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Abstract

The tomographic map of the quantum state of a system with several degrees of freedom, which depends
on one random variable, analogous to the rotated and scaled center-of-mass of the system, is constructed.
The time-evolution equation of the tomogram for this map is given in the explicit form. The properties
of the map such as the transition probabilities between different states and relation to the star-product
formalism are elucidated. An example of a multimode oscillator is considered in detail. Identical
particles are discussed within the framework of the proposed tomography scheme.
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1. Introduction

Recently [1] a new formulation of quantum mechanics was suggested. This new formulation uses a non-
negatively defined probability distribution function to describe quantum states, which is called the marginal
distribution [2, 3] or tomogram. This function can be considered an analog of known quasidistribution
functions like the nonnegative Husimi Q-function [4] or the Sudarshan–Glauber P -function [5, 6]. The
tomographic approach was initially developed for one-mode systems; in this case, the quantum state is
described by the density matrix ρ(q′, q′′) [7, 8] or by the symplectic tomogram w(X,µ, ν) [9]. Here the
density matrix is a function of two variables, and the tomogram is a function of three variables. The seeming
overcompleteness of the tomographic description is balanced by the fact that the quantum tomogram is a
homogeneous function [10, 11].

In the most general case, the state of a system with N degrees of freedom is described by the density
matrix ρ(q′,q′′), which is a function of 2N variables. What is then the generalization of the quantum
tomogram? Will it depend on 3N variables or 2N + 1 variables? Such a generalization was developed for
a tomogram depending on 3N variables (usual a symplectic tomography) [12]. In this paper, we propose a
tomographic map with only one random variable (i.e., 2N + 1 variables totally) and discuss its properties
in detail.

The aim of our work is to elaborate the tomographic approach to describe multimode quantum states
using the tomogram, which depends on one random variable and several real parameters. We also elucidate
the relation of this tomographic approach to the star-product formalism which was used for the standard
symplectic tomography in [13].
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Quantum tomography is popular nowadays due to a number of reasons. It was developed not only
for continuous variables like position but also for discrete spin variables [14–20]. First, the tomographic
representation operates with values that are directly measured in experiments, for example, in experiments
with nonclassical and coherent states of light [20–22]. Second, the tomogram is nonnegative, and this
attracts the attention of those who deal with computer simulations. Many problems in this field result in
the use of alternating-sign (or even complex) values to describe the quantum state (for example, the sign
problem in Fermi-system simulations). In fact, the tomographic map has already been used in quantum
simulations [24]. These circumstances along with the tomography applications in quantum computations
and entanglement (see, e.g., [25]), as well as in information theory and signal analysis [26], show that the
development of a convenient and simple tomographic map for the case of many particles (or, which is the
same, many modes) is a task of great significance.

This paper is organized as follows.
In Sec. 2. we present the definition of a tomographic scheme with one random variable, elucidate some

of its useful properties, and derive the equations describing quantum evolution, stationary states, and
quantum transitions for the proposed tomography map. The rules for average-value calculations and star-
product formalism are considered in Sec. 3.. Some examples of the state description using the approach
developed are given in Sec. 4., and the symmetry of the map with respect to particles permutations is
discussed in Sec. 5. The results are summarized in Sec. 6.

2. Tomogram of a System with Several Degrees of Freedom

2.1. Definition of the Tomographic Maps

In this section, we present the equations connecting the quantum tomograms (for the usual symplectic
scheme and a new scheme with only one random variable) vis-a-vis the standard quantum mechanics
formulation. We also develop here the evolution equations for tomograms.

Throughout the paper, the notation is as follows:
We consider a system of N particles in d dimensions; the number of degrees of freedom is Nd. Vectors

are written as a, and everywhere vectors with Nd components are used unless otherwise indicated. The
notation e is used for vectors with all components equal to 1 (ei = 1). The scalar product of vectors is
designated as

a = bc (meaning a =
∑

i

bici),

a = b ◦ c denotes the componentwise product of vectors (ai = bici). The tomogram for the usual
symplectic scheme is designated as w1(X, µ, ν) (X, µ, and ν with Nd components each); the tomogram
with one random variable is written as w2(X,µ, ν) (now µ and ν have Nd components each and X is one
real variable). We also use the Planck’s constant ~ = 1 everywhere.

There exists the Wigner formulation of quantum mechanics [27] where the system’s state is described
by the real Wigner function FW (q,p) defined in the phase space. It is more convenient to use the Wigner
representation to develop the tomographic scheme; therefore, let us start with the equations connecting
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the Wigner function with the density matrix:

FW (q,p) =
∫
ρ
(
q +

u
2
,q− u

2

)
e−ipu du

(2π)Nd
, (1)

ρ(q′,q′′) =
∫
FW

(
q′ + q′′

2
,p
)
eip(q′−q′′)dp. (2)

Given the connection between the tomogram and the Wigner function, it is always possible to reconstruct
the relation of the tomogram to the density matrix using Eqs. (1) and (2).

