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Abstract. Making use of a surface integral defined without use of the partition of unity,
trace theorems and the Gauss-Ostrogradskij theorem are proved in the case of three-
dimensional domains fi with a Lipschitz-continuous boundary for functions belonging to
the Sobolev spaces Hl'p(ti) (1 ^ p < oo). The paper is a generalization of the previous
author's paper which is devoted to the line integral.
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INTRODUCTION

In [Ne] (and similarly in [KJF]) a surface integral is denned with help of the
partition of unity in a rather complicated and unnatural way. This approach is then
used with advantage in the proofs of trace theorems and the Gauss-Ostrogradskij
theorem. Using a Gauss-Ostrogradskij theorem proved in this way for deriving the
variational formulation of the boundary value problem

where dfi = I\ U F2, FI n 1^ = 0, we obtain the following problem: Find

1 This work was supported by the grant No. 201/97/0153 of the Grant Agency of the Czech
Republic.

169



In this variational problem the surface integral is defined with help of the partition
of unity and thus this formulation is not suitable for practical computations.

In this paper we define a surface integral in a quite natural way (this means,
without use of the partition of unity) and prove the Gauss-Ostrogradskij theorem
and the necessary trace theorems. Of course, the theory of a surface integral is also
developed.

In some books the proof of the Gauss-Ostrogradskij theorem reduces to a list of
wishes (or a list of unproved assertions—see, e.g., [PF]) and even in textbooks of
a high standard the proof of this theorem suffers from confusion (see, e.g., [Fi3]).
In books of the top standard the notion of the surface integral is either artificial
(see the already mentioned references [Ne] and [KJF]) or difficult to understand and
unnecessarily general (as far as the applications are concerned) (see, e.g., [Si]).

In the famous book of Saks (see [Sa]) the expression for the area of a surface
z = F(x,y) is derived, where F(x,y) is a continuous function and the expression
\/[Fx(x,y)]2 + [Fy(x,y)]2 can be integrable only in the sense of Lebesgue. Our ap-
proach, which accentuates the viewpoint of practical applications, is different. We
will consider surfaces z = f(x,y) for which the expression ..//J +/2 is Riemann

integrable (at least in an improper sense) because only such surfaces appear in appli-
cations. These surfaces form parts of boundaries of domains fi in which variational
problems considered in applications are formulated. The solutions of these problems
belong, in general, to Hl($l). Thus the traces of these solutions are elements of
spaces L%(£1). (As to the notation of Sobolev spaces, it is the same as in [KJF].)

The outline of the paper follows: We will define a surface integral over surfaces
which appear in applications. This definition will be done without help of the par-
tition of unity. First we will define a surface integral in a Riemann sense and prove
its properties. Then we extend the definition to the case when the integrand is the
trace of a function from H'1'p(fl) = Wlip(fi) (p 6 (l, oo)). In connection with it we
prove the corresponding trace theorems. The second part of the paper is focused on
various formulations of the Gauss-Ostrogradskij theorem.

It should be noted that the conception expressed in Convention 6.7 and Defini-
tion 10.1 is new and quite suitable for applications. Moreover, it avoids problems
which are unnecessary from the practical viewpoint, solved with difficulties by some
mathematicians.

such that
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1. REGULAR PART OF A SURFACE

In this section we deal with parts of surfaces over which we shall integrate. Unless
stated otherwise we consider an arbitrary but fixed Cartesian coordinate system
(0, x, y, z), where O is the origin of the system, O = [0,0,0].

1.1. Definition. a) We say that a set 5 is o part of a surface, which is regular
with respect to the coordinate plane (x,y), if the points [x, y,z] € S satisfy

where Sxy is a simply connected two-dimensional bounded closed domain lying in the
plane (x,y), which is bounded by a simple piecewise smooth closed curve dSxy, and
/: Sxy -> R1 is a real function continuous on Sxy, which has continuous first partial
derivatives fx = |£, fy = f£ in Sxy (where the symbol Sxy denotes the interior
of Sxy, i.e., Sxy = Sxy — dSxy). The closed domain Sxy is called the orthogonal
projection of the part S onto the plane (x,y).

The set of points [x, y,z], for which

or

where the closed domains Sxz, Syz and the functions g; Sxz ->• R1, h: Syz -> R1

have analogous properties as the closed domain Sxy and the function /: Sxy -> R1.
The closed two-dimensional domains Sxz and Syz are called orthogonal projections
of the part S onto the planes (x, z) and (y, z).

c) We will often use the notion "part" instead of the notion "part of a surface".
d) We say that S is a regular part if 5 is regular at least with respect to one

coordinate plane.

is called the boundary of the part S and is denoted dS.
b) Similarly we say that a set 5 is a part of a surface, which is regular with respect

to the coordinate plane (x, z) (or (y, z ) ) , if the points [x,y, z] € S satisfy
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1.2. Definition. a) We say that a part 5 is Lipschitz-regular with respect to
the plane (x,y), if 5 is regular with respect to (x,y) and the derivatives fx, fy are
bounded in Sxy (i.e., in the interior of Sxy).

b) Similarly we define that the part 5 is Lipschitz-regular with respect to (x, z)
oi(y,z).

c) We say that a part 5 is Lipschitz-regular if S is Lipschitz-regular at least with
respect to one coordinate plane.

1.3. Definition, a) We say that a part S is strongly regular with respect to the
plane (x,y) if S is Lipschitz-regular with respect to (x,y) and if the derivatives fx,
fy can be continuously extended from Sxy onto Sxy.

b) Similarly we define a part which is strongly regular with respect to (x, z) or

(»,*).
c) We say that a part 5 is strongly regular if 5 is strongly regular at least with

respect to one coordinate plane.

1.4. E x a m p l e , a) Let Sxy = {[x,y]: x2 +y2 ^ r2,r > 0}. The set 5 of points
[a;,j/,z] satisfying (1.1) with f ( x , y ) = i/r2 — x2 - y2 is a part of a sphere which is
regular (but not Lipschitz-regular) with respect to the coordinate plane (x,y).

b) Let us divide the part 5 described in a) into 16 parts by the coordinate planes
and the planes z — r/2, y = x and y = —x. Each of these 16 parts is strongly
regular.

1.5. E x a m p l e . Let the set Sxy be the same as in Example 1.4 and let f ( x , y) =
^/x2 + y2. Then the set S of points [x, y,z] satisfying (1.1) is a part of a cone. The
coordinate plane (x, z) (or (y, z)) divides 5 into two parts which are Lipschitz-regular.
However, neither of them is strongly regular because the derivatives

cannot be continuously extended to the point [0,0].

1.6. Theorem, a) Let a part S be regular with respect to (x,y) and ( x , z ) .
Then

b) Let a part S be regular with respect to (x,y) and (y,z). Then
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As XQ € (a, 6} is an arbitrary point these relations imply (1.4) and (1.5). The proof
of b) and c) is similar. D

1.7. Theorem. At every interior point [a;,y,^] e S of a regular part S there
exists a tangent plane to S (and thus also a normal to S).

P r o o f . Let the part S be regular with respect to (x,y). The assertion of
Theorem 1.7 follows then from the following facts (see, for example, [Fil, pp. 433-
442]):

I. The plane z = f ( x , y ) has at the point M0[x0,yo,z0], where z0 = /(#<),2/o), a
tangent plane, which is not parallel to the axis z, if and only if the function f ( x , y )
is differentiable at the point [XQ , yo].

II. The function f ( x , y ) is differentiable at the point [0:0,3/0] if the partial deriva-
tives /x(£,j/), fy(x,y) exist in some neighbourhood of the point [#0,3/0] Emd are
continuous at this point. D

1.8. Definition (Orientation of the normal to a regular part). Let a
part S be regular with respect to (£, 77), where (£,77) denotes one of the planes ( x , y ) ,
( x , z ) , (y,z). In case the part S is regular with respect to more than one coordinate
plane we choose for (£,77) one of them. Let £ be that of the coordinate axes x, y, z
which is different from £ a 77. Let V be a domain whose boundary dV is a cylinder
directed by the curve dS^ and with surface straight-lines which are parallel to the
axis C- The part S divides the domain V into two parts, which will be denoted by
the symbols Vi a V^ (the numbering is either arbitrary or depends on the problem
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c) Let a part S be regular with respect to (x, z) and (y, z). Then

P r o o f . We shall prove a). The orthogonal projections of the two closed two-
dimensional domains Sxy and Sxz onto the axis x are identical; this projection is a
segment which will be denoted by (a, 6). Let XQ € (a, 6} be an arbitrary but fixed
point. Let z be any fixed point such that [XQ,Z] € Sxz, and let us set y = 5(0:0, z).
As [xo,y,z] € S (by virtue of the fact that S is regular with respect to (x,z)) we
have (by virtue of the fact that S is regular with respect to (x,y)) [xo,y] 6 Sxy,
and simultaneously z = f(xo,y). Thus z = f(xo,y) and y = g(xo,z) are mutually
inverse functions in one variable. This implies
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where ey = 1 if(3(x,y,z) < | for all points [x, y,z] e S, andey = —1 if/3(x,y,z) > f
for all points [x,y,z] 6 5,

c) If a part S is regular with respect to (y,z) and is described by relation (1.3)
then at each point [x,y,z] £ S the oriented unit normal satisfies

where £2 = 1 if^(x,y,z) < | for all points [x,y,z] e S, andez = -1 if 7(0;, y, 2) > |
for all points [x, y, z] 6 S. (Relation (1.11) implies that we cannot have 7(0;, y, z) = f
at the points [x, y, z] € S and that sz is the same for all interior points of the part
S.)

b) If a part S is regular with respect to (x,z) and is described by relation (1.2)
then at each point [x,y,2] € 5 the oriented unit normai satisfies

or more briefly

1.9. Theorem, a) If a part S is regular with respect to (x,y) and is described
by relation (1.1) then at each point [z,2/,.z] € 5 (where S denotes the interior ofS)
the oriented unit normal satisfies

with which the orientation of the normal is connected). At each point [x,y,z] €. S
the unit normal n (x ,y , z ) to 5 will be oriented from V\ into V2.

If S is a part of the boundary 9fi of a domain fi (which has no cuts) then the
definition of the orientation of the normal is simpler: At all points [a;,j/,z] € 5 the
unit normal n(a; ,y,z) is directed either from ft (we speak about the outer normal),
or into fi (we speak about the inner normal).

The angle which is made by n(x,y,z) with the axis x (or y, or z) will be denoted
by ot(x,y,z) (or / 3 ( x , y , z ) , or 7(2,y, z)); briefly a (or 0, or 7). Thus we have



In (1.16), x, y, z are coordinates of an arbitrary point [x,y,z] 6 T(PQ). Thus the
vector (1.16) is parallel to the plane r(P0). Relation (1.15) then implies that the
vector (1.17) is perpendicular to the plane r(Po). As the ^-coordinate of the vector
(1.17) is positive this vector makes an acute angle with the z-axis. If ez = 1 in (1.11)
then the orientations of the parallel vectors (1.11) and (1.17) are identical; if ez — -1
then the orientations of these vectors are opposite. Assertion a) is proved. D

2. FUNCTIONS CONTINUOUS ON A REGULAR PART

In Section 1 we have described sets over which we shall integrate; in this section we
will describe functions which will be integrated on these sets in the Riemann sense.

