simulation times.

The use of the coordinate partitioning method is known to require a larger num-
ber of computer operations than the constraint stabilization procedures. The results
presented in Table III show that the use of the coordinate partitioning method leads
to solutions of the system motion that is much smoother that those obtained when
using the Baumgarte stabilization method or no constraint stabilization at all. The
integration of the system velocities and accelerations requires the use of variable
time step integration algorithms that actually adjust it to the frequency content of
the system response. By eliminating the constraint violations the system response
becomes smoother and the step size of the integration becomes about 30 times
larger than that selected when the coordinate partitioning is not used. The result is
that the methods that use coordinate partitioning are computationally cheaper that
those not using it. Though the ALF requires about 3,300 time steps to be taken
by the integration procedure for each second of simulation, like any other meth-
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Table I1I. Comparison of the outcome of the spatial slider crank simulation for different methods.

Methods Results Num. of steps per Execution time per

sec. of simulation sec. of simulation

LM2 Fail ( = 6.163 5)¢ 3,303 53.95
LM2 + Baumgarte stabilization Fail (t = 8.079 s)¢ 3,292 52.53
LM2 + Coordinate partition Convergence 103 36.84
ALF Convergence 3,286 36.84
ALF + Coordinate partition Convergence 103 48.69
MPI (SDV) Fail ( = 6.163 s)¢ 3,303 79.64
MPI (SDV) + Baumgarte stabilization Fail ( = 8.079 s)¢ 3,292 79.19
MPI (SDV) + Coordinate partition Convergence 103 42.42
MPI (GS) Fail (r = 6.163 )¢ 3,303 92.87
MPI (GS) + Baumgarte stabilization  Fail (r = 8.079 s)“ 3,292 93.92
MPI (GS) + Coordinate partition Convergence 103 42.14

@The constraint violations exceed the allowable tolerance.

odology that does not use the coordinate partitioning method, its computational
cost is smaller. The methods that use the MPI are computationally more expensive
than those that use the LM2 or the ALF procedures. The costs of evaluating the
pseudo-inverse by using the GS or the SVD are not different.

5.2. DYNAMIC ANALYSIS OF MULTIBODY SYSTEMS

Multibody models of spatial and planar slider cranks described are used here in the
framework of dynamic analysis of multibody systems. Instead of using driving con-
straints to guide the mechanisms cranks a constant moment of 100 Nm is applied
to the crank body. Both multibody models are simulated until the methodologies
fail or 20 s of simulation are reached.

5.2.1. Slider Crank

A model of the slider crank mechanism, shown in Figure 10, is analyzed here.
This model has crank and connecting rod bodies with equal sizes of 0.308 m, and
consequently it exhibits a singular configuration when the joint between the ground
and the crank coincides with the joint between the connecting rod and the slider.
The model with four rigid bodies is described by 24 coordinates. Its 24 kinematic
constraints result from the application of two revolute joints, one spherical joint,
one translation joint and one ground body. The slider crank mechanism has a single
degree-of-freedom and consequently one of the kinematic constraints is redundant.

Due to the existence of the redundant kinematic constraint the leading matrices
in the system equations of motion are singular and, therefore, the LM1 and LM2
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Figure 11. Crank angular velocity for the planar slider crank mechanism.

methods cannot be used. The simulation of the motion of the slider-crank is suc-
cessfully performed for 20 s. with the methodologies ALF, MPI (GS) and MPI
(SDV), using or not the coordinate partitioning or the Baumgarte stabilization
methods in conjunction. However, when the mechanism goes over a singular point
there is no preferred branch of motion to be followed. Figure 11 shows the angular
velocity of the crank obtained in the simulation with two different methodologies.
It is observed that after the first singular point, reached at 1.81 s, the solution of the
system obtained with the MPI (GS) method alone follows a different path relative
to the one obtained when using the same procedure together with the Baumgarte
stabilization method.

The sequence of the configurations of the slider crank when using the MPI
(GS) and MPI (GS) + B methodologies are presented in Figure 12. When the first
singular position is reached the coupler and crank rotate together as if they were
a single body, but the direction of their rotations is opposite for the MPI (GS)
and the MPI (GS) + B. Though not pictured in any of the figures, when using
the MPI (SDV) methodology with and without coordinate partitioning this type
of branching is also observed. Moreover, just the modification of the penalization
constants of the Baumgarte method is enough to vary the branching of the system
motion after a singular position.

The behavior of the mechanism accelerations close to the singular positions is
characterized by sudden high values, emphasized in Figure 13, where the logarithm
of the crank acceleration is shown. Clearly, these peaks in the acceleration are
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Figure 12. Instantaneous position of the slider crank: (a) MPI (GS); (b) MPI (GS) with
Baumgarte stabilization.
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Figure 13. Crank angular acceleration when the MPI (GS) method is used together with
coordinate partitioning.

associated to sudden forces that develop in the vicinity of the singular positions of
the mechanism, which can eventually lead to halting the numerical integration pro-
cess. This effect is even more evident when the coordinate partitioning method is
used. Therefore, a possible failure of the simulation procedure must be attributed to
difficulties in the integration process rather than in the lack of ability of numerical
methodologies suggested throughout this work to deliver solutions for the system
equations of motion.
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Figure 14. Crank angular velocity for methodologies that use coordinate partitioning.