Let us now define the usual symplectic tomography map developed in [13, 28].
The tomogram w1(X, µ, ν) and Wigner function FW (q,p) are connected as follows:

w1(X, µ, ν) =
∫
FW (q,p) exp

[
− ik(X− µ ◦ q− ν ◦ p)

]dk dq dp
(2π)Nd

, (3)

FW (q,p) =
∫

exp
[
− ie(µ ◦ q + ν ◦ p−X)

]
w1(X, µ, ν)

dX dµ dν

(2π)2Nd
. (4)

One can see that the exponent and integration over k in (3) can be rewritten as the product of 3Nd
delta-functions δ(Xi − µiqi − νipi). Considering Eq. (3) as a definition of w1(X, µ, ν), Eq. (4) is verified
simply by replacing w1(X, µ, ν) by Eq. (3).

The transition from the symplectic scheme with 3Nd variables to 2Nd + 1 variables is very simple.
The componentwise product in Eq. (3) is replaced by the scalar product and instead of the set of random
variables

Xi = µiqi + νipi

we get one random variable
X = µq + νp.

The corresponding connection between the tomogram w2(X,µ, ν) and the Wigner function FW (q,p) can
be written as follows:

w2(X,µ, ν) =
∫
FW (q,p) exp

[
− ik(X − µq− νp)

] dk dq dp
(2π)

, (5)

FW (q,p) =
∫

exp
[
− i(µq + νp−X)

]
w2(X,µ, ν)

dX dµdν

(2π)2Nd
. (6)

Since the Wigner function is connected by invertible maps with both probability distributions w1 and
w2, it is obvious that these tomograms contain the same information on the quantum state. In fact, one
has

w2(X,µ, ν) =
∫
w1(Y, µ, ν) δ

(
X −

Nd∑
j=1

Yj

)
dY, (7)

w1(X, µ, ν) =
∫
w2(Y,k ◦ µ,k ◦ ν) ei(Y −kX) dk dY . (8)

The quantum-mechanical average of a function, which can take only positive values, is also positive.
The integral of some function over the phase space with the Wigner function is the average value; therefore,
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because the product of the delta-functions δ(Xi − µiqi − νipi) in (3) cannot be negative, the symplectic
tomogram w1 is nonnegatively defined. The same is valid for w2, because for this function one considers
δ(X − µq− νp), which is also nonnegative.

The form of the random variables X (for w1) and X (for w2) gives the possible interpretation of µ and
ν — they are the parameters of scaling and rotation of the reference frame in the phase space [1]. Then
the random variables are the positions of particles, measured in the scaled and rotated reference frame

Xi = µiqi + νipi for w1,

or the sum of such positions
X = µq + νp for w2.

The variable X (for w2) plays a role analogous to the center-of-mass coordinate.

2.2. Properties of the Tomographic Maps

The Wigner function is normalized:∫
FW (q,p) d qdp =

∫
ρ
(
q +

u
2
,q− u

2

)
e−ipu du dq dp

(2π)Nd

=
∫
ρ
(
q +

u
2
,q− u

2

)
δ(u) du dq = 1, (9)

where we choose normalization for the density matrix:

Tr (ρ̂) = 1.

Then the tomograms w1 and w2 are normalized in X (for w1) or X (for w2) variables:∫
w1(X, µ, ν)dX =

∫
FW (q,p) δ(k) eik(µ◦q+ν◦p)dk dq dp = 1, (10)∫

w2(X,µ, ν)dX =
∫
FW (q,p) δ(k) eik(µq+νp)dk dq dp = 1. (11)

As mentioned in Sec. 1, although the 1D tomogram depends on three variables, instead of two for the
density matrix, the completeness of the physical description is the same for both formulations due to the
fact that the tomogram is a homogeneous function:

w(λX, λµ, λν) =
w(X,µ, ν)

|λ|

for any real λ.
Similar properties take place for more degrees of freedom.
Consider the definitions (3) and (5) and multiply all variables in w1 or w2 by a real number λ:

w1(λX, λµ, λν) =
∫
FW (q,p) exp

[
− iλk(X− µ ◦ q− ν ◦ p)

] dk dq dp
(2π)Nd

=
∫
FW (q,p) exp

[
− ik(X− µ ◦ q− ν ◦ p)

] dk dq dp
(2π|λ|)Nd

=
w1(X, µ, ν)

|λ|Nd
, (12)
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where we simply made the change of variables λk → k.
For w2, the vector k becomes a single variable k and we obtain

w2(λX, λµ, λν) =
∫
FW (q,p) exp

[
− iλk(X − µq− νp)

] dk dq dp
(2π)

=
∫
FW (q,p) exp

[
− ik(X − µq− νp)

] dk dq dp
(2π|λ|)

=
w2(X,µ, ν)

|λ|
. (13)

We can also consider componentwise scaling using a real vector λ instead of a single number. Then we
obtain the following property of w1:

w1(λ ◦X, λ ◦ µ, λ ◦ ν) =
∫
FW (q,p)e−iλ◦k(X−µ◦q−ν◦p)dk dq dp

(2π)Nd

=
∫
FW (q,p)e−ik(X−µ◦q−ν◦p) dk dq dp∏Nd

j=1 |λj |(2π)Nd

=
Nd∏
j=1

|λj |−1w1(X, µ, ν), (14)