2.1. Definition. a) Let S be a regular part. Let F: S ->• IR1 be a real
function defined on 5, i.e., to each point [x,y,z] € S just one real number F(x, y , z )
corresponds (this means that we exclude the cases F(x, y, z) = +00 and F(x, y, z) =
—oo). We say that the function F: S -> IR1 is continuous at a point [xo,yo,zo] £ S
if for every s > 0 there exists 6 = 6(s) > 0 such that for all points [x, y, z] 6 5
satisfying the inequality
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The left-hand side of (1.15) can be interpreted as the scalar product of the vectors

It is well-known (see, for example, [Fil, p. 442]) that the equation of the tangent
plane T(PQ) to S at the point PQ = [x0,yo, ZQ] will be obtained if the differentials dx,
dy and dz in (1.14) are substituted by the differences x - XQ, y - yo a z - ZQ. Hence

where EX = 1 ifa(x,y,z) < | for all points [x,y,z] € 5, andex = -1 ifa(x,y,z) > |
for all points [x, y, z] € 5.

P r o o f . We prove a). Let [zo,l/o] € Sxy be an arbitrary point. According to
Theorem 1.7 and its proof, there exists a total differential at the point [#0,3/0]



we have

b) Let S be a regular part. We say that a function F: S ->• R1 is continuous on
S if it is continuous at each point of the part S.

2.2. Theorem, a) Let a part S be regular with respect to (x,y) and let a
function F: S -> R1 be continuous on S. Then the function if. Sxy ->• K1 denned at
each point [x, y] € Sxy by the relation

is continuous on Sxy.
b) Let a part S be regular with respect to (x, z) and let a function F: S —}• IR1 be

continuous on S. Then the function ip: Sxz -» i1 defined at each point [a;, z] e SX2

by the relation

is continuous on Sxz.
c) Let a part 5 be regular with respect to (y, z) and let a function F: S ->• M1 be

continuous on 5. Then the function \: Syz -4 R1 denned at each point [y,z] € Syz

by the relation

is continuous on Syz.

P r o o f , a) Let e > 0 be given. Let us consider an arbitrary point [XQ, yo] € Sxy.
This point is in a one-to-one correspondence with the point

For the points [a:, i/,,z] € 5 appearing in Definition 2.la we have [a;,y,z] € U, where
U = S n K(6; [XQ, yo, ZQ}) with

As the part 5 is regular with respect to ( x , y ) , the orthogonal projection Uxy of the
set U onto the plane (x, y) satisfies meas2 Uxy > 0 and Uxy is a simply connected
set. Thus there exists such a Q > 0 that
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Assertions b), c) can be proved similarly. D

2.3. Corollary. A function F: S -> R1, where S is a regular part of a surface,
is bounded, if it is continuous on S (i.e., there exists such a constant M > 0 that
\F(x, y,z)\ < M for all points [x,y,z] e S).

In applications we use also the notion of a function which is bounded and piecewise
continuous on a regular part of a surface. This notion is a simple and straightforward
generalization of Definition 2,1.

3. A SURFACE INTEGRAL OF THE FIRST KIND OVER A STRONGLY REGULAR PART

OF A SURFACE

In this section the notion of a surface integral of the first kind will be introduced
formally. The meaning of this notion will be explained in the next section.

3.1. N o t a t i o n . Let a function F: S ->• R1 be continuous on a regular part 5.

a) If the part S is strongly regular with respect to ( x , y ) then we set

b) If the part 5 is strongly regular with respect to (x, z) then we set

c) If the part 5 is strongly regular with respect to (y,z) then we set

R e m a r k . By the assumptions of Notation 3.1, the integrals on the right-hand
sides of (3.1)-(3.3) are Riemann integrals in R2.
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satisfy

where K(Q; [x0,y0]) = {[x,y]: (x - x0)2 + (y - y0)2 < g2}.
For the given e > 0 we have found such a Q > 0 that the points [x,y] 6 Dxy,

i.e. points [x, y] € Sxy for which



According to Theorem 1.9 and the assumptions of Theorem 3.2, we have at each
point [a;, y, z] E S

By the assumptions of Theorem 3.2a the function J(x,z) is bounded on Sxz. Now
we verify that
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and that the mapping $: Sxz -t Sxy is bijective.
By virtue of (3.4), the Jacobian of the mapping $: Sxz -¥ Sxy satisfies

imply that

Let us verify that the mapping <£ satisfies the assumptions of the theorem on substi-
tution in a two-dimensional integral.

Functions (3.4) are continuously differentiable in Sxz.
The relations

P r o o f . We shall prove assertion a). Let us define mapping $: Sxz -» R2 by
the relations

3.2. Theorem, a) Let a part S be strongly regular with respect to (x,y) and
(x,z). Then

b) Let a part S be strongly regular with respect to (x, y) and (y, z). Then

c) Let a part S be strongly regular with respect to (x, z) and (y, z). Then



Comparing the z-components of the two vectors, we see that relation (3.5) is satisfied.
Further, the domains Sxz and Sxy are measurable (in both the Jordan and the

Lebesgue sense).
As meas2 dSxy = meas2 9SXZ = 0 and as the integrands on both sides of relation

(3.6) are continuous and bounded functions on Sxy or SX2, the theorem for the
transformation of two-dimensional integral gives (we use also (1.4))

Relations (3.7) and (3.9) imply

Inserting this result into the right-hand side of (3.6), we obtain, according to (3.1)
and (3.2), the relation Ijy(F) = IJZ(F).

Assertions b), c) can be proved similarly. D

3.3. Corollary. If apart 5 is strongly regular with respect to all three coordi-
nate planes then Ijy(F) = Ijz(F) = Ijz(F).

Theorem 3.2 enables us to formulate the following definition:

Now we transform the integrand on the right-hand side of (3.6). Differentiating
relation (1.4) with respect to x and z, we obtain

and

respectively. Relation (3.8) yields

Prom (3.9) and (3.10) we obtain
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3.4. Definition. a) If a part 5 is strongly regular with respect to ( x , y ) and
F: S -> R1 is a function continuous on 5 then the term Ijy(F) is called the surface
integral (of the first kind) of the function F over the part 5. We use the notation

b) If a part 5 is strongly regular with respect to (a;, z) and F: S -> K1 is a function
continuous on S then the term ljz (F) is called the surface integral (of the first kind)
of the function F over the part 5. We use the notation

c) If a part S is strongly regular with respect to (y, z) and F: S ->• K1 is a function
continuous on S then the term ljz (F) is called the surface integral (of the first kind)
of the function F over the part 5. We use the notation

R e m a r k , a) Theorem 3.2 enables us to use the same symbol on the left-hand
sides of relations (3.11)-(3.13).

b) Instead of the long expression "a surface integral of the first kind" we will often
use the notion "a surface integral".

4. GEOMETRICAL AND ANALYTICAL MEANING OF A SURFACE INTEGRAL

4.1. Definition (A measure of a strongly regular part of a surface).
The definition contained in this subsection is standard (see, e.g., [ST, p. 198]): Let
a part S be strongly regular with respect to ( x , y ) . Let us embed the closed domain
Sxy into an arbitrary square Q the sides of which are parallel to the coordinate axes
x,y. Let T>n be a square net consisting of n2 squares of the same size with mutually
disjoint interiors and sides parallel to the axes x, y. Let the union of these closed
squares cover the square Q. (The net T>n will be obtained by dividing the sides of the
square Q into n parts of the same length and connecting the opposite points by lines
parallel to the coordinate axes.) Let rn be the number of squares belonging to Vn

the intersection of which with Sxy has a positive two-dimensional measure. Let us
denote these squares by the symbols As^,As^n\..., Asty. In each square As^
let us choose arbitrarily a point [x^1 , j/[™ ] which lies also in Sxy. The corresponding
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point Pkn) = [4n)>S/in)-4n)]> where 4n) = /(4n)'4n)). lies on S. By Theorem
1.7 at the point P^n) there exists a tangent plane r(P^) of the part S. Let Aa^
be that part of r(P^n'), the orthogonal projection of which onto the plane (x,y) is
equal to ^Asjj. . Let |4<7^ | denote the two-dimensional measure of the parallelogram
A^k • If there exists a finite limit

and has the property that it does not depend on the choice of the points [a^.yjj. ],
then this limit will be called the measure of the strongly regular part S and will be
denoted by \S\.

Let us note that in case the part S is strongly regular with respect to (a;, z) or
(y, z) the definition of |5| is analogous.

4.2. Theorem. Let a part S be strongly regular. Then

P r o o f . Let S be strongly regular with respect to (x, y). The acute angle which
is made by the nonoriented normal at the point P^ and the z-axis, will be denoted
byu4n). We have

where, according to (1.11),

The same acute angle is made by the tangent plane T(Pj^n') and the plane (x,y).
Hence

where \As^ \ is the measure of the square As^'. The expression
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is, according to Definition 4.1, an approximate measure of the part S. On the other
hand, the expression \Sn\ is an integral sum corresponding to the two-dimensional
Riemann integral

where the integrand J\ + f% + f* is an integrable function in the sense of Riemann

(because the part 5 is strongly regular with respect to (x,y)). Thus

which was to be proved. In case the part 5 is strongly regular with respect to (x, z)
or (j/, z) the proof is similar. CD

The analytical meaning of the surface integral is introduced in the following the-
orem.

4.3. Theorem. Let a part 5 be strongly regular and let F: S -> R1 be a
continuous function on S. Let Aa^' have an analogous meaning as in 4.1 and 4.2.
Then the sequence {In(F)} of integral sums

converges to the surface integral f f § F ( x , y , z ) d ( r independently of the choice of
nninti P^ — \r^ ?/n) z^lpoints rk —[xk ,yk ,zk \.

P r o o f . We prove Theorem 4.3 in the case when S is strongly regular with
respect to ( x , z ) . Then we can write the integral sum (4.3) in the form

where the square As^ lies in the plane ( x , z ) . As the function &: Sxz -*• R1, where

is bounded and continuous on SX2, we obtain from here and from the results of
Section 3 the assertion of Theorem 4.3. D
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A very important application of the surface integral of the first kind appears
in the formulations of the so called weak solutions of boundary value problems of
mathematical physics.

For example, in the case of three-dimensional elasticity problems we meet a surface
integral of the form

where (pi,p2,ps) is the pressure vector prescribed on part 5 and (tti, 1^2,1*3) is the
displacement vector. The physical meaning of integral (4.4) is the work of the exter-
nal pressure which acts on the part 5.