When the dimensions of the crank and connecting rod are different, the system
does not exhibit any singular positions. Another model, with the dimensions of
the crank and connecting rod of a = 0.304 m and b = 0.4048 m respectively, is also
studied. Figure 14 illustrates the time history of the crank angular velocity obtained
in the simulations with the different methodologies and coordinate partitioning.
Though not displayed, the same results are obtained when the methodologies de-
scribed are used without correcting for the constraint violations. Therefore, all for-
mulations lead to the same result and no serious problems of constraint violations
are observed during the simulations.

5.2.2. Spatial Slider Crank

The dynamics of the spatial slider crank depicted in Figure 9 is simulated here
using the different methodologies implemented. The system is modeled with no
redundant constraints and there are no singular positions. Therefore, all method-
ologies are expected to deliver some results, at least during the initial phases of
the analysis. In fact, all formulations provide similar results, as exemplified by the
outcome of the crank angular velocity, depicted in Figure 15, for the methodologies
ALF, MPI (SDV) and MPI (GS) and in Figure 16, where the same methodologies
are used in conjunction with the coordinate partitioning method.

The number of time steps taken in the integration process and the computing
time spent for the simulation of the spatial slider crank per second, using the
different procedures to solve for the system equations of motion, are presented
in Table IV. The use of the coordinate partitioning method leads to the selection of
30% larger time steps in the integration procedure. This computational savings
associated to these larger time steps compensates partially for the overhead in
computational costs that result from the extra computations required by the co-
ordinate partitioning method. In any case, the ALF procedure is still more efficient
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Figure 15. Crank angular velocity of the spatial slider crank obtained for the ALF, MPI (GS)
and MPI (SDV) methods without using coordinate partitioning.
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Figure 16. Crank angular velocity of the spatial slider crank obtained for the ALF, MPI (GS)
and MPI (SDV) methods using coordinate partitioning.

than the other methodologies, even when used in conjunction with the coordinate
partitioning method.

6. Conclusions

General formulations for the dynamic and kinematic analysis of rigid mechanical
systems have been reviewed here. For all proposed applications it was observed
that the control of the constraint violation is fundamental for long running times.
Therefore, the use of the coordinate partitioning method is the only reliable form
to ensure that the analysis does not fail due to constraint violations. It was also
observed that the elimination of the redundant kinematic constraints, after they are
identified by using the factorization procedure, is more efficient than the use of the
pseudo-inverse methodologies. However, in the case of singular positions the use
of the Moore—Penrose pseudo-inverse is fundamental. Nevertheless, the decision
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Table 1V. Computational costs per second of simulation for the different methodologies in the
dynamic analysis.

LM1 LM2 GS SDV. ILM2+CP GS+CP SVD+CP ALF+CP

No. Steps 2428 2428 2428 2428 1627 1768 1774 1368
Time (s) 30.31 30.34 5552 47.07 395 58.27 58.82 28.47

on the branch of motion that the mechanism takes cannot be done automatically. It
was also observed that the use of the coordinate partitioning method is not neces-
sarily more costly than the constraint stabilizing procedures. In many of the cases
simulated, the extra computational costs associated to the coordinate partitioning
are compensated by a more stable integration process characterized by larger time
steps.

The violation of the position and velocity constraint equations, that arise from
the integration of the differential-algebraic equations, associated to the multibody
models described by Cartesian coordinates, can be handled by using constraint
stabilization methodologies, such as the Baumgarte stabilization method or the
augmented Lagangian formulation, or by using the coordinate partitioning method.
It was shown that the coordinate partitioning is the only method that ensures the
stability of the integration process during all simulation time. The failures of the in-
tegration of the system state variables observed are attributed to the difficulty of the
integration methodology to converge next to the singular positions because of the
existence of several possible branches of motion. The use of stabilization methods,
such as the ALF and the Baumgarte method, showed to be efficient in handling
the constraints violations drifts, or at least to delay their growth, in the dynamic
analysis but much less effective for the kinematic analysis. In all cases studied here
the use of the coordinate partitioning method had the extra advantage of leading to
a more stable response of the mechanical system resulting in the selection of larger
time steps by the integration algorithms. For the dynamic analysis applications the
average time step required when using the coordinate partitioning was 1.3 times
larger than the time step required when other constraint stabilization procedure
was selected while for the kinematic analysis it was 30 times larger. In the case
of the kinematic analysis the computer time saved by having a more stable sys-
tem response largely compensated the extra costs resulting from the computations
associated to the coordinate partitioning method.

It was shown that the use of the coordinate partitioning method requires that a
set of independent coordinates is defined beforehand. The factorization procedures
that use full pivoting of the leading matrices not only provide the necessary tools
for the coordinate partitioning but also identify the redundant constraints of the
model. Therefore, in the process of using the coordinate partitioning method the
elimination of the redundant constraints comes for free. The existence of redundant
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constraints or singular configurations for the multibody system can be handled by
applying the augmented Lagrangian formulation or procedures that use the Moore-
Penrose pseudo-inverse. This pseudo-inverse can be calculated using a singular
value decomposition or by applying the Gram—Schmidt orthogonalization proced-
ure. These methodologies proved to be able to handle efficiently the solution of
the system equations of motion in the presence of redundant constraints and when
singular positions are reached. The failures observed in the solution of the system
response in some application cases was due to the convergence of the integration
process rather than to difficulties of the ALF or MPI methods to handle the re-
dundant constraints or the singular positions. The MPI methods always delivered
solutions for the system equations of motion, even when such solutions were un-
feasible and had no physical meaning. None of the methodologies used was able to
steer the system solution when singular configurations were reached, making the
selection of the branch of motion followed by the system virtually random.
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