The properties (12)–(14) make obvious the relations

w1(X, µ, ν) =
Nd∏
j=1

|Xj |−1w1

(
e,
µ

X
,
ν

X

)
=

Nd∏
j=1

|µj |−1w1

(
X
µ
, e,

ν

µ

)
=

Nd∏
j=1

|νj |−1w1

(
X
ν
,
µ

ν
, e
)
, (15)

where a = b/c means aj = bj/cj , and

w2(X,µ, ν) = |X|−1w2

(
1,
µ

X
,
ν

X

)
. (16)

Note that for Nd = 1, Eqs. (12) and (14) are equivalent, and the tomographic maps w1 and w2 become
the same in this case.

For the pure state with the wave function Ψ(q), the symplectic tomogram w1 was expressed in terms
of the modulus squared of the fractional Fourier transform of the wave function in [29]. The tomogram
w2 for the pure state is given by

w2(X,µ, ν) =
∫
dY

δ
(
X −

∑Nd
j=1 Yj

)
(2π)Nd

∏Nd
j=1 |νj |

∣∣∣∣Ψ(q) exp
[
i

(
q
Y
ν
− q ◦ q

2
Y
ν

)]
dq
∣∣∣∣2 . (17)

2.3. Evolution Equations

Now we discuss the evolution equation for w1 and w2.
We start with the most general evolution equation for the density matrix:

i
∂ρ(q′,q′′)

∂t
=
[
Ĥ, ρ(q′,q′′)

]
. (18)
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Here and throughout the paper, we omit the dependence on time t but imply that all functions describing
the state (density matrix, Wigner function, tomograms) depend on time as a parameter. We consider the
Hamiltonian

Ĥ =
∑

i

p̂2
i

2mi
+ V (q).

To derive the evolution equation for tomograms, we consider the Moyal evolution equation for the Wigner
function [16, 30, 31]:

∂FW

∂t
+

p
m
∂FW

∂q
+ i

[
V

(
q +

i

2
∂

∂p

)
− V

(
q− i

2
∂

∂p

)]
FW = 0, (19)

where p/m means the vector with components pi/mi (the equation holds for the case of different masses for
different particles and directions) and the operators in the potential V designate the analytical expansion
of the potential and use of the products of corresponding operators. This equation can be easily obtained
by applying the transform (1) to Eq. (18).

To derive the evolution equation for the tomograms, one applies the transforms (3) and (5) to the
evolution equation for the Wigner function (19). By expanding the potential in Eq. (19), one can see that
transforms of the quantities qFW , ∂FW /∂q, pFW , and ∂FW /∂p have to be considered. Let us derive
the evolution equation for w2. The transform (5) of qFW reads∫

qFW (q,p) exp
[
− ik(X − µq− νp)

] dk dq dp
2π

= −i ∂
∂µ

∫
FW (q,p)

k

× exp
[
− ik(X − µq− νp)

] dk dq dp
2π

. (20)

Consider the operator (∂/∂X)−1, which gives the antiderivative of the function it operates on. Then we
have

i
e−ikX

k
=
i

k

(
∂

∂X

)−1 ∂

∂X
e−ikX =

(
∂

∂X

)−1

e−ikX , (21)

and Eq. (20) becomes∫
qFW (q,p) exp

[
− ik(X − µq− νp)

]dk dq dp
2π

= − ∂

∂µ

(
∂

∂X

)−1

w2(X,µ, ν). (22)

Using the same simple operations we obtain the transformation rules for the terms of Eq. (19), which we
formally designate by arrow:

qFW (q,p) → − ∂

∂µ

(
∂

∂X

)−1

w2(X,µ, ν), (23)

∂FW (q,p)
∂q

→ µ
∂

∂X
w2(X,µ, ν), (24)

pFW (q,p) → − ∂

∂ν

(
∂

∂X

)−1

w2(X,µ, ν), (25)

∂FW (q,p)
∂p

→ ν
∂

∂X
w2(X,µ, ν). (26)
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Successive application of rules (23)–(26) allows us to transform all powers of q, p and corresponding
derivatives in Eq. (19). As a result, we obtain the evolution equation for the quantum tomogram w2 of
one random variable:

∂w2

∂t
− µ

m
∂w2

∂ν
+ i

[
V

(
− ∂

∂µ

(
∂

∂X

)−1

+
i

2
ν
∂

∂X

)
− V

(
− ∂

∂µ

(
∂

∂X

)−1

− i

2
ν
∂

∂X

)]
w2 = 0. (27)

The same operations can be used to obtain the evolution equation for symplectic tomogram w1. We do
not give its derivation here because it is very similar to that for w2 and has already been considered, e.g.,
in [28, 32]. The equation has the form

∂w1

∂t
− µ

m
◦ ∂w1

∂ν
+ i

[
V

(
− ∂

∂µ
◦
(
∂

∂X

)−1

+
i

2
ν ◦ ∂

∂X

)
−V

(
− ∂

∂µ
◦
(
∂

∂X

)−1

− i

2
ν ◦ ∂

∂X

)]
w1 = 0. (28)

From the form of Eqs. (27) and (28), we see that the variables µ, ν, which, as we mentioned earlier, can be
interpreted as the parameters of the scaling and rotated reference frame, appear as dynamical variables in
the evolution equations for quantum tomograms.