5. A SURFACE INTEGRAL OVER A REGULAR PART OF A SURFACE

A generalization of Sections 3 and 4 to the case of a regular part of a surface needs
an improper two-dimensional Riemann integral.

5.1. Definition. a) Let a part 5 be regular with respect to (x,y) and let F:
5 -¥ IR1 be a function continuous on 5. We say that the function F can be integrated
over the part 5 with respect to the variables x, y if there exists a real number Ijy(F)
with the following property: For every £ > 0 there exists 6 = 6(e, F) > 0 such that
every part D C 5, for which

satisfies

b) Let a part S be regular with respect to (x,z) and let F: S -> R1 be a function
continuous on 5. We say that the function F can be integrated over the part S
with respect to the variables x, z if there exists a number IJZ(F) with the following
property: For every e > 0 there exists 6 = S(e, F) > 0 such that every part D C S,
for which

satisfies
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c) Let a part 5 be regular with respect to (y, z) and let F: S -> R1 be a function
continuous on 5. We say that the function F can be integrated over the part S
with respect to the variables y, z if there exists a number IJZ(F) with the following
property: For every e > 0 there exists 6 = 8(s, F) > 0 such that every part D c S,
for which

satisfies

Let us note that every part D satisfying the inclusion D C S is strongly regular.
Hence the integrals appearing on the left-hand sides of inequalities (5.2), (5.4) and
(5.6) are Riemann integrals.

5.2. Definition. Let (s,t) be one of the pairs ( x , y ) , (x,z) and (y,z). Let
S be regular with respect to (s,t). We say that we can integrate over the part S
with respect to s, t if we can integrate an arbitrary function F: S -> Rl, which is
continuous on 5, over 5 with respect to s, t.

5.3. Theorem, a) Let a part S be regular with respect to both (x,y) and (x,z)
and let F: S —> R1 be a function continuous on S. If we can integrate the function
F over S with respect to x, y (or with respect to x, z) then we can integrate the
function F over S with respect to x, z (or with respect to x, y) and we have

b) Let a part S be regular with respect to both (x, y) and (y, z) and let F: S ->• R1

be a function continuous on S. If we can integrate the function F over S with respect
to x, y (or with respect to y, z) then we can integrate the function F over S with
respect to y, z (or with respect to x, y) and we have

c) Let a part S be regular with respect to both (x, z) and (y, z) and let F: S -» 1R1

be a function continuous on S. If we can integrate the function F over S with respect
to x, z (or with respect to y, z) then we can integrate the function F over S with
respect to y, z (or with respect to x, z) and we have
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P r o o f , a) Let it be possible to integrate the function F over S with respect to a;,
y. Let £ > 0 be arbitrary but fixed. By Definition 5.la there exists 81 = Si(e, F) > 0
such that every part D C S, for which

satisfies

Let D* C S be a fixed part satisfying (5.10), (5.11). Let us set

and let us choose arbitrarily a part K which satisfies the inclusions

The part K is, according to the assumptions of Theorem 5.3 and Definitions 1.1, 1.3,
strongly regular with respect to both (x, y) and ( x , z ) and we have

By Theorem 3.4a (where we substitute the symbol S by K) we have

Let us subtract from both sides of this relation the expression Ijy(F) (which does
exist, according to the assumption formulated at the beginning of this proof) and let
us take the absolute values. Using (5.11) and (5.12) we obtain

Let us set
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and define

Let M C 5 be an arbitrary part satisfying

and let us set

Relation (5.17)i means that we have set K := M\JD", which is not in contradiction
with (5.12).

The part M is by assumptions of Theorem 5.3 (which include the regularity of S
with respect to (x, y) a (x, z)) and Definitions 1.1, 1.3 strongly regular with respect
to both (x,y) and (x,z) and it holds

because, according to (5.17), the integral over Mxz is equal to the difference of
integrals over Kxz and Axz. The first expression on the right-hand side of (5.18) is,
according to (5.13), less or equal to e/2. As AX2 c Sxz - Mxz, it holds by (5.16)

Further we have, according to (5.17)2,

Relations (5.14), (5.15), (5.19) and (5.20) imply
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Combining inequality (5.18) with (5.13) and (5.21) we obtain

For the given £ > 0 we have found 82 > 0 which depends on s, F and S and is
such that relation (5.22) holds for all parts M c S satisfying (5.16). As e > 0 is
arbitrary, we obtain from here and from Definition 5.1b that the function F can be
integrated over the part S with respect to x, z and (5.7) holds. D

5.4. Theorem. Let a part S be strongly regular with respect to ( s , t ) , where
(s,t) is one of the pairs ( x , y ) , ( x , z ) , (y,z). Then we can integrate over S with
respect to (s,t) (in the sense of Definition 5.2) and we have

where F: S -»• R1 is an arbitrary function continuous on S.

P r o o f . Theorem 5.4 will be proved in the case that (s,t) = ( x , y ) . Let us
choose an arbitrary e > 0 and set

For every part D C S satisfying (5.1) we then have (see relations (3.11) and (3.1))

Thus, taking into account Definitions 5.1 and 5.2, we can see that relation (5.23) is
satisfied. D

5.5. Definition. Let a part S be regular with respect to (s, t), where (s,t) is
one of the pairs ( x , y ) , ( x , z ) , (y,z), and let F: S -» I?1 be a function continuous on
S. If the function F can be integrated over S with respect to s,t then we set
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b) In the case that S is a Lipschitz-regular part with respect to the plane (x, z)
(or (y,z)) the assertion of the theorem is analogous.

The same symbol a for three different functions is introduced in order to be able to
use the neutral variables s, t.

6. THE SURFACE INTEGRAL OVER A UNION OF
LIPSCHITZ-REGULAR PARTS OF A SURFACE

6.1. Theorem, a) Let S be a Lipschitz-regular part with respect to ( x , y ) .
Then we can integrate over S and for an arbitrary function F: S -» R1, which is
continuous on S, we have

5.8. N o t a t i o n . For the sake of brevity we set

Theorem 5.4 shows that Definition 5.5 is an extension of Definition 3.6 (i.e., the
definition of the surface integral over a strongly regular part of a surface) to the case
of a surface integral over a regular part of a surface, and Theorem 5.3 guarantees
correctness of this definition.

In Section 6 a practical criterion is introduced enabling us to decide whether it
is possible to integrate over a given part of a surface (or over a given surface)—see
Theorem 6.2.

5.6. Definition. We say that we can integrate over a part S if S is regular at
least with respect to one of the three coordinate planes (let us denote it by (s, t))
and if we can integrate over S with respect to s, t.

Theorem 4.2 can be extended only by definition:

5.7. Definition. Let us assume that we can integrate over a part S. Then we
set



P r o o f . By the assumptions of Theorem 6.1 the integral on the right-hand side
of (6.1) is a proper Riemann integral. Let us choose an arbitrary e > 0 and set

Let D C S be an arbitrary part for which

Then we have

Prom here we obtain, according to Definition 5.1,

If 5 is not regular with respect to the other two coordinate planes then relation
(6.1) is proved, according to Definition 5.6. If in addition the part S is regular
with respect to (x, z) or (y, z) then we prove in the same way as in Theorem 5.3
that Ijz(F) = Ijy(F) or T^(F) = 7jy(F). From here and Definition 5.5 we obtain
relation (6.1). D

Now we formulate a sufficient condition for integration over a regular part 5.

6.2. Theorem. Let a regular part S satisfy

where S1,..., Sm are Lipschitz-regular parts. Then we can integrate over S and we
have

where F: S -y R1 is an arbitrary function continuous on S.
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It has to be proved that this definition does not lead to a contradiction.

6.4. Theorem. Let it be possible to express a surface S in the form

Let F: S ->• IR1 be a function denned almost everywhere on 5 and such that it is
continuous and bounded in 5l (z = 1,... ,n) and continuously extendible from S1 on
5s (i = 1 , . . . , n). Then we set

where the closed domains Dxy n Sl
xy are not subsets of the domains S'xy. Thus

the proofs introduced in Section 5 must be modified. Details are laborious but not
surprising; thus we omit them. D

Now we extend the preceding results by definition:

6.3. Definition. Let a surface 5 and Lipschitz-regular parts S1 , . . . , 5™ satisfy

The proof of inequality (6.4) meets with a small technical difficulty: Namely, we have

P r o o f . By Theorem 6.1 we can integrate over the parts S1; thus the right-hand
side of (6.3) has sense. Let, for example, the part S be regular with respect to (x, y).
Let us choose an arbitrary e > 0. We have to prove that there exists such a 6 > 0
that for every part D C 5, which satisfies

we have



and also in the form

where D1,..., Dm and Kl,...,Kn are Lipschitz-regular parts. Let F: 5 -> tf1 be a
function defined almost everywhere on S and such that it is continuous and bounded
inD1,..., Dm, Kl,...,Kn and continuously extendible from D* to D* (i = 1, . . . , m)
and from Kj to Kj (j = 1,. . . , n). Then

P r o o f . As the intersection Di n K' of Lipschitz-regular parts D{, K^ is either a
Lipschitz-regular part, or the union of a finite number of mutually disjoint Lipschitz-
regular parts, the evident relations

imply

where M1 n M-3 = 0 (i, j = 1,. . . ,p; p ^ mn) and M1,. . . ,MP are Lipschitz-regular
parts. Prom here and Theorem 6.2 we immediately obtain (6.7). D

6.5. Corollary. Definition 6.3 does not Jead to a contradiction.

It is natural to expect that the surface integral is also additive. Let us prove it.

6.6. Theorem (additivity of the surface integral). Let S be a regular part
of a surface and FI : S ->• K1, F%: S ->• K1 two functions continuous on S. Let the
integrals on the right-hand side of (6.8) exist. Then
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which proves relation (6.8). D

6.7. Convention. In what follows we will consider only surfaces satisfying the
assumption of Definition 6.3 expressed by relation (6.5).

7. A PARAMETRIC REPRESENTATION OF A SURFACE INTEGRAL

A parametric representation is convenient for computation of some surface inte-
grals.

7.1. Definition. We say that a part (or surface) S has a smooth parametric
representation if every point [x, y, z] € S can be expressed in the form

Then the additivity of the Riemann two-dimensional integral and the preceding in-
equalities imply

Let us choose an arbitrary part D C S satisfying the inequality

or

we have

P r o o f . Let the part S be regular with respect to ( x , y ) . Let us choose an
arbitrary e > 0. Then, according to Definition 5.1, there exist 6i > 0 (i = 1,2) such
that for an arbitrary part D C S, which satisfies the inequality



and the following conditions are satisfied:
a) M is a closed and bounded simply connected two-dimensional domain;
b) the functions X: M -» R1, Y: M ->• R1, Z: M -» IR1 are continuous;
c) the partial derivatives Xu, Xv, Yu, Yv, Zu, Zv exist at each point [u, v] 6 M and

the functions Xu: M -*• O ? 1 , . . . , Zv: M -+ R1 are continuous;
d) each point [u,v] e M is mapped onto a point [xty,z] 6 5;
e) if two points [ui,t;i] ^ [1/2,^2] satisfy

then both the points [«i, vi], [u^, v%] lie on the boundary dM of the domain M;
f) if S is not a closed surface (i.e., a boundary of a three-dimensional domain)

then the boundary dS of the surface S is the image of a subset of the boundary dM
ofM.

