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Abstract

The field for linear aggregates of metallic nanospheres is calculated. This field is analogous to that of
the surface TM0 wave of a metallic cylinder with a negative dielectric permittivity. The spontaneous
emission of an atom into a surface wave is shown to be greatly enhanced. This enhancement is as
great as 1014 times for a two-photon process (Raman scattering). The TM0 wave is concentrated in
the vicinity of the nanocylinder surface instead of extending in space to infinity. Being restricted in its
length, the nanocylinder radiates efficiently into free space in contrast to the case of an infinite (plane
or cylindrical) surface. The duration of the atomic dipole radiation is about 1 fs under the conditions
discussed. The situation considered can be realized readily in actual experiments. It can explain the
pronounced increase in the Raman intensity in the experiments described by Nie and Emory in 1997.
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1. Introduction

We consider below the surface TM0 wave of a metallic cylinder. The zero critical frequency sets off
this wave from other surface waves of the cylinder [1]. This means that the TM0 wave exists at an
arbitrarily small radius a of the cylinder.

The surface waves, so-called surface plasmons (in metals) and surface polaritons (in ionic crystals),
exist in the frequency range where the dielectric permittivity of the material is negative and greater (in
absolute value) than that of the material adjoining the metal or ionic crystal. In what follows we shall
consider a surface plasmon on a small silver cylinder.

The following problems are considered sequentially. First we describe a surface TM0 wave and cal-
culate the wave numbers and propagation losses. We then normalize this wave similarly to the field
oscillators in quantum radiation theory. Thereafter the probability of spontaneous radiation of an ex-
cited atom (molecule) in the field of the surface TM0 wave is calculated and compared with that for
spontaneous radiation of an atom (molecule) in the empty space. Hereinafter we use the term “atom” to
mean both atom and molecule. We have found a pronounced increase in the probability of spontaneous
emission of an atom in the vicinity of the surface of the cylinder section of length Lc = π/h and of
small radius a � λ0. Here, h > ω/c is the wave number of the surface wave, λ0 = 2πc/ω, and ω is
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the frequency of the atomic transition. We show next that the surface wave on the restricted cylinder
section radiates into ambient space in contrast to the same wave on the infinite cylinder and calculate
the radiating power. The excitation efficiency of the surface wave is then determined by the reciprocity
theorem. The consideration performed is then used to interpret the experimental data on the observation
of surface-enhanced (giant) Raman scattering (SERS) by molecules on so-called hot colloidal particles of
silver and other metals [2].

2. Results and Discussion

In our previous paper [3] we have presented the investigation technique for the problem of atomic
radiation in the vicinity of small bodies. The atomic radiation in the vicinity of a small metal sphere
and of the apex of a metal needle supported by a plane (bicone) has also been considered. In this paper,
we continue our studies of various bodies. We have found such bodies that produce the pronounced
amplification effect of radiative processes.

The electromagnetic field in the space without charges and currents is described by the wave equation

∇∇ · ~A−∇×∇× ~A+ k2 ~A = 0, k2 = εµ(ω/c)2 (1)

with the subsidiary condition
div ~A = 0. (2)

A TM0 wave is one of the eigenwaves of the vector wave equation. The solutions of Eq. (1) in the form of
surface waves can be found using the general expression for the eigensolutions of Eq. (1) from [4]. These
general formulas are in the form of the following functions:

~Mλ = ∇× ~aψλ, ~Nλ =
1√
k2
∇× ~Mλ, ~Mλ =

1√
k2
∇× ~Nλ. (3)

The vector ~a in (3) is a fixed arbitrary unit vector whose choice depends on the selection of the frame of
reference and ψλ is the eigensolution of the equation

∇2ψ + k2ψ = 0. (4)

In cylindrical coordinates (r, θ, z) the unit vector ~iz of the z axis has to be chosen as ~a.
The eigensolutions of Eq. (4) have the form

ψλ = ψ e
0
nλ = Zn(λr)

cos
sin

nθeihz, k2 = h2 + λ2. (5)