2.4. Stationary States

For the stationary state with certain energy, we can turn from the time-dependent Schrödinger equation
(18) to the eigenvalue equation

Ĥρ̂E = ρ̂EĤ = Eρ̂E . (29)

Applying the transform (1) we obtain the following rules of transition from the equation for the density
matrix to the equation for the Wigner function:

∂2ρ(q,q′)
∂q2

→
(

1
4
∂2

∂q2
− p2 + ip

∂

∂q

)
FW (q,p), V (q)ρ(q,q′)

→ V

(
q +

i

2
∂

∂p

)
FW (q,p). (30)

After that, using (23)–(26), we have the eigenvalue equation for the tomogram w2 with one random variable

Nd∑
j=1

[
1

2mj

∂2

∂ν2
j

(
∂

∂X

)−2

− 1
8mj

µ2
j

∂2

∂X2

]
w2 + ReV

(
i

2
ν
∂

∂X
− ∂

∂µ

(
∂

∂X

)−1
)
w2 = Ew2,

(31)

−
Nd∑
j=1

µj

2mj

∂w2

∂νj
= ImV

(
i

2
ν
∂

∂X
− ∂

∂µ

(
∂

∂X

)−1
)
w2.

The corresponding equation for w1 is almost the same, the only difference being that X in the jth term
of the sum must be replaced by the jth component of vector X.
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2.5. Quantum Transitions

In general, there is a possibility for transition between quantum states.
Consider two states and designate them a and b. The probability of transition from state a to state b

is
Pab = Tr (ρ̂aρ̂b) =

∫
ρa(q′,q′′)ρb(q′′,q′)dq′ dq′′.

In terms of the Wigner formalism, this can be rewritten as follows:

Pab = (2π)Nd

∫
FW (a)(q,p)FW (b)(q,p) dq dp. (32)

Recalling the connection of the Wigner function with tomograms w1 (4) and w2 (6), we easily get the
following expressions for Pab in the tomography approach:∫

wa
1(X, µ, ν)wb

1(Y,−µ,−ν) eie(X+Y) dX dY dµ dν

(2π)Nd
=

∫
wa

2(X,µ, ν)wb
2(Y,−µ,−ν)

×ei(X+Y ) dX dY dµ dν

(2π)Nd
. (33)

2.6. Tomographic Map in Temperature-Dependent Processes

The tomographic representation can be introduced without changes for systems with temperature
T 6= 0. In this case, we consider the “imaginary time” β = 1/T (measuring T in units of energy). β enters
as a parameter in the density matrix, which is now defined by the equation

−∂ρ(q
′,q′′, β)
∂β

= Ĥq′ρ(q′,q′′, β), (34)

where the index q′ in Ĥq′ shows that the Hamiltonian acts only on that variable.
Now the transition to the tomograms w1 or w2 is straightforward. We just use the same rule as in the

derivation of evolution equations (27), (28) and eigenvalue equation (31). Then the “evolution equation
in imaginary time” β for w2 is given by

−∂w2

∂β
=

Nd∑
j=1

[
1

2mj

∂2

∂ν2
j

(
∂

∂X

)−2

− 1
8mj

µ2
j

∂2

∂X2

]
w2 + ReV

(
iν

2
∂

∂X
− ∂

∂µ

(
∂

∂X

)−1
)
w2,

−
Nd∑
j=1

µj

2mj

∂w2

∂νj
= ImV

(
i

2
ν
∂

∂X
− ∂

∂µ

(
∂

∂X

)−1
)
w2. (35)

The equation for w1 is obtained from (35) replacing X by the corresponding components of the vector X.
The initial condition for Eq. (34) reads

ρ(q′,q′′, β = 0) = δ(q′ − q′′).

It corresponds to the constant Wigner function [see Eq. (1)]. Using Eqs.(3)–(5) we see that both tomograms
w1 and w2 for β = 0 must have the delta-function form, equal zero everywhere, besides the point µ, ν = 0,
and be constant in the X (or X) direction in that point.
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3. Calculation of Average Values and Star-Product Formalism

3.1. General Rules

In any application of the theory being developed, when we try to describe the physical reality, the
quantities we deal with are measurements of some devices. Such measurements are described in quantum
theory by the average values of the operators, corresponding to a certain physical quantity. Using the
density matrix to describe the system state, we can obtain the average value of some operator Â as
follows:

〈A〉 = Tr (ρ̂Â), (36)

where we choose
Tr (ρ̂) = 1.