7.2. Lemma. Let a part 5 have a smooth parametric representation (7.1).
a) If S is regular with respect to ( x , y ) , i.e., it can be expressed in the form

then

b) If 5 is regular with respect to (x, z), i.e., it can be expressed in the form

then

c) If S is regular with respect to (y,z), i.e., it can be expressed in the form

then
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P r o o f . We shall prove a). According to the assumptions, the coordinates of
each point [a;, y,z]€S satisfy both the relations (7.2) and (7.1) and in the case (7.1)
for every point [u, v] 6 M there exists just one point [x,y,z] 6 S. Hence, inserting
(7.1) in (7.2), we obtain relation (7.3).

Relations (7.1) and (7.3) enable us to write all points [x,y,z] € 5 in the form

Prom it we can see that the orthogonal projection of 5 onto the plane ( x , y ) is the
set appearing on the right-hand side of (7.4). By (7.2) the orthogonal projection of
S onto the plane (x,y] is Sxy. Thus relation (7.4) is satisfied. D

7.3. N o t a t i o n . We set

where

7.4. Lemma, a) Let S be regular with respect to (x, y) and let it have a smooth
parametric representation (7.1). Then

and the cosine of the angle, which is made by the normal to S and the z-axis at an
arbitrary interior point of S, satisfies

where ez is defined in Theorem 1.9 and [x,y,z] corresponds to [u,v] e M according
to (7.1).

b) Let S be regular with respect to ( x , z ) and let it have a smooth parametric
representation (7.1). Then
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and the cosine of the angle, which is made by the normal to S and the y-axis at an
arbitrary interior point of S, satisfies

where ey is denned in Theorem 1.9 and [ x , y , z] corresponds to [u,v] € M according
to (7.1).

c) Let S be regular with respect to (y, z) and let it have a smooth parametric
representation (7.1). Then

and the cosine of the angJe, which is made by the normal to S and the x-axis at an
arbitrary interior point of S, satisfies

where sx is denned in Theorem 1.9 and [o;,i/,z] corresponds to [u,v] € M according
to (7.1).

P r o o f . By (1.11) and (7.1) we have

In order to obtain (7.16), we must conveniently express the term appearing under the
sign of the square root on the right-hand side of (7.21). In the course of computation
we also prove (7.15).

Taking into account the assumptions of assertion a) we can see that relation (7.3)
holds. According to the rule for differentiation of a composite function, relation (7.3)
implies

Inserting these relations into both (7.12) and (7.13), we obtain after an easy compu-
tation in which we use (7.14):
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It will be proved in Section 8 that no point [u,v] £ M satisfies A(u,v) = B(u,v) —
C(u,v) = 0. This fact and relations (7.22), (7.23) imply (7.15): Let us choose an
arbitrary point [ito,«o] e M. If C(UQ,VQ) ^ 0, then we need not prove (7.15) for
this point. If A(UQ,VQ) 7^ 0 then (7.22) implies C(UQ,VQ) ^ 0 (because both the
expressions fx and C on the right-hand side are finite). If B(UO,VQ) ^ 0 then the
relation C(UQ,VQ) ^ 0 follows from (7.23).

As (7.15) holds, we can divide both relations (7.22) and (7.23) by C(u,v). If we
insert such modified relations (7.22), (7.23) in (7.21), then after a small rearrange-
ment in which we use (7.11), relation (7.16) follows. D

7.5. Theorem. Let a part S be Lipschitz-regular and let it have a smooth
parametric representation (7.1). Let F: S -t R1 be a function continuous on S.
Then

where the function H: M ->• i1 is given by (7.11)-(7.14).

P r o o f . The proof of (7.24) is a modification of the proof of Theorem 3.2; it is
again based on the theorem on transformation of a two-dimensional integral. If S is
Lipschitz-regular with respect to (a;, y) then we have

The integral on the right-hand side of (7.25) will be transformed by means of the
substitution

By (7.14) we can write

hence by Lemma 7.4a

The other assumptions of the theorem on substitution in an integral can be easily
verified and we have
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Summing up these relations from i = I to i = n, we obtain the assertion of Theorem
7.7; we use the assumptions of the theorem and the preceding results. D

P r o o f . According to Theorem 7.5, we have

Then we have

where the functions x = X(u,v), y = Y(u,v), z = Z(u,v) are the same as in (7.1),
and Jet closed domains Mi satisfy the relation

7.6. Corollary. The value of a surface integral does not depend on the form of
the parametric representation of the surface.

7.7. Theorem. Let a surface S satisfy relation (6.5) and let it have a smooth
parametric representation (7.1). Let the parts 5' have smooth parametric represen-
tations

By (7.22), (7.23) and (7.11) we have

and we obtain (7.24).



where the coefficients ki, fe, k$ should be determined. Let us consider the so called
vo-curve on the part S, whose parametric representation can be obtained if we set
v — VQ in (7.1):
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Let us consider an arbitrary point [x*,y*,z*] e 5 lying on the Do-curve. Then the
parametric equations of the straight line determined by this point and the point
[XQ, 2/0) ZQ] are of the form

If [x*,y*,z*] -> [xo,yo,z0] then u* -> u0 and we obtain from the preceding relations
the parametric equations of the tangent line to the u0-curve at the point [XQ, J/o. ZQ]'-

where A(UQ,VQ), B(UQ,VO), C(UO,VQ) are the values of the determinants A(u,v),
B(u,v), C(u,v) given by relations (7.12)-(7.14) at the point [u0,v0].

In order to prove it let us write for the first time the equation of the tangent plane
at the point [XQ,yo, zo] in the form

8. THE GEOMETRICAL MEANING OF DETERMINANTS A, B, C

Let us consider a smooth parametric representation (7.1) of a regular part 5. Let
us choose an arbitrary point [x0,y0,zo] £ S. There is just one point [uo,^o] G M
which corresponds to this point in transformation (7.1). We shall prove that the
equation of the tangent plane of S at the point [XQ, yo,zo] can be written in the form



Similarly we obtain the parametric equations of the tangent line to the wo-curve at
the point [xo,yo,zo\:

As (8.3), (8.4) are parametric equations of straight lines, none of the vectors

can have all components equal to zero. Further, as the straight lines u = UQ, v = VQ
intersect, the ^o-curve and Uo-curve intersect too; hence, the tangent lines (8.3), (8.4)
are noncollinear and thus determine the tangent plane (8.2). Hence we obtain that
the vectors (8.5), (8.6) are noncollinear.

We express X-XQ, y—y0, Z — ZQ from equations (8.3) and insert in (8.2). Assuming
[a;,?/,z] ^ [iCoiJ/Oi^o]) i-e., t ^ 0, we obtain dividing (8.2) by the parameter t:

From equations (8.4) and (8.2) we similarly obtain

We can see from (8.7) a (8.8) that the numbers ki, fc2, £3 can be interpreted as
components of a vector different from the zero vector,

which is orthogonal to noncollinear vectors (8.5), (8.6). Thus we can set

where ei, 62 and 63 are the unit vectors which are parallel to the positive directions
of the axes x, y and z, respectively. The determinant on the right-hand side expresses
the vector product of vectors (8.5) and (8.6). From here and from (7.12)-(7.14) we
obtain that
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Inserting (8.10) in (8.2), we obtain equation (8.1).

Relations (8.9) and (8.10) imply the following lemma, which we have used in the
proof of Lemma 7.4:

8.1. Lemma. At any point [u,v] € M which corresponds to the point [x,y,z] e
S, the relations

cannot hold simultaneously.

9. INVARIANCE OF THE SURFACE INTEGRAL WITH RESPECT TO A
TRANSFORMATION BETWEEN TWO CARTESIAN COORDINATE SYSTEMS

Till now we have considered the surface integral only in one (arbitrarily chosen)
Cartesian coordinate system.

9.1. Theorem (on the invariance of the surface integral). Let ( x , y , z )
arid (£, 77, £) be two Cartesian coordinate systems related by the transformation

where [XQ, yo,Zo] is the origin of the system (£,77, C) in the system (x,y,z). Let a
part S be strongly regular to both the coordinate planes (x,y) and (£,??). Let 5 be
expressed in the system (x, y, z) by

where f € Cl(Sxy), and in the system (£,??, C) by

where <f> € (71 (.?£,,). If F: S -> R1 is a function continuous on S with values
F(x,y,z), [x,y,z] 65 then
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where

P r o o f . A) It is well-known that the determinant of transformation (9.1) satisfies
the relation

where we take the sign + (sign —) if both systems (a;, y,z) and (£,??, C) have the
same (opposite) orientation. In the case of the same orientation each entry of the
matrix of transformation (9.1) is equal to its complement. In the case of the opposite
orientation each entry is equal to its complement with the opposite sign.

It is also well-known that the lines (columns) of (9.6) form a system of three
orthonormal vectors.

B) Let P € 5 be an arbitrary but fixed point. By (9.2) we can write its coordinates
in the system (x,y,z] in the form [x,y,f(x,y)] and by (9.3) in the system (£,77, £)
in the form [£)»?,¥>(£, »?)]• By (9.1) these coordinates satisfy the relations

First we prove that the mapping $: S^ -> K2, which is given by relations (9.7)
and (9.8), is injective and that $(3^) = Sxy. As the part 5 is regular with respect
to both ( x , y ) and (£,??), every point P e 5 is the image of just one point [x,y] e Sxy

and of just one point [£,77] e S^ and the coordinates of these points [x,y], [£,77]
satisfy relations (9.7), (9.8). From here both properties of the mapping $ follow.

As the part 5 is strongly regular with respect to 5^, the functions g: 5^ -*• R1,
a: 3^ -» K1 are continuous and bounded on S together with their first partial
derivatives. The Jacobian of transformation (9.7), (9.8) satisfies
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Thus, according to part A), we can write

As the part S is strongly regular with respect to (£,??) and is expressed by (9.3),
we obtain from (9.10) that the Jacobian J(£,rj) is bounded on S^, In part C) of
this proof we will show that

Finally, the domains Sxy and 5^ are measurable and the function F(x,y, f ( x , y ) )
is continuous and bounded on Sxy. Thus all assumptions of the theorem on trans-
formation of the two-dimensional Riemann integral are satisfied for the integral ap-
pearing on the left-hand side of relation (9.4).