On the left-hand side of (5), λ serves as the collective subscript and then denotes the transverse wave
number. Zn(λr) designates Bessel functions of the integer index. In the case of surface waves, the trans-
verse wave number λ is the imaginary quantity (or complex quantity with a small real part). Therefore,
the real quantity γ = −iλ is conveniently entered instead of λ, while the Bessel functions of the pure
imaginary argument Zn(λr) = Jn(λr), Yn(λr), H(1,2)

n (λr) are conveniently replaced with the modified
Bessel functions In(γ, r) and Kn(γ, r). In what follows we need the formulas for the derivatives with
respect to the argument for modified Bessel functions of zero index (n = 0). They have the following
form:

d

dx
I0(x) = I1(x),

d

dx
K0(x) = −K1(x). (6)
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The description of the Bessel functions can be found in [5]. We obtain after the necessary rearrangements
that the eigenwaves in cylindrical coordinates have the form

~Mλ = ∇×~iz · ψ e
0
nγ = ~m e

0
nγe

ihz,

~Nλ =
1√
k2
∇× ~Mλ = ~n e

0
nγe

ihz,

~m e
0
nγ = ∓n

r
Zn(γr)

cos
sin

nθ ·~ir −
d

dr
Zn(γr)

cos
sin

nθ ·~iθ,
(7)

~n e
0
nγ =

ih√
k2

d

dr
Zn(γr)

cos
sin

nθ ·~ir ∓
ihn√
k2r

Zn(γr)
cos
sin

nθ ·~iθ −
γ2

√
k2
Zn(γr)

cos
sin

nθ ·~iz,

Zn(γr) = In(γr), Kn(γr),

γ =
√
h2 − k2.

Formulas (7) are written in an easy-to-use form for considering the surface waves. Since k2 can be both
positive and negative quantity (see below), we write

√
k2. With k2 > 0 we have

√
k2 = k, while for

k2 < 0,
√
k2 = i|k|.

We shall consider a metallic cylinder with radius a. The parameters of the medium and space inside
the cylinder will be designated by the subscript i = 1, while those characterizing the space outside the
cylinder will be supplied with the subscript i = 2. At n = 0 formulas (7) take the form

~M0γi = ∇×~iz · ψ0γi = ~m0γie
ihz, ~m0γi = − d

dr
Z0(γir) ·~iθ,

~N0γi =
1√
k2

i

∇× ~M0γi = ~n0γie
ihz,

(8)

[−3mm]~n0γi =
ih√
k2

i

d

dr
Z0(γir) ·~ir −

γ2
i√
k2

i

Z0(γir) ·~iz, (9)

Z0(γ1r) = I0(γ1r), Z0(γ2r) = K0(γ2r), γi =
√
h2 − k2

i .

The parameters of the problem should be chosen, since further investigation will be carried out numeri-
cally. The cylinder will be considered to be made of silver. We take the permittivity ε1 of silver at the
wavelength λ0 = 633 nm from [6] (ε′1 + iε′′ = −19 + i0.53). The space denoted by the subscript i = 2
will be considered as the free space, ε2 = 1.

The admissible values h are determined from the characteristic equation. The latter arises when
equating the tangential field components ~E and ~H at the interface of two media. The ~E and ~H fields
can be obtained using the vector-potential ~A. It can be chosen for the TM0 wave in the following form:

~Ai = Ai
~N0γie

−iωt, ~Ei = −1
c

∂ ~Ai

∂t
= i

ω

c
~Ai, ~Hi =

1
µi

rot ~Ai, i = 1, 2. (10)

A standing wave on the cylinder section of the resonance length (λ/2 = π/h) is considered. The reference
point for z is placed in the cylinder mid-length. Such a choice of the reference point for z along with
the boundary conditions implies a distinct choice of the arguments ϕA1 and ϕA2 in the expressions
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A1 = |A1|eiϕA1 and A2 = |A2|eiϕA2 . We put ϕA1 = π/2 and ϕA2 = 0. By this is also meant (as will be
seen from further consideration) that Est

iz (z = ±π/2h) = 0 and Est
ir (z = 0) = 0. The vector-potentials of

fields ~Ast
i in the corresponding spaces i = 1 and i = 2 written in the real-valued form can be presented

as follows:
~Ast

1 = 2|A1|
{
−hγ1

κ1
I1(γ1r) sinhz ·~ir −

γ2
1

κ1
I0(γ1r) coshz ·~iz

}
cosωt,

~Ast
2 = 2|A1|RA

{
hγ2

k2
K1(γ2r) sinhz ·~ir −

γ2
2

k2
K0(γ2r) coshz ·~iz

}
cosωt.