In connection with this formula, it is worth rewriting the basic relations of the tomogram w2 and density
operator ρ̂ in an invariant form. One can check that

w2(X,µ, ν) = 〈δ(X − µq̂− νp̂)〉 , (37)

ρ̂ =
∫
w2(X,µ, ν) ei(X−µq̂−νp̂) dX dµ dν

(2π)Nd
. (38)

What will be the expression for the average values if we work in the quantum tomography approach?
Here it is again convenient to begin with the Wigner–Moyal formulation of quantum mechanics. Within its
framework, to calculate the average value, one deals with the Weyl symbol AW (q,p) [33] of the operator
A(q̂, p̂) (for review, see [34, 35]):

〈A〉 =
∫
AW (q,p)FW (q,p) dq dp, (39)

where the Weyl symbol is given by

AW (q,p) =
∫

Tr
(
A(q̂, p̂)eiξq̂+iηp̂

)
e−iξq−iηp dξ dη

(2π)2Nd
. (40)

Consider at first the symplectic tomographic map w1. Expressing the Wigner function in Eq. (39) through
the tomogram w1 [as was done in (4)], we get (see also [36])

〈A〉 =
∫
AW (q,p)e−ie(µ◦q+ν◦p−X)w1(X, µ, ν)

dX dµ dν dq dp
(2π)2Nd

=
∫
ei

∑Nd
j=1 Xjw1(X, µ, ν)A(µ, ν) dX dµ dν, (41)

where we have used
eX =

∑
j

1 ·Xj =
∑

j

Xj

and the Fourier transform of the Weyl symbol A(µ, ν)

A(µ, ν) =
∫
AW (q,p)e−i(µq+νp) dq dp

(2π)2Nd
. (42)
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Here we have used the properties of a componentwise product:

a(b ◦ c) =
∑

j

aj(bjcj) = b(a ◦ c) = c(b ◦ a),

which result in
e(b ◦ c) = b(e ◦ c) = bc.

Note that in Eq. (41) 3Nd variables become 2Nd+ 1 variables, and X appears there only as a sum of
the components. Only the average values of operators are of concern in the measurable physical reality;
therefore, it is natural to consider X in the form it appears in the expression for average values. But the
sum of the components

Xj = µjqj + νjpj

is exactly the same as the variable
X = µq + νp,

which appears in w2. So it seems that the tomographic map with one random variable contains the same
physical information in a more economic way than the usual symplectic tomographic map. This conclusion
is also confirmed by the fact that for description of the system we need only 2Nd variables (q′,q′′ for the
density matrix or q,p for the Wigner function), while the symplectic tomography operates with 3Nd
variables. Turning to the one-random-variable tomography map w2, we decrease the number of dynamical
variables to only 2Nd + 1, and recalling the property (13), we face the real and nonnegative probability
distribution function of 2Nd variables, which completely describes the quantum state.

The expression for average values in the one-random-variable tomography formulation is obtained in
the same way as for w1, using the connection between the Wigner function and w2 (6):

〈A〉 =
∫
AW (q,p)e−i(µq+νp−X)w2(X,µ, ν)

dX dµdν dq dp
(2π)2Nd

=
∫
eiXw2(X,µ, ν)A(µ, ν) dXdµdν. (43)

Here we recall that due to the property (16) the tomogram w2(X,µ, ν) is known for any X if it is
known for only one X0 6= 0:

w2(X,µ, ν) =
X0

X
w2

(
X0,

X0

X
µ,
X0

X
ν

)
. (44)

However, in the general case, X cannot be extracted either from the evolution equation (27) or from the
expression for average values (43). It is the unusual form of these equations, where X is “entangled” with
other variables, that does not allow one to deal with w2 as a function of only 2Nd variables, and this is
the price of its nonnegativity. And still, considering w2, we do work with the nonnegative function of 2Nd
variables — having determined, for example, w2(1, µ, ν) for all µ, ν from −∞ to +∞, we can easily find
w2 for every X.

3.2. Operators Depending on Coordinates or Momenta Only

Equations (41) and (43) take an interesting form if the operator under consideration depends on
coordinates q̂ or momenta p̂ only. In this case, the Weyl symbols have the same form as the corresponding
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operators in the coordinate or momentum representation. The operator A(q̂) is A(x) in the x-coordinate
representation; then its Weyl symbol AW (q,p) is equal to A(q). The same is valid for the momenta-
dependent operator — B(p̂) is B(y) in the y-momentum representation and

BW (q,p) = B(p).

We consider an operator A(q̂) depending on coordinates only.
For momenta-dependent operators, all equations are the same provided µ is replaced by ν, and vice

versa, because the pairs q, µ and p, ν enter the equations connecting the tomograms w1 and w2 with the
Wigner function absolutely symmetrically.