For the sake of brevity let us set

Then, according to (9.9),

and by the rule of differentiation of a composite function

similarly

Using the definition of C(£, 77), we obtain
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thus relation (9.19) is identical with relation (9.4).
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By (9.5), (9.7), (9.8) and (9.13) we have

and relation (9.16) can be rewritten to the form

Hence by the last assertion of part A) we obtain

Relations (9.17), (9.18) and (9.10) give (for the sake of brevity we omit the arguments

e,»7)

The definition of the determinants A(^,r?), B(£,ri) and part A) yield (similarly as
(9.10), with the use of (9.7), (9.8), (9.13))

and as J(£, 77) = C(£, T?) the theorem on transformation of the two-dimensional Rie-
mann integral yields



C) It remains to prove relation (9.11). As

is a smooth parametric representation of the part S, it follows from Lemma 8.1 that
at any point [£, rj] € S^ the relations

cannot hold simultaneously. Using this result and (9.14), (9.15), we can prove in the
same way as in Lemma 7.4 that

Theorem 9.1 is proved. D

9.2. R e m a r k . Using symbolism analogous to that of Section 3, we can write
relation (9.4) in the form

Relation (9.20) is one of the nine possibilities, which can be formally expressed by
the relation

where (u,v) is one of the pairs ( x , y ) , ( x , z ) , (y,z) and (<r,r) one of the pairs (£,??),

&0,fa,C).

9.3. Theorem. Let (O,x,y,z}, (O',^,r], C) be two arbitrary Cartesian coordi-
nate systems. Let the part 3 be strongly regular in both systems and let F, F be
functions from Theorem 9.1. Then

where the meaning of the symbols is obvious.

P r o o f . Relation (9.22) is an immediate consequence of Theorem 3.2, Definition
3.4 and relations (9.21). D

9.4. R e m a r k . It is not difficult to see that Theorem 9.3 holds also in the case
when the part 5 is only regular in both systems provided it is possible to integrate
over S at least in one of the systems. (Then we can integrate over 5 also in the other
system and relation (9.22) holds.)
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9.5. R e m a r k . On the contrary, the invariance of the three-dimensional integral
over a domain ft with respect to transformation (9.1) is an immediate consequence
of the theorem on transformation of an integral:

On the right-hand side of (9.23) one usually writes another symbol; for example, if
we write transformation (9.1) in the form (x,y,z)T = A(£,r],£)T then it is more
convenient to write

In both cases we integrate over the same domain but we see it in two different ways.

In the case of a surface integral the situation is different: Both integrals in relation
(9.22) are symbols the precise meaning of which is given in Definition 3.4 and by
Theorem 3.2.

10. TRACE THEOREMS

10.1. Definition, a) We say that a domain ft has a piecewise smooth boundary
9ft if 9ft satisfies the assumptions of Definition 6.3 concerning S = 9ft and if 9ft
has an outer normal at almost all points.2

b) We say that a domain ft has an S-continuous boundary if ft has a continuous
boundary in the sense of Nefias (see [Ne, pp. 14-15]) and if ft has a piecewise smooth
boundary.3

c) We say that a domain ft has an 5-Lipschitz continuous boundary if ft has a
Lipschitz continuous boundary 9ft in the sense of NeCas and HlavaCek (see [NH,
p. 17]) and if ft has a piecewise smooth boundary 9ft.4

Restricting our considerations to 5-Lipschitz continuous boundaries we shall be
able to prove both the trace theorems and the Gauss-Ostrogradskij theorem without
use of the partition of unity.

In the case of Sobolev spaces we will use the same notation as in [KJF]. In what
follows we will need these three well-known theorems:

2 This assumption guarantees that the domain ft has no "cuts".
3 There are domains which have a continuous boundary but do not have a piecewise smooth

boundary.
4 There are domains which have a Lipschitz continuous boundary but do not have a piece-

wise smooth boundary.
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10.2. Lemma (density theorem). Let a domain fi have a continuous bound-
ary in the sense ofNeSas. Then the set C°°(Q) is dense in the Sobolev space Hk'p('Cl)
for every pe (l,oo) and k € N. Moreover, Hk>r(tt) t» Wk<p(£l).

For the proof see [KJF, pp. 271-272].

10.3. Lemma (extension theorem). Let a domain fi C KN have a Lipschitz
continuous boundary. Then there exists a bounded linear operator E: #l(fl) —>
H1^) such that

For the proof see [Ne, p. 80].

10.4. Lemma (imbedding theorem). Let a domain ft C RN have a Lipschitz
continuous boundary, let N ^ 2, p € (i,N). Put q* = Np/(N -p). Then

H1>p(fl) C Lq(fl) algebraically and topologically

provided q 6 (l,g*) (i.e., 1 ̂  \> l- - £).

For the proof see [KJF, pp. 282-286].

10.5. Definition. Let a surface S satisfy (6.5) with Lipschitz-regular parts
S1....,^. Let

be the explicit expression of the part §*, where s,t,w are the so called neutral
variables. Let the corresponding function from Notation 5.8 be denoted by 0^(3, t),
i.e.,

Let u: S -4 R1 be such a function that u ( s , t , U i ( s , t ) ) 6 Z/p(5*t) where 1 ^ p < oo.
Then we say that u € LP(S) and define the norm

It is easy to see that the expression ||u||x, (s) defined by (10.1) satisfies all three
axioms of a norm. Moreover, according to the results of Section 9, expression (10.1)
does not depend on the choice of a Cartesian coordinate system.
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10.6. Theorem. Let a surface S satisfy relation (6.5) with Lipschitz-regular
parts S1,..., Sn. Let u € LP(S), where I < p < oo. Then the expression

defines a norm which is equivalent to the norm | |U||L,,(S)> J 'e-> there exist two positive
constants C\, C% such that

P r o o f . The assumptions of Theorem 10.7 imply

where Ki are constants. These inequalities immediately imply

/ \ I /P
Relations (10.4) yield inequalities (10.3) with Ci = 1 and C2 = max Ki} . D

\»=l,...,n /

10.7. Corollary. Let a surface S satisfy relation (6.5) with Lipschitz-regular
parts S1,... ,Sn. Then the normed space LP(S), where 1 ^ p < oo, is a Banach
space.

P r o o f , According to Definition 10.5, the set of elements belonging to LP(S)
equipped with the norm /P,S(M) is a Banach space. This fact and Theorem 10.6 yield
the assertion. D

Now we can start our considerations concerning the trace theorems. First we prove
a generalization of [KJF, Theorem 6.4.1]:

10.8. Theorem (trace theorem). Let a domain fi C KN have an S-Lipschitz
continuous boundary. Let 1 ^p < N = 3, q = (Np — p)/(N — p) = 2p/(3-p). Then
there exists a uniquely determined continuous h'near mapping 7: Hl'p(Ct} -> Lq(dfl)
such that -yu = u\gQ for allu& C°°(n).

P r o o f . A) First we prove that for any function u € C°°(G) we have
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Let us multiply this inequality by the inequality

Let us integrate (10.11) with respect to T over the interval (uJi(s, t),Ui(s, t) + /3) and
let us use the definition of q. Then we find that

Inserting (10.8) into (10.9) and taking into account (10.10), we obtain, after calcu-
lating the derivative,

where

Then

where G is a simply connected bounded domain such that

with

Let u € C°°(G) and let



and integrate the result over 5]4. We obtain

where

Let us write shortly dV = dsdid£ and let us use the Holder inequality for the
second integral on the right-hand side of (10.12):

Denoting the right-hand side of (10.14) shortly by RHS and using the notation
q* = Np/(N — p) introduced in Lemma 10.4, we obtain by (10.13) and then by
Lemma 10.4

because 1 + ^j- = ̂ jf = q. Relations (10.12)-(10.15) yield

As q — Njf_? < -$^j we can use Lemma 10.4 to obtain from (10.16) inequality
(10.5).

B) Let us choose v e Hl'p(fl) arbitrarily. Then, according to Lemma 10.3, there
exists v e H1>P(G) such that v = v on ft. By Lemma 10.2 there exists a sequence
{un} C C°°(G) such that

By (10.5)
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and by (10.5) and (10.17)

By (10.19), {•yun} is a Cauchy sequence in Lq(S) and as Lq(S) is a Banach space
(see Corollary 10.7), there exists a jv 6 Lq(S) such that

Using (10.17) and (10.20), we obtain from (10.18):

Inequality (10.21) and Lemma 10.3 imply

which was to be proved.

10.9. Theorem (trace theorem). Let a domain £1 C KN (N = 3) have an
S-Lipschitz continuous boundary.

a) Let p > N. Then for any q ^ 1 there exists a unique continuous linear mapping
7: H1*^) -)• Lq(d$l) such that -ju = u gfl for all u € C°°(Ti).

b) Let p = 2. Then for q — 2 there exists a unique continuous linear mapping
7: H^2(fl) -+ L2(<90) such that •yu = u\gQ for all u e C°°(fi).

P r o o f , a) Because of its shortness we reproduce the proof of [KJF, Theorem
6.4.2] and correct simultaneously a misprint appearing in this proof.

Let q > 1 be an arbitrary fixed number. Since the function v(i) = 2t/(3 - t)
increases from 1 to oo on the interval (1,3), there exists a p 6 (l,3) such that
q — v(p). According to Theorem 10.9, there exists a uniquely defined linear mapping
M: Hl>P(fy -» Lq(dfl), Mu = u\ga if u & C°°(U). Composing it with the identity
mapping I from H 1>p(fl) into H1'*^), we can see that •y = M o I.

b) We have i/(|) = 2, i.e., p = § if q = 2. As Hlfl(fl) C H^ltfl), we can set
p = 2 in this case and the considerations of part a) remain without changes.

Another proof: As L4(3ft) C 1/2(917) (algebraically and topologically), assertion
b) is a special case of Theorem 10.9 for p — 2 in the case TV = 3. D

Our approach enables us to prove the following trace theorem which does not
follow from the theory developed in [Ne] and [KJF]. (For example, the theory from
[Ne] and [KJF] does not allow us to consider domains with cusp points.)
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10.10. Theorem (trace theorem). Letft C G, whereat C R3 isadomain with
a piecewise smooth boundary and G C IR3 a domain with a continuous boundary in
the sense ofNeSas. Let us consider functions v e #lip(ft) as restrictions of functions
v e Hl'p(G) to ft and functions v 6 C°°($l) as restrictions of functions v e C°°(G).

a) Let 1 < p < 3, q = 2p/(3 - p). Then there exists a uniquely determined
continuous linear mapping 7: #1>p(ft) -» Lq(d$l) such that ju — w|gn for all u €
C°°(fi).

b) Let p ^ 3. Then for any ^ ^ 1 there exists a unique continuous linear mapping
7: Fa'P(O) ->• L^dft) such that 7^ = u an for atf u 6 C°°(ft).

c) Let p = 2. Then for q = 2 there exists a unique continuous Jinear mapping
7: #1)2(ft) -^ L2(dft) such that 7^ = u\m for all u e C°°(n).

The proof is almost identical with the proofs of Theorems 10.8 and 10.9 and thus
we omit it.