(10)

Formulas (10) are written with consideration for the boundary conditions that consist in the equality of
the tangential field components ~Est

1t = ~Est
2t , ~Hst

1t = ~Hst
2t at r = a (a is the cylinder radius). The electric

field written in the real-valued form (κ2
1 = −k2

1) is given by

~Est
1 = 2

ω

c
|A1|

{
−hγ1

κ1
I1(γ1r) sinhz ·~ir −

γ2
1

κ1
I0(γ1r) coshz ·~iz

}
sinωt,

~Est
2 = 2

ω

c
|A1|RA

{
hγ2

k2
K1(γ2r) sinhz ·~ir −

γ2
2

k2
K0(γ2r) coshz ·~iz

}
sinωt.

(11)

The magnetic field (also in the real-valued form) is written as

~Hst
1 = 2|A1|

κ1γ1

µ1
I1(γ1r) coshz cosωt ·~iθ,

~Hst
2 = 2|A1|RA

k2γ2

µ2
K1(γ2r) coshz cosωt ·~iθ.

(12)

One can see from (11) that the z-components of the electric fields on each side of the interface of two
media are in phase, while their r-components are out of phase.

The ratio |A1|/|A2| and the characteristic equation have been found equating the z-components of
~Est
1 and ~Est

2 and the θ-components of ~Hst
1 and ~Hst

2 with r = a. The amplitude ratio is

RA =
|A2|
|A1|

=
(
γ1

γ2

)2 k2

κ1

I0(γ1a)
K0(γ2a)

=
µ2

µ1

γ1

γ2

κ1

k2

I1(γ1a)
K1(γ2a)

. (13)

The characteristic equation has the form

γ1

γ2

I0(γ1a)
K0(γ2a)

=
µ2

µ1

κ2
1

k2
2

I1(γ1a)
K1(γ2a)

. (14)

The electric field pattern close to the surface of a nanocylinder with radius a = a0/k0 = 10 nm
at wavelength λ0 = 633 nm (k0 = 0.993 · 105 cm−1) is presented in Fig. 1. The parameter λ = 2π/h
appearing in the variable along the abscissa axis is the wavelength and h is the longitudinal wave number
of the surface wave along the cylinder of radius a. In Fig. 2, the dependence of the longitudinal wave
number h on the nanocylinder radius a is presented. The longitudinal wave number of a surface wave is
always greater than ω/c. For the flat surface it is expressed as

h =
ω

c

(
ε

ε+ 1

)1/2

,
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Fig. 1. An electric field pattern for a TM0 wave close to the surface of a nanocylinder with radius a = a0/k0 =
10 nm at wavelength λ0 = 633 nm. The nanocylinder axis coincides with the abscissa axis.

Fig. 2. Longitudinal wave number h = h0k0 of the surface TM0 wave on the silver cylinder of radius a = a0/k0

(k0 = 0.993 · 105 cm−1).

where ε is the dielectric permittivity of the metal with ε < 0 and |ε| � 1. The value of h increases
drastically at small a and, correspondingly, the TM0 wave is significantly retarded.
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Let us normalize the TM0 wave according to the condition∫
V

[ ~Ast(~r)]2dτ = 4πc2, (15)

which is usually used to normalize the eigenoscillations of a field (field oscillators) in the quantum theory
of radiation [7]. In Eq. (14), ~Ast(~r) is the coordinate part of the vector-potential of the eigenwave of
Eq. (1). With such a normalization, the energy of the field oscillator is found to be a multiple of the
integer number of quanta.

The specific feature of our consideration is that the integral in (15) contains two parts that describe
the space i = 1 and the space i = 2. The form of the potential ~Ast(~r) is varied when passing from the
inner space i = 1 to the outer one i = 2:∫

V

[ ~Ast(~r)]2dτ =
∫

i=1

[ ~Ast
1 (~r)]2dτ +

∫
i=2

[ ~Ast
2 (~r)]2dτ =

4π2|A2
1|

k0h0
(C1 + C2) = 4πc2,

C1 =
(
h0

κ01

)2

IntI1 +
(
γ01

κ01

)2

IntI0,

C2 = R2
A

[(
h0

k02

)2

IntK1 +
(
γ02

k02

)2

IntK0

]
, (16)

IntIn =

γ01a0∫
0

x[In(x)]2dx, IntKn =

∞∫
γ02a0

x[Kn(x)]2dx, n = 0, 1,

k0 = ω/c, κ2
01 = −k2

01, h0 = h/k0, γ01 = γ1/k0, γ02 = γ2/k0, k02 = k2/k0.