For both w1 and w2, integration over ν in Eqs. (41) and (43) gives the delta-function δ(ν). In the
symplectic tomography formulation, recalling the property (14), 〈A〉 is expressed as follows:

〈A〉 =
∫
AW (q) e−i(µq−

∑Nd
j=1 Xj)w1

(
X, µ, ν = 0

) dX dµ dq
(2π)Nd

=
∫
AW (q) e

−iµ

(
q−X/µ

)
w1

(
X/µ, e, ν = 0

) dX dµ dq∏Nd
j=1 |µj |(2π)Nd

=
∫
AW (q) e−iµ(q−X)w1

(
X, µ = e, ν = 0

) dX dµ dq
(2π)Nd

=
∫
AW (q) δ(q−X)w1

(
X, µ = e, ν = 0

)
dX dq

=
∫
AW (X)w1

(
X, µ = e, ν = 0

)
dX. (45)

In view of Eqs. (1) and (3), we have

w1(X, µ = e, ν = 0) =
∫
FW (q,p) δ(X− q) dq dp =

∫
FW (X,p) dp = ρ(X,X), (46)

i.e., w1(X, µ = e, ν = 0) is the particle density in the coordinate space. Then Eq. (45) looks quite natural.
For the tomogram w2 with one random variable, we obtain

〈A〉 =
∫
AW (q) e−i(µq−X)w2(X,µ, ν = 0)

dX dµdq
(2π)Nd

. (47)

This expression is not reduced to the simple form as it takes place for w1. Nevertheless, some improve-
ment can appear in certain cases. For example, one often operates with one-particle and one-dimension
operators. Then, quite generally, we can consider an operator A(q̂1). The corresponding average value
〈A〉 reads ∫

AW (q1)e−i(µ1q1−X)δ(µ̃)w2(X,µ, 0)
dX dµdq1

2π

=
∫
AW (q1)e−iµ1(q1−X/µ1)w2

(
X

µ1
, µ1 = 1, µ̃ = 0, 0

)
dX dµ1 dq1

2π|µ1|

=
∫
AW (q1) δ(q1 −X)w2

(
X,µ1 = 1, µ̃ = 0, 0

)
dX dq1

=
∫
AW (X)w2

(
X,µ1 = 1, µ̃ = 0, 0

)
dX, (48)

where µ̃ designates all µj except the specified, i.e., here all except µ1.
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3.3. Star-Products

There is a possibility to develop quantum mechanics without operators, using some functions instead
and the so-called star products of these functions. Within the framework of star-product formalism (see
[13] and references therein), one associates any operator with its “symbol,” i.e., the function depending
on a specific set of parameters and corresponding to certain rules of the operators’ ordering. Any state-
describing function (such as the Wigner function, symplectic tomogram w1, etc.) is the symbol of the
density operator ρ̂, and the product of operators is replaced by the star-product of their symbols. For
example, the Wigner–Moyal formulation of quantum mechanics corresponds to the Wigner–Weyl ordering
of the operators, Weyl symbols (40) replace the operators, and the Wigner function is the Weyl symbol of
ρ̂.

The tomography representation can be developed with the help of the star-product formalism too. Here
we give the corresponding expressions for the one-random-variable tomography; for symplectic tomography
the same can be found in the literature.

One obtains the symbol of any operator Â for the tomographic map with one random variable and
reconstructs this operator as follows:

wA
2 (X,µ, ν) = Tr

(
Âδ(X − µq̂− νp̂)

)
, (49)

Â =
∫
wA

2 (X,µ, ν) ei(X−µq̂−νp̂) dX dµ dν

(2π)Nd
. (50)

In particular, these expressions give the connection between the tomogram w2 (37) and the density operator
ρ̂ (38).

The star-product of two symbols can be defined through the kernel of the corresponding integral
expression:

(wA ∗ wB)(y) =
∫
wA(y′′)wB(y′)K(y′′, y′, y) dy′′ dy′, (51)

where, for the tomography with one random variable, y = {X,µ, ν} and the kernel is given by

K(y′′, y′, y) = Tr
(
D̂(y′′)D̂(y′)Û(y)

)
, (52)

D̂(y) = (2π)−Nd exp
[
i (X − µq̂− νp̂)

]
, (53)

Û(y) = δ (X − µq̂− νp̂) . (54)

The analytic expression for the kernel has the following form:

K(y′′, y′, y) =
∫
e−i(kX−X′−X′′) δ(µ′′ + µ′ − kµ) δ(ν ′′ + ν ′ − kν)

× exp
{
−i
[
µ′′ν ′ − k

(
µ′′ν ′ + µ′ν

)
+
µ′ν ′ + µ′′ν ′′ + k2µν

2

]}
dk

(2π)Nd+1
. (55)

4. Examples

In this section, we introduce several examples of tomographic maps (symplectic or with one random
variable) for many-particle quantum states. For simplicity, here we do not regard the symmetry over the
particles’ permutations.
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4.1. Gaussian States

Quite simple is the case where the system state is pure and the wave function has the Gaussian form.
This can be the ground state of the system of independent oscillators, as well as the coherent or squeezed
state, or any many-dimensional Gaussian wave packet. Such a wave packet can be created due to the
parametric excitation of the multimode vacuum state of an electromagnetic field [37], e.g., within the
framework of the nonstationary Casimir effect [38].