11. FLOW OF A VECTOR THROUGH A PART OF A SURFACE.
SURFACE INTEGRAL OF THE SECOND KIND

11.1. In physics we often speak about the flow of a vector of magnetic induction
through an oriented surface, about the flow of a vector of the intensity of an electric
field through an oriented surface, about the flow of a vector of velocity of a liquid
through an oriented surface, etc. All these considerations have a common base: We
are given a vector field

where P, Q, R are three continuous functions (components of a vector field in the
directions of the axes x, y, z), which are defined in a three-dimensional domain Q,
and an oriented regular part S which lies in ft, S C ft. (The orientation of S is
given by prescribing a unit normal vector ia.(x,y,z), [x,y,z] e S—see (1.10).) We
are interested in whether we can integrate the function

over the part S, i.e., whether the surface integral

exists. This integral is called the flow of the vector F = (P,Q,R) through the
oriented part S.
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Let us explain the physical meaning of the integral (11.2). Let (P,Q,R) be, for
example, the velocity field of a flowing liquid. If this field is constant (i.e., the
components P, Q, R are constants) and the part 5 is a part of a plane, then during
a unit of time the volume

will pass through the part S. This volume has a positive (negative) value, if the
liquid flows out from the upper (lower) side of the part 5. In the case of a variable
field (P,Q,R) and a curved part 5 we consider the expression

as an approximate value of the volume flowing out during a unit of time (an analogue
to (4.3)), which gives, according to Theorem 4.3, the integral (11.2) (for the time
being, under the assumption that the part 5 is strongly regular—this restrictive
assumption will be removed in this section).

11.2. Theorem. Let functions P: S -> IR1, Q: S -> R1, R: S -> i1 be
continuous on S, where S is a strongly regular part of a surface.

a) If the part S is strongly regular with respect to (x, y), then

b) If the part S is strongly regular with respect to (x, z), then
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c) If the part S is strongly regular with respect to (y, z), then

P r o o f . All three assertions follow immediately from Definition 3.4, Notation
3.1 and Theorem 1.9. D

Assumptions of Theorem 11.2 are too strong and expressions on the right-hand
sides of relations (11.4)-(11.6) complicated. Both these drawbacks will be removed
in Theorem 11.4.

11.3. Lemma, a) Let a part § be regular with respect to (y, z) and let P: S —>
K1 he a continuous function. Then we can integrate the function Pcosa: S ->• IR1

over 5 with respect toy, z and we have

b) Let apart S be regular with respect to (x, z) and let Q: S -> IR1 be a continuous
function. Then we can integrate the function Qcosfl: S -> K1 over S with respect
to x, z and we have

c) Let a part S be regular with respect to (x, y) and let R: S ->• R1 be a continuous
function. Then we can integrate the function Rcosj: S -4 R1 over S with respect
to x, y and we have

P r o o f , a) As P: S —>• K1 is a continuous function on S (and thus bounded on
5), the integral on the right-hand side of (11.7) exists. Let us choose e > 0 arbitrarily
and let us set
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Then every part D C 5 for which

satisfies, according to (1.13), (3.3) and (3.13), the relations

Prom here, according to Definitions 5.1 and 5.5, we obtain (11.7). D

11.4. Theorem. Let a part S be regular with respect to all three coordinate
planes and let P: S -t (R1, Q: S -> R1, R: S ->• IR1 be functions continuous on S.
Then the integral (11.2) exists and satisfies

P r o o f . By Lemma 11.3 the integrals

exist. According to Theorem 6.6, the integral (11.2) also exists and is equal to
the sum of these integrals. Relation (11.10) can be now obtained by summing up
relations (17.7)-(17.9). D

R e m a r k . From the point of view of the Gauss-Ostrogradskij theorem, at which
we are aimed, the assumption of Theorem 11.4 concerning the part S is not restric-
tive.

11.5. Definition. a) Let a part S be regular with respect to all three coordi-
nate planes, let n(x,y,z) be its oriented unit normal and let P, Q, R be functions
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and let P, Q, R be functions continuous on S.
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In the case that (11.16) does not hold we proceed according to the following definition.

11.7. Definition. Let S be a regular part of a surface (i.e., S is regular at
least with respect to one coordinate plane), let n be its oriented unit normal, i.e.,

If the part S is regular with respect to all three coordinate planes then

Theorem 11.4 and Definition 11.5 yield

11.6. Corollary. Under the same assumptions as in Definition 11.5 we have

The left-hand side of (11.14) is very often written in the form

Integrals (11.11)-(11.13) are called projective surface integrals or surface integrals of
the second kind.

b) Under the same assumptions as in a) we denote

continuous on 5. We set



a) If 5 is a part of the plane z = ZQ then

In this case we set

b) If 5 is a part of the plane y = y0 then

In this case we set

c) If 5 is a part of the plane x — XQ then

In this case we set

d) If S is regular with respect to (x, y) and (a;, z) and if S is a part of a surface
formed by straight lines which are parallel to the x-axis, which means that it can be
expressed in either of the forms z = f(y), [x,y] 6 Sxy and y = g(z), [x,z] e Sxz,
then

In this case we set

e) If 5 is regular with respect to (x,y) and (y,z) and if S is a part of a surface
formed by straight lines which are parallel to the y-axis, which means that it can be
expressed in either of the forms z = f ( x ) , [x,y] e Sxy and x = h(z), [y,z] e Syz,
then

In this case we set
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where the second equality follows from Theorem 11.4 and the third equality from
(11.12), (11.13) and Definition ll.Td.
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P r o o f . Relation (11.15) follows from Theorem 11.4 and Definitions 11.5, 11.7
and 11.8. In more detail:

In the case 11.8a the assertion of the theorem coincides with Corollary 11.6.
In the case ll.Sb let, for example, cos a = 0. Then

In this case we set

11.8. Definition. We say that a part S has property (R) if it satisfies one of
the following three conditions:

a) the part 3 is regular with respect to all three coordinate planes;
b) the orthogonal projection of the part S onto one of the three coordinate planes

has the two-dimensional measure equal to zero; the part S is regular with respect to
the remaining two coordinate planes;

c) two components of the vector n(x,y,z) equal zero for all points [x,y, z] € S.

11.9. Theorem. Let a part S have property (R}, let n be its oriented unit
normal and let P, Q, R be three functions continuous on S. Then relation (11.15)
is satisfied, i.e.,

f) If 5 is regular with respect to (x, z) and (y, z) and if S is a part of a surface
formed by straight lines which are parallel to the z-axis, which means that it can be
expressed in either of the forms y = g(x), [x,z] £ SXi and x = /i(y), [y,z] € Syz,
then



In the case ll.Sc let, for example, cos a = 0, cos/3 = 0. Then

11.10. Theorem. Let a surface S be the union of n parts with property (R)
which have mutually disjoint interiors, let n be its oriented unit normal and let P,
Q, R be three functions continuous on S. Then we can set

P r o o f . The assertion of the theorem follows from the preceding results. D

At the end of this section we prove a basic theorem concerning the parametric
representation of a surface integral of the second kind.

11.11. Theorem. Let a part S, which Jias a smooth parametric representation
(7.1), be regular with respect to all three coordinate planes, let n be its oriented unit
normal and let P, Q, R be three function continuous on S. Then

where (3 = +1 (/3 = —1) if the vector (A, B,C) is oriented similarly (not similarly)
as the normal vector n = (cos a, cos /?, cos 7). (For the definition of the components
A, B, C see (7.12)-(7.14) and for the definition of the set M see Definition 7.1.)

P r o o f . The proof of all three expressions is the same. Thus we prove only
(11.19). We start from expression (11.13), i.e., from
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By the theorem on transformation of a two-dimensional integral, Lemma 7.2a and
the fact that C(u, v) ^ 0 for all points [u, v] € M we can write

where for greater simplicity we omit the arguments u, v on the right-hand side.
A) Let EZ = 1, which means that cos 7 > 0. Let the vector (A,B,C) be oriented

similarly as the vector n. As cos7 > 0, we have, due to the same orientation of the
vectors mentioned, C > 0 (the fact that C ^ 0 follows from the considerations of
Section 8). Hence \C\ = C and relations (11.20), (11.21) yield relation (11.19) with

/? = +!.
Let now the orientation of the vectors (A,B,C) and n be opposite. In this case

C < 0. Hence \C\ - -C and relations (11.20), (11.21) imply relation (11.19) with

/? = -!•
B) Let sz = —1, which means that cos7 < 0. Let the vectors (A,B,C) and n be

oriented similarly. As cos 7 < 0, we have C < 0 in this case; hence \C\ = —C. Let
us insert this relation into (11.21) and multiply the relation obtained by minus one.
This yields

Relation (11.19) with 0 =+1 follows from (11.20) and (11.22).
Let now the vectors (.A, B, C) and n be oriented in the opposite way. In this case

C > 0; hence \C\ = C. If we multiply (11.21) by the relation sz - -1 and use
(11.20) we obtain (11.19) where /? = -!. D

12. THE ELEMENTARY FORM OF THE GAUSS-OSTROGRADSKIJ THEOREM

12.1. Definition. a) A bounded domain 0 is called elementary with respect to
the coordinate plane ( x , y ) if every straight line parallel to the z-axis intersects the
boundary <9f2 at two points or has with dfi a common segment which can degenerate
into a point.

b) Similarly we define domains elementary with respect to the plane (x,z), or with
respect to the plane ( y , z ) .

c) A bounded domain fi is called elementary if it is elementary with respect to all
three coordinate planes.
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12.2. Lemma. Let a domain fi be elementary with respect to (x,y) and let
its boundary dtl consist of a finite number of parts with property (R), which have
mutually disjoint interiors. Then these parts can be divided into three groups with
the following properties:

a) The union of parts belonging to the first group forms a part D1, whose points
[x, y, z] satisfy the equation

where z\ is a continuous function.
b) The union of parts belonging to the second group forms a part D2, whose points

[x, y, z] satisfy the equation

where z2 is a continuous function. At the same time we have

c) The normal vector of the parts belonging to the third group satisfies

The set of the parts belonging to the third group can be empty.