The expression for the factor |A1|2 (|A1| is the normalizing constant for the field eigenmode) has the
following form:

|A1|2 =
c2

π

h0k0

C1 + C2
. (17)

The dependence of |A1| on the cylinder radius a is presented in Fig. 3.
We now have all that is necessary to calculate the probability of spontaneous transition in an atom

with photon emission into the surface TM0 wave of a metallic nanocylinder. We shall follow the theory
of spontaneous emission from [7] in our calculations.

The probability of the one-photon transition in a quantum system, which is formed by the atom and
field, is described by the formula

wn|0 =
2π
~
|Hn|0|2ρE , (18)

where Hn|0 is the matrix element of the interaction operator Hint of the atom with the field and ρE is
the number density of radiation oscillators in the energy scale. On optical frequencies, the interaction
operator is described by the formula

Hint = − e

mc
(~p ~A), (19)
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Fig. 3. Normalized constant |A1| for the vector-potential of the surface TM0 wave on the cylinder of radius
a = a0/k0 and length π/h.

where ~p, e, and m are the mechanical momentum, charge, and mass of the atomic electron, respectively,
while ~A is the vector-potential of the free radiation field. In our case, ~A ≡ ~A(~r, t) is expressed as

~A(~r, t) = (aλ + a
+
|

λ ) ~Aλ(~r) = (aλ + a
+
|

λ ) ~Ast
2 (~r). (20)

The matrix element Hn|0 is calculated by the following formula:

Hn|0 ≡ Han′
λ=1|bnλ=0 = − e

mc

∫
ψ∗aΨ

∗
nλ

[
~p(aλ + a

+
|

λ ) ~Aλ(~r)
]
ψbΨn′

λ
dτ. (21)

Here, Ψnλ
and Ψn′

λ
are the eigenfunctions of the Hamiltonian of the free radiation field, ψa and ψb are

the eigenfunctions of the free atom, aλ and a
+
|

λ are the annihilation and creation operators of a photon,
respectively, and dτ = dτab ·dτU is the phase-space volume element of variables of the atom (τab) and the
field (τU ). In the case of transition with photon emission, the contribution to the Hn|0 is provided only

by the integral
∫

Ψ∗
nλ
a

+
|

λ Ψn′
λ
dτU . This integral is equal to

a
+
|

nλ+1|nλ
=

√
~

2ωλ
(nλ + 1).

For spontaneous radiation, nλ = 0.
We have to calculate the integral over the atomic coordinates τab in (20). In what follows we shall

restrict our consideration to the assumption that ~Ast
2 (~r) varies only slightly in the space portion where

ψa and ψb are different from zero. In this case, we can remove the factor ~Ast
2 (~r) out of the integral sign.

This undoubtedly restricts the generality of consideration. Recall that the standing wave is considered
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Fig. 4. Q-factor of a standing surface TM0 wave on a silver cylinder of radius a = a0/k0 and length π/h.

on a section of the nanocylinder of length π/h. The vector-potential of a TM0 mode has two components,
~Ast

2r(~r) and ~Ast
2z(~r). The product ~p ~Ast

2 peaks at z = ±π/(2h) and z = 0. In the first case, the dipole
should be oriented along (towards) ~ir, while in the second case it is aligned along ~iz.

We replace the integral
∫
ψ∗a|~p|ψbdτab with the value −iωmxab, where xab is the matrix element of the

x coordinate operator of an electron in the oscillating external field. We obtain as a result the following
expressions for the square of the modulus of the matrix element |Han′

λ=1|bnλ=0|2:

|Han′
λ=1|bnλ=0|2 =

2~ω3e2

c4
|A1|2R2

A|xab|2
(
h0γ02

k02

)2

K2
1 (γ02a0),

|Han′
λ=1|bnλ=0|2 =

2~ω3e2

c4
|A1|2R2

A|xab|2
(
γ2

02

k02

)2

K2
0 (γ02a0).