Consider first the pure state with the wave function

Ψ(q) =
Nd∏
j=1

ψj(qj),

where

ψj(q) =
(
Aj

π

)1/4

exp
[
−Aj

2
(q − xj)2 − iyjq

]
. (56)

The only mathematical principle we need here is the fact that the Fourier transform of a Gaussian is
Gaussian. Then, using Eq. (1), we immediately obtain the Wigner function as a product of FW

j (qj , pj),
where

FW
j (q, p) = e−Aj(q−xj)

2
e−Bj(p−yj)

2 (AjBj)1/2

π
, (57)

and for states (56) Bj = 1/Aj .
For the set of parameters x,y,A,B, by applying Fourier transformations (3), (5) to (57) we have w1:

wGauss
1 (X, µ, ν) =

Nd∏
j=1

1√
πCj

e−(Xj−µjxj−νjyj)
2/Cj , (58)

where

Cj =
µ2

j

Aj
+
ν2

j

Bj
.

The tomogram w2 has the form

wGauss
2 (X,µ, ν) =

1√
πC

e−(X−µx−νy)2/C , (59)

where

C =
Nd∑
j=1

Cj .

Thermal density matrix of independent oscillators is also Gaussian, but it is not a product of wave
functions, since the state is not pure. Still it is a product of density matrices of individual oscillators (see,
e.g., [39]):

ρj(q, q′) =

√
2Aj(Bj − 1)

π
e−Aj [Bj(q

2+q′2)−2qq′], (60)

where
Aj =

mωj

2 sinh(ωjβ)
and B = cosh(ωjβ).
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Omitting the straightforward calculations, we obtain the tomogram w2 in the following form:

w
(β)
2 (X,µ, ν) =

e−X2/D

√
πD

, (61)

where

D =
Nd∑
j=1

(
µ2

j

2Aj(Bj − 1)
+ 2ν2

jAj(Bj + 1)

)
. (62)

The symplectic tomogram w1 in this case is the product of functions like (61), where X is replaced by
Xj and the sum in the expression for D is substituted for the jth term of the sum.

4.2. Fock States

One can also consider the Fock states of light (eigenstates in the photon-number representation). Such
functions correspond to the ground or excited state of a multimode oscillator. The state is labeled by the
vector n of integer numbers, and the wave function has the form

Ψ(q) =
Nd∏
j=1

e−q2
j /2Hnj (qj)

π1/4
√

2njnj !
, (63)

where Hm is a Hermite polynomial of mth order. To obtain the tomograms for such state, we use the
following facts. First, the coherent state of an oscillator is described by the Gaussian wave function and,
correspondingly, by the Gaussian tomogram [both w1 and w2, see Eqs. (58) and (59)]. The coherent state
is labeled by the complex vector

α = a + ib,

and the parameters of the Gaussian wave function in the coordinate representation (56) are

xj =
√

2aj and yj = −
√

2bj .

Second, the wave function of the coherent state (for simplicity, one dimension is considered here) is
expanded in the basis of Fock states as follows:

|α〉 = e−|α|
2/2

∞∑
n=0

αn

√
n!
|n〉 , (64)

which is connected with the expression for generating a function of Hermite polynomials:

e−α2+2αq =
∞∑

n=0

αn

n!
Hn(q). (65)

One can express the tomogram w1 of the coherent state in terms of Hermite polynomials. The wave
function of the coherent state can be given as a series of wave functions of Fock states. Noting that the
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Fig. 1. Tomograms w2 for Fock states, Nd = 2. X and θ are dimensionless parameters. States with {n1, n2} equal
to {0, 0}, {0, 1}, {1, 0} and {1, 1} are presented (see text for details).

tomogram of the Fock state is the product of one-dimensional tomograms, we have

wn
1 (X, µ, ν) =

Nd∏
j=1

H2
nj

(
Xj√

µ2
j+ν2

j

)
e−X2

j /(µ2
j+ν2

j )

2njnj !
√
π(µ2

j + ν2
j )

, (66)

wn
2 (X,µ, ν) =

∫
δ
(
X −

Nd∑
j=1

Xj

) Nd∏
j=1

H2
nj

(
Xj√

µ2
j+ν2

j

)
e−X2

j /(µ2
j+ν2

j )

2njnj !
√
π(µ2

j + ν2
j )

dX. (67)

For example, for N = 2, d = 1 and states with n1, n2 equal to 0 or 1 [denoted (n1, n2)], the tomograms
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w2(X,µ1, µ2, ν1, ν2) have the form

w
(0,0)
2 =

e−X2/C

√
πC

, (68)

w
(0,1)
2 =

√
C2

πC1

(2C2X
2 + C1C2 + C2

1 )e−X2/C

C5/2
, (69)

w
(1,1)
2 =

4C2
1C

2
2 e

−X2/C

√
πC5/2

(
X4

C2
+
X2

C

C2
1 + C2

2 − 4C1C2

C1C2
+

3
4

)
, (70)

where
C1 = µ2

1 + ν2
1 , C2 = µ2

2 + ν2
2 , C = C1 + C2.