P r o o f . The assertion is evident. D

12.3. Theorem. Let the boundary 3fi of an elementary domain fi be the union
of a finite number of parts with property (R). Let functions P, Q, R be continuous
on Cl and let the derivatives dP/dx, dQ/dy, dR/dz be continuous and bounded in fi.
Let the positive direction of the unit normal n be the direction of the outer normal
Then

P r o o f . By Lemma 12.2 and the Fubini theorem
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because at every point P £ fi which satisfies the relation P 6 3fF n d£lk (j ^ k) two
opposite normals meet—one belonging to dfl* and the other to <9fifc. D

P r o o f . The assumption concerning the normal n enables us to orient the
normal of each boundary <?Q* in the direction of the outer normal of ft1; hence

Summing (12.6)-(12.8), we obtain (12.3). D

12.4. Theorem. Let a domain fl be the union of a finite number of elementary
domains ft1,..., ftn, which have mutually disjoint interiors. Let the boundary dft1

of each domain fl{ (i = 1, . . . ,n ) be the union of a finite number of parts with
property (R). Let functions P, Q, R be continuous on fi and let the derivatives
dP/dx, dQ/dy, dR/dz be continuous and bounded in fi. Let the unit normal n of
the boundary dfl be oriented in the direction of the outer normal. Then

Similarly we obtain

As the boundary dfi can be expressed as the union of the surfaces (12.1), (12.2) and
the parts for which cos 7 = 0, the right-hand side of (12.5) is equal to the surface
integral //an Rdxdy. Hence

Owing to the orientation of the normal, we have cos 7 < 0 on D1 and cos 7 > 0 on
D2. Thus relation (12.4) can be rewritten in the form



13. A MORE GENERAL FORM OF THE GAUSS-OSTROGRADSKIJ THEOREM

Verifying the assumptions of Theorem 12.4 concerning the domain fl is in most
cases very difficult: Let us consider, for example, a domain (the so called "cheese
ball with many bubbles")

R e m a r k . Every bounded convex domain is elementary.

where KO,KI, ...,Kn are balls with properties

To make the Gauss-Ostrogradskij theorem applicable in general use we must sub-
stitute its assumption concerning the domain fl by an assumption which would enable
us to check only the properties of the boundary dfi. This is the aim of this section.

13.1. Definition. We say that a part S has property (R*) (or property (R**))
if it satisfies conditions a)-c) (or conditions a)-d)) where

a) the part 5 has property (R);
b) if

are functions appearing in the analytical expressions of the part 5 with respect to the
coordinate planes then at least one of the three relations / € C2(Sxy), g 6 C2(5XZ),
h € C2(Syz) holds;

c) if measa Sst > 0, then the boundary 6Sst is piecewise of class C2 and has no
cusp-points;

d) at least one of the plane domains Sxy, Sxz, Syz is star like. (A domain D is
starlike if there exists at least one point Q £ D with the property that every half-line
starting from this point intersects dD just at one point.)

E x a m p l e . Let us divide the sphere

by the coordinate planes into eight parts S1 , . . . , Ss, or alternatively by the coordi-
1 32

nate planes and the planes y = x, y = -x, z = \,z — —\ into 32 parts £ > , . . . , £ > .
The parts D , . . . , £ > have property (R**), whilst the parts 51,..., 58 do not satisfy
condition 13.Ib.
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13.2. Lemma. Let g(Q) = rji, g(l) - r?2 and \g"(s)\ ^ K2 for s € (0,0- Then

P r o o f . According to the Lagrange interpolation theorem, we have

where the remainder V'(s) satisfies

Hence

From here the assertion of Lemma 13.2 follows, because max \s(s - l)\ = \l2. D

13.3. Lemma. Let T be a closed triangle in the plane (s,t) with points P\, PI,
P3 as vertices. Let ip e C2(T) and let MI be a constant bounding the second partial
derivatives of the function (p on T. Then the linear polynomial p(s, t), for which

satisfies

where ST is the length of the largest side of the triangle T.

P r o o f . Let us set

Then M% is a constant bounding the second partial derivative of x on T and by
(13.1) we have

Let us consider the function g = X\P*P3- Then Lemma 13.2, where we set K^ = 2Ma,
implies

Let P 6 T (P ^ Pi) and let B be the cross-point of the segment P-^Pz and the
straight-line determined by the points PI, P. Then by Lemma 13.2

This estimate and (13.3) yield (13.2).
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13.4. Lemma. If a function u(s,t) belongs to the class Cn(D), where D e IR2

is a bounded closed domain whose boundary 3D is piecewise of class Cn, without
cusp-points and with the outer normal existing at almost all points of QD, then this
function can be extended with keeping its class onto the whole plane (s, i).

P r o o f . The proof of this theorem is presented, for example, in [Fil, Appendix].
D

13.5. Theorem (Gauss-Ostrogradskij). Let O be a three-dimensional
bounded closed domain whose boundary d$l is the union of a finite number of parts
with property (R*), which have mutually disjoint interiors. Let functions

be continuous and bounded in a bounded three-dimensional domain 0 satisfying
f) Z> fi. Let the unit normal n of the boundary <9fi be oriented in the direction of
the outer normal ofdfl, which exists at almost all points of 917. Then

P r o o f . First we prove the theorem in the case that the parts forming <9fi have
property (R**). At the end we show how to change the proof when these parts have
only property (R*).

A) Let us choose 6 > 0 arbitrarily but fixed (S < 1). In this part of the proof
we show how we shall approximate a part with property (R**) by a "panel-shaped"
surface which consists of triangular panels whose longest side is less or equal to 5.
This approximation will be constructed in such a way that if

is a decomposition of <9fi into parts with property (R**) and 5f is a panel-shaped
surface approximating Si, then

is a polyhedron (or a union of polyhedrons if the domain fi is multiply connected)
satisfying
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and with vertices lying on dfi. The closed bounded three-dimensional domain with
the boundary d£ls will be denoted f l s .

Let us consider one part 5 := Si appearing in the decomposition (13.5) and let,
for example, its orthogonal projection Sxy onto the plane ( x , y ) be a starlike plane
domain. The part S can be analytically expressed in the form

If meas2 5X2 > 0 then we can express S also in the form

and if meas2 Syz > 0, then also in the form

Let us choose the nodal points on the boundary dS so dense that the distance of
two adjacent nodal points is not greater than S. (If dS has corners, i.e., if dSxy is
a piecewise smooth curve, then these corners are also nodal points. Also each point
P G 95 at which at least two "edges" of the decomposition (13.6) meet will be a
nodal point; the expression "edge" is in quotation marks because the surface dtl
can be smooth—for example, if fi is a sphere.) We obtain in such a way a closed
curve 95*, which is the union of a finite number of segments of lengths not greater
than 6. The orthogonal projection of the curve dSs onto the plane ( x , y ) will be
denoted dS^.y. It is the boundary of a simply connected polygonal domain S^.y.
As the domain Sxy is starlike, the domain Ssxy is also starlike (with respect to the
same point Q). Connecting all nodal points lying on <95fy (they are the orthogonal
projections of the nodal points lying on dSs onto the plane (x,y}) with the point
Q we obtain a rough triangulation of the domain Ssxy. Choosing a sufficiently great
integer s, dividing each segment which has the point Q as one end point into 2s equal
parts and triangulating each triangle which has the point Q as one vertex in such
a way that each quadrilateral, which has arisen by connecting two opposite points,
will be divided by two diagonals into four triangles, we obtain a sufficiently fine
triangulation T(S^y) of the domain 5*^. The nodal points on 5 which correspond,
according to (13.8), to the nodal points of this triangulation, determine uniquely a
panel-shaped surface 5*. This panel-shaped surface can be analytically expressed in
the form
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where /*: Ssxy -¥ K1 is a continuous function which is linear on triangles of the
triangulation T(Sxy).

If meas2 Sxz > 0 (or meas2 Syz > 0) then the orthogonal projection of the surface
5* onto the plane (x,z) (or (y,z)) defines the triangulation T(S&XZ) (or T(Syz)) of
the polygonal domain Sxz (or Syz) and the surface Ss can be expressed analytically
in the form

or

where gs: Sxz -> K1 (or hs: Syz —> M1) is a continuous function which is linear on
triangles of the corresponding triangulation.

B) As fls is a polyhedron, we can express H* by [2e, Lemma 4.2] in the form

where Ui,,.., Um are closed convex polyhedrons. (It was Kfizek who inspired the
very idea of the proof of this lemma—see [Kf].) Let us orientate the normal to dUj
as the outer normal of Uj (j = 1,..., m). Relation (13.14) and Theorem 12.4 yield

because the surface integrals over dUj n H5 altogether cancel.
C) Now we prove that

226



We have

By Lemma 13.3 we have

where 5i = Si and 5*t is the one from the orthogonal projections 5^, S^, S*2

which satisfies both the inequality meas2 Slst > 0 and condition b) from Definition
13,1. (The first term on the right-hand side of (13.18) can be split into two or three
terms with different meanings of s,t.) The constant Mj is given by the relation

where S*t D 5*t U 5** for all 6, ip1 is the extension of the function (p* (see Lemma
13.4) and v?1 denotes that of the functions /*, g\ hl which belongs to the variables
a,t.

As it is not guaranteed that the first term on the right-hand side of (13.18) is the
upper bound of meas3(ft — fi*) (in general, this term does not cover neighbourhoods
of edges and "edges" in which the parts 5» meet), we also have the term A(6) on the
right-hand side of (13.18). A rough estimate of this term is

thus relation (13.18) implies
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Similarly

Relations (13.17), (13.19) and (13.20) yield (13.16).
D) Now we show that

We prove only

since the remaining two relations

which together with (13.22) give (13.21), can be derived in the same way.
By (13.5)-(13.7) we have

Thus, it is sufficient to prove that

In this part of the proof we restrict ourselves to the case meaS2 Slxy > 0; the case
meas2 S^.y = 0 will be analyzed in the next part of the proof.

Let meas2 Sxy > 0, where we set S := Si. Then
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According to the Lagrange theorem on the increment, we have

where 0 < i9 < 1. Further,

Let [x, y] e Sxy n Ssxy be arbitrary but fixed. Let the line perpendicular to the
plane ( x , y ) which passes through the point [x,y] intersect the part S (or S*) at the
point P! (or PI). If f e C2(Sxy) then

If / i C2(Sxy) then either g £ C2(SXZ), or h € C2(Syz). Let, for example, g £
C2(SXZ). Then the line perpendicular to the plane ( x , z ) which passes through the
point PI will intersect the part Ss at a point, which will be denoted by PS, and we
have, according to Lemma 13.3,

For a small 6 the distance between 5 and Ss is very small and the point PS belongs
either to the same triangle T C 5* as P2, or to a very near triangle. We deduce from
here that dist (Pa,PS) ^ C6 (where C < 5); hence

because PI, P2, PS are the vertices of the right triangle with the hypotenuse PjPs-
Thus (13.30) and (13.31) yield

Assumption 13.Ic, Lemma 13.2 (with 771 = % = 0) and the fact that the number of
segments which form dS%.y is O(S~l) imply
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If we show that

then (13.35) will follow from (13.38).

This requirement can be easily achieved: Let us consider a panel-shaped part 5* . If
a triangle T C Ss has two angles smaller than $o and the remaining angle greater
than 70 then we refine locally the triangulation T(5fj) in such a way that the
orthogonal projection Tst of T is divided into two right angled triangles. Thus we
can assume that all triangles T C 3s" satisfy (13.37). Panel-shaped parts SSi with
Si < 6* (i — 1,2, . . .) can be obtained if we refine T(Ssa*t) by the bisection process.