(22)

These expressions were obtained for the first and second cases, respectively (we set r = a).
We seek the value of ρE , i.e., the number density of field oscillators in the energy scale. In this

case, we follow the recommendations from [8]. They imply that ρE = 1/(~ω/Q) for a resonator, which
supports only a single mode. The parameter Q is the resonator Q-factor. So far it has been assumed
that h is the real quantity. We intend now to consider the imaginary part of h. The dependence of the
ratio Q = Reh/Imh on a is shown in Fig. 4.

We are capable now of calculating the probability of spontaneous transition. We shall perform calcu-
lations for the first case:

w
(TM0)
an′

λ=1|bnλ=0
= F1 · F2,

F1 =
4
3
e2ω3

~c3
|xab|2, F2 =

3h0

C1 + C2
R2

A

(
h0γ02

k02

)2

K2
1 (γ02a0)

Reh
Imh

. (23)

The factor F1 coincides exactly with the expression for the probability of spontaneous emission of a
photon in the free space. The factor F2 shows the changes that occur in the nanocylinder in space.
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Fig. 5. Factor F2 showing the factor of increase of wn|0 for an atom that emits into the surface TM0 wave of a
cylinder of radius a = a0/k0.

Figure 5 shows the dependence of F2 on the nanocylinder radius a. Note that we are dealing with
dipole allowed transition rather than with forbidden (in the dipole approximation) magnetic-dipole or
quadrupole transitions. With a0 = 0.01 (the cylinder diameter is ∼ 2 nm) the probability wn|0 increases
by more than ∼ 107 times. This means that the dipole transition in these conditions is accomplished for
the time 10−15 s. In this case, the atom emits femtosecond pulses of virtually white light.

The nanocylinder section having oscillating charges of opposite sign at its ends emits into free space.
An infinite cylinder with a surface TM0 wave does not emit since constructive interference is impossible
for sources arranged so densely that the distance between them is less than the wavelength in free space.

We have to know the value of the induced dipole moment to find the radiating power. This value can
be obtained by summing up the induced polarization ~Pst

1 in the nanocylinder volume. According to the
definition of the polarization [4] we have

~Pst
1 =

ε1 − 1
4π

~Est
1 (~r). (24)

We obtain the total dipole moment ~d of the nanocylinder by integrating the z-component of the polar-
ization ~Pst

1 with respect to r and z. The value obtained should be additionally multiplied by (~/2ω)1/2

to take into account the normalization of a TM0 mode of the field:

~d = (~/2ω)1/2

π/(2h)∫
−π/(2h)

dz

a∫
0

~Pst
1z2πrdr. (25)

The ~Pst
1r component does not produce any contribution to ~d.

We calculate the mean radiating power P by the formula for an elementary oscillating dipole [4] (d0
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Fig. 6. Power emitted by a cylinder section of length π/h, on which a surface TM0 wave is excited.

is the amplitude of the dipole vibrations)

P = (1/3)cd2
0k

4
0. (26)

In Fig. 6, the dependence of P on the cylinder radius a = a0/k0 is shown. The curve was calculated
without regard for the radiation losses in the resonator Q-factor.

The formulas obtained are also applicable to the Raman scattering process of a photon [6] provided
that the matrix element in formula (18) is replaced by the so-called composite matrix element

Hn|0 → Kn|0 =
∑
n′

Hn|n′Hn|0

E0 − En′
. (27)

Since the Raman scattering is the two-photon process, the effect of increasing the field strength will enter
into the transition probability to the fourth power rather than to the second one.

3. Conclusions

To summarize, an excited atom (molecule) in the vicinity of a linear aggregate of metallic nanoparticles
was shown to emit spontaneously into a surface TM0 wave of the aggregate. The emission rate exceeds
that of the spontaneous emission of an atom in free space by many (∼ 7) orders of magnitude. The
surface TM0 wave of an aggregate of finite length emits effectively into outer space as distinct from that
of a cylinder or an infinitely long plane. Because of this, the enhancement effect for the atomic transition
becomes the radiative one. This effect is distinguished from the process described in [9] where the atomic
excitation is transferred to the nonradiating surface wave. We believe that the calculations performed
explain well the effect of the pronounced increase in the Raman intensity (SERS effect) in the experiments
described in [2].
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