In Fig. 1 we present the tomograms w2 for these states. Due to the homogeneity of w2 we can reduce
the number of variables to one. Therefore, we can set

µ2
1 + ν2

1 + µ2
2 + ν2

2 = 1.

Variables µ and ν enter Eqs. (68)–(70) only as µ2
1 + ν2

1 and µ2
2 + ν2

2 , so we choose

µ2
1 + ν2

1 = cos2 θ and µ2
2 + ν2

2 = sin2 θ.

Then tomogram wn1,n2
2 is the function of two variables (X and θ) and Fig. 1 shows its dependence on

these variables. The tomograms are plotted for the first excited states of a two-mode oscillator, namely,
the ground state n1 = n2 = 0, the first excited state in one mode n1 = 0, n2 = 1 or n1 = 1, n2 = 0, and
the first excited state in both modes n1 = 1, n2 = 1.

5. Particle Permutations and Corresponding Symmetry Properties of
Quantum Tomograms

While considering real physical systems, we must usually take into account the identity of the particles,
which constitute the system. Such consideration of exchange imposes restrictions concerning the possible
form of the functions describing the state. These restrictions are reflected by the symmetry properties
of the state-describing functions with regards to the particle permutations. In this section, we discuss
the corresponding properties of tomographic maps, especially of the tomogram with one random variable
(permutation symmetry for the symplectic tomography has already been developed to some extent in [40]).

Further we use the following notation.
A vector without index a has Nd components, a vector with index aj denotes the set of some values,

corresponding to the jth particle, and consists of d components.
A vector with tilde ã denotes the collection of all components of a, except those that are specified in

the same expression. For example, q̃ in the expression ψ(qj , q̃) is the vector of all coordinates, except the
coordinates of the jth particle.

For particles obeying Fermi or Bose statistics, we have the following symmetry properties concerning
the particle permutations:

ρ(qj ,qi, q̃;q′i,q
′
j , q̃

′) = ρ(qi,qj , q̃;q′j ,q
′
i, q̃

′) = ±ρ(qi,qj , q̃;q′i,q
′
j , q̃

′), (71)
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where the upper sign (plus) is for Bose systems, and the lower sign (minus) is for Fermi systems. Note
that the “entire” particle permutation (two particles exchange both q and q′ variables) corresponds to the
sign conservation for both Fermi and Bose statistics:

ρ(qj ,qi, q̃;q′j ,q
′
i, q̃

′) = ρ(qi,qj , q̃;q′i,q
′
j , q̃

′). (72)

In the expressions for obtaining the Wigner function from the density matrix (1) and both tomograms
w1 and w2 from the Wigner function (3), (5), we can exchange the integration variables (uj ↔ ui, etc.);
then we immediately arrive at

FW (qj ,qi, q̃;pj ,pi, p̃) = FW (qi,qj , q̃;pi,pj , p̃), (73)
w1(Xj ,Xi, X̃;µj , µi, µ̃; νj , νi, ν̃) = w1(Xi,Xj , X̃;µi, µj , µ̃; νi, νj , ν̃), (74)
w2(X;µj , µi, µ̃; νj , νi, ν̃) = w2(X;µi, µj , µ̃; νi, νj , ν̃). (75)

We see that there is no distinction between Fermi and Bose statistics when the particles exchange
“entirely,” i.e., q and q′ in the density matrix, q and p in the Wigner function, X,µ, ν in w1 or µ, ν in
w2 are permuted simultaneously. The distinction appears when not all the variables corresponding to the
particles considered are permuted. When we use the density matrix, Fermi and Bose statistics differ only
in sign ±1, which appears after the permutation of either qi,qj or q′i,q

′
j . For the Wigner function and

both tomograms, this difference is expressed using some integral transforms (see corresponding formulas
for the symplectic tomography in [40]).

6. Conclusion

To conclude, we summarize the main results of our work. We studied in detail a version of the
tomographic map of the density matrix and Wigner function for which the quantum state of the multimode
system is associated with a fair probability distribution function. This function depends on one random
variable X and 2Nd real parameters (real Nd-vectors µ and ν) and it determines the quantum state
completely. This means that, provided this probability distribution function is known, one can reconstruct
the Wigner function of the system state and the corresponding density operator. The random variable
X can be interpreted as the system’s center-of-mass coordinate considered in a specifically rotated and
scaling reference frame in the complete phase space of the system. The real parameters (vectors µ and ν)
determine this rotated and scaling reference frame.

It is interesting that the information contained in the introduced tomogram (w2) is the same as that
contained in the symplectic tomogram (w1), which depends on a larger number of variables. This cor-
responds to the fact that the tomograms have high symmetry properties. By means of the symmetry
operations, one can reconstruct the dependence of the function on a larger number of variables starting
from the initial function with a smaller number of variables.

We have constructed the quantum evolution equations and energy level equations for the introduced
center-of-mass tomogram. We established also the relation to the star-product formalism and calculated
the kernel of the star-product. Example of the multimode oscillator and the symmetry properties of the
tomogram for identical particles (fermions and bosons) were discussed.
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