We have

such that for every 0 < 6 < 1 we can find in every triangle T C Ss an angle $T
satisfying

In this part of the proof we shall need the following property of triangles T C Ss

(0 < S < 1 is arbitrary): There exist

and we have to prove

Relations (13.27)-(13.29), (13.32) and (13.33) give

Using (13.26) and (13.34), we obtain (13.25) provided meas2 Sxy > 0.
E) Let now meas2 Sxy = 0. In this case



As we assume that the part 5 has property (R*), Definitions 13.1, 11.8 and 11.7
guarantee that at least one of the following inequalities holds:

Let, for example, (13.40) hold. Let us consider an arbitrary triangle T C Ss and
let Pi(xi,g(xi),Zi) (i = 1,2,3) be its vertices, PI being the vertex at I?T. The

z-coordinate T of the vector product PiP^ x PI PS is of the form

where 0 < i?i < 1, 0 < t?2 < 1 and Xjk = Xj — Xk- Hence

From here and from the uniform continuity of g'(x) on (01,02) relation (13.39)
follows.

F) Passing to the limit in (13.15) for 5 -> 0 and talcing into acccount (13.16) and
(13.21), we obtain (13.4).

G) As we have not had any requirements as far as the triangulation T(Sst) is
concerned, we have used the assumption of the starlikeness of Ssi only for the sake
of greater simplicity of part A). Now we show that it is sufficient to assume property
(R*) in the case of parts of surfaces forming 9fi.

On edges and "edges" of the boundary 30 we choose nodal points so dense that
the distance of two adjacent nodal points is less than S. We triangulate now the
simply connected and bounded polygonal domain Ssst as follows: The vertices of the
domain Ssst will be denoted by AI, ..., Am. As the number of vertices Ai is finite it
is easy to see that if m > 3 then there exist at least two vertices Ai, Aj such that
the interior of the segment AiAj lies in the interior Sf( of 5ft. The segment AiAj
divides the closed domain Ssst into two closed domains SfJ and 5f^. If Sfj is not
a triangle we can divide it again into two polygonal domains without dividing the
sides. After a finite number of steps the domain Ssst is divided into triangles in such
a way that each side AiAj of Ssst is a side of some triangle.

Every triangle is a starlike domain. Hence, we can triangulate it in the same way
as in part A). Thus the polygonal domain Ssgt is triangulated in such a way that the
corresponding panel-shaped surface S* has edges of a length which is less than S.
The proof of Theorem 13.5 is complete. D
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E x a m p l e . In the case of a cheese ball with many bubbles the assumption of
Theorem 13.5 concerning dfl can be easily verified.

Similarly as in the case of Green's theorem we shall reduce the assumption of The-
orem 13.5 concerning the functions P, Q, R and their derivatives to the assumption
that they are continuous on a closed bounded three-dimensional domain ft. This will
be done in Subsections 13.6-13.9.

13.6. Definition. a) We say that a domain fi has an /^-continuous boundary
if fi has a continuous boundary <9ft in the sense of Necas (see [Ne, pp. 14-15]) and if
<9fi is the union of a finite number of parts with property (R*).

b) We say that a domain O has an .R-Lipschitz continuous boundary if fi has a
Lipschitz continuous boundary <9fi in the sense of NeCas and HlavaCek (see [NH,
p. 17]) and if <9fi is the union of a finite number of parts with property (R*).

13.7. R e m a r k . If a domain fi has an .R-Lipschitz continuous boundary (or
an .R-continuous boundary) then it has an 5-Lipschitz continuous boundary (or an
5-continuous boundary).

According to [Fil, p. 676], the following theorem holds:

13.8. Theorem. Let a domain fl C R3 have an R-Lipschitz continuous bound-
ary dCt and let a function /: fi ->• Kl belong to C1 (0). Then the function f ( x , y, z)
can be continuously extended to the whole space R3 with keeping its class.

The following theorem is a consequence of Theorems 13.5 and 13.8:

13.9. Theorem (Gauss-Ostrogradskij). Let a (simply or multiply connected)
domain fi have an R-Lipschitz continuous boundary dfl. Let the unit normal n of
the boundary dfi be oriented in the direction of the outer normal of fi, which exists
at almost all points of dfi. Finally, let P,Q,R& Cl(ty. Then

Using Theorem 11.4 and denoting

we can reformulate Theorem 13.9 as follows:

13.10. Theorem. Let the assumptions of Theorem 13.9 be satisfied. Then
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Setting one of the functions P, Q, R equal to uv, where u,v £ Cl(fl), and the
other two functions equal to zero, denoting xi := x, x% := y, x$ := z and using
(13.42), we obtain from Theorem 13.10:

13.11. Theorem (Gauss-Ostrogradskij formula). Let a (simply or multi-
ply connected) domain £1 have an R-Lipschitz continuous boundary. Then for all
functions u 6 C1^), v € C^fi) we have

where (ni,n2,ns) is the outer unit normal vector.

14. THE GAUSS-OSTROGRADSKIJ THEOREM IN SOBOLEV SPACES

14.1. Theorem (Gauss-Ostrogradskij formula in H1). Let a (simply or
multiply connected) domain ft have an R-Lipschitz continuous boundary. Then for
all functions u £ Hl(ft), v € H1^) we have

where (ni,H2,ns) is the outer unit normal vector.

Proo f . Let {un} C C°°(ty, {vn} C C°°(ty be such sequences that

It should be noted that these sequences exist, by virtue of Lemma 10.2. By Theo-
rem 13.11,

We have
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As by Theorem 10.9b

the first three terms on the right-hand side of (14.4) tend to zero with n -* oo. Hence

Similarly we find

Passing to the limit in (14.3) with n -^ oo we obtain, by virtue of (14.5)-(14.7),
relation (14.1). D

14.2. Theorem (divergence form of the Gauss-Ostrogradskij theorem).
Let a (simply or multiply connected) domain fi have an R-Lipschitz continuous
boundary. Then for all functions Pi e Hl(fl) (i = 1,2,3) we have

where (ni, n2,ns) is the unit vector of the outer normal to the boundary dfl.

P r o o f . Let us set u := Pi, v = 1 in (14.1). Summing up the result from i = 1
to i = 3, we obtain relation (14.8). D

The most general form of the Gauss-Ostrogradskij formula is introduced in the
following theorem:

14.3. Theorem (the general Gauss-Ostrogradskij formula). Let a (simply
or multiply connected) domain £1 have an R-Lipschitz continuous boundary. Let
u 6 .fflip(n), v € H1-9^) with one of the following possibilities:

a) P + g ̂  l + T?> where l^P<N,I^q<N with N = 3;
b)p>l,q>N(N = 3);
c}p>N,q>l (N = 3).
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Then (•ju)('yv) e Li(dfi) and we have

where (711,77.2,713) is the outer unit normal vector.

P r o o f . The proof is long and complicated; thus we divide it into several parts.
(We use the symbol N instead of 3 because the assertion and its proof hold also in
the case of N = 2.)

A) First we prove (14.9) in the case

Let {un} C C°°(fy, {vn} C C°°(fy be such sequences that

Then by Theorem 13.11

We have

A generalized Holder inequality (see [KJF, p. 67]) can be written in the following

form: Let /„• € Hl<pi(tt), where £ £ = 1. Then /i/2... /„ 6 Z-i(fl) and
• -I "*

with
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Setting here n = 3, /3 = 1, pi = p, p2 = q, where £ + \ < 1, and ̂  = 1 - i - i we
obtain

If I + 1 = 1 then we can use the standard Holder inequality

Relations (14.11), (14.14), (14.15) enable us to prove that the first three terms on
the right-hand side of (14.13) tend to zero with n -» oo. Hence

Similarly

Now we use the restrictions 1 ̂ p < N, 1 ̂  q < N (with N — 3) which enable us
to set

Then, according to Theorem 10.8, we have

because we assume that £+^ ^ 1. Hence by an analogy to (14.14) (711)(yv) 6 Z/i(<9fi)
and

We can write
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As <9fZ is piecewise smooth we have

Hence, according to the generalized Holder inequality (14.14), Theorem 10.8 (which
guarantees the trace inequalities) and (14.11), we obtain

Similarly

Hence by (14.20)-(14.22)

Passing to the limit for n -» oo in relation (14.12) and using (14.16), (14.17), (14.23),
we obtain (14.9) under the assumption (14.10).

B) Now we shall prove (14.9) under the assumption

The proof is a modification of part A). If

then (see Lemma 10.4)

this means that
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The inequality ^r + ̂  ̂  1 (i.e., the inequality i + | < 1 + -fa) implies, by virtue of
(14.14), (14.15) and (14.11),

Similarly we prove that for n —> oo

Hence relation (14.16) follows; relation (14.17) can be proved similarly.
The proof of (14.23) in the case q < N, p < N remains without changes. Passing

to the limit for n -> oo in relation (14.12) and using (14.16), (14.17), (14.23) we
obtain (14.9) under the assumption (14.24).

C) In the remaining parts we prove Theorem 14.3 for possibility b). In the case
of possibility c) the proof is similar. First we prove (14.16) and (14.17) in the case
q = N.

By [KJF, Th. 5.7.7(ii)j, for any 1 < q* < oo we have

Let us choose q* = -^-; hence

H l t N ( f l ) C Lp/(p_i)(fl) algebraically and topologically;

this means (setting q = N m (14.11))

As

we have by (14.15)
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which results in (14.27). Similarly we prove convergences (14.28). Hence relation
(14.16) follows.

To prove (14.17) let us write

If p > N then £ + £<!. Hence by (14.14)

Similarly we prove that for n -> oo

Thus (14.30) implies (14.17) in the case p ^ N.
Let now p < N. Similarly as in (14.25) we set

then we have by (14.26)

This means that

The inequality ^ + jf=^~ji+jf<^ implies, by virtue of (14.14),
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Similarly we prove that forn -» oo

Thus (14.30) implies (14.17) in the case p<N.
D) The proof of (14.16) and (14.17) in the case q > N follows from part C) because

The proof of (14.31) is a consequence of Holder's inequality (14.15):

E) It remains to prove (14.23) in the case p > 1 and q ^ TV (N = 3). If q ^ TV
then, according to Theorem 10.9, for any 1 ^ q* < oo we have

Let us choose p > 1 arbitrary but fixed and let us distinguish between two cases:
a) The case 1 < p < N. Using Theorem 10.8 we set p* = ^f^-; then

Let us choose q* in this case such that

This means that

Hence q* > 1 and by (14.34), (14.15), (14.32), (14.33) and (14.11) we have
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which yields (14.21). Relations (14.22) can be derived similarly. Hence (14.23)
follows in the case 1 < p < N.

b) The case p ^ N. Using Theorem 10.9, for any 1 ̂  p* < oo we have

(14.36) \\Tvhr.(att)^C\\u\\ui.r(0) Vu € H1*®.).

By (14.32) and (14.36) we can choose p* = q* — 2 and derive again (14.35) and then
(14.23).

F) Using (14.16), (14.17) and (14.23) proved in parts C)-E), we obtain (14.9) in
the case p > 1, q ^ N. D
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