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This paper describes compiler techniques that can translate standard OpenMP
applications into code for distributed computer systems. OpenMP has emerged
as an important model and language extension for shared-memory parallel
programming. However, despite OpenMP’s success on these platforms, it is not
currently being used on distributed system. The long-term goal of our project
is to quantify the degree to which such a use is possible and develop supporting
compiler techniques. Our present compiler techniques translate OpenMP programs
into a form suitable for execution on a Software DSM system. We have imple-
mented a compiler that performs this basic translation, and we have studied a
number of hand optimizations that improve the baseline performance. Our
approach complements related efforts that have proposed language extensions
for efficient execution of OpenMP programs on distributed systems. Our results
show that, while kernel benchmarks can show high efficiency of OpenMP
programs on distributed systems, full applications need careful consideration of
shared data access patterns. A naive translation (similar to OpenMP compilers
for SMPs) leads to acceptable performance in very few applications only.
However, additional optimizations, including access privatization, selective
touch, and dynamic scheduling, resulting in 31% average improvement on our
benchmarks.
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1. INTRODUCTION

OpenMP (1) has established itself as an important method and language
extension for programming shared-memory parallel computers. On these
platforms, OpenMP offers an easier programming model than the currently
widely-used message passing paradigm. Programs written in OpenMP
can usually be parallelized stepwise, starting from a sequential program.
OpenMP programs often resemble their original, sequential versions, the
main difference being the inserted OpenMP directives. This approach con-
trasts with programs written in MPI, (2) for example, which generally need
to be translated into parallel form as a whole, and which can look drasti-
cally different from their sequential versions.

While OpenMP has clear advantages on shared-memory platforms,
message passing is today still the most widely-used programming paradigm
for distributed-memory computers, such as clusters and highly-parallel
systems. In this paper, we begin to explore the suitability of OpenMP for
distributed systems as well. Our basic approach is to use a Software DSM
(Distributed Shared Memory) system, which provides the view of a shared
address space on top of a distributed-memory architecture. The primary
contribution of this paper is to describe compiler techniques that can
translate realistic OpenMP applications into this model, and to measure the
resulting performance.

To this end, we have implemented a compiler that translates OpenMP
programs into the Treadmarks Software DSM programs. (3) To achieve
good performance, such a translation must do more than the usual trans-
formations applied by OpenMP compilers for shared-memory platforms.
The present paper describes this translation. Furthermore, we have studied
a number of OpenMP programs by hand and identified optimization tech-
niques that can improve performance significantly.

For our measurements, we used a commodity cluster architecture con-
sisting of 16 PentiumII/Linux processors connected via standard Ethernet
networks. We expect the scaling behavior of this architecture to be repre-
sentative of that of common cluster systems with modest network connecti-
vity. We have measured basic OpenMP low-level performance attributes via
the kernel benchmarks introduced in Ref. 4 as well as the application-level
performance behavior of several SPEC OMP benchmarks.(5)

Our work complements related efforts to implement OpenMP programs
on distributed systems. Both language extensions and architecture support
have been considered. Several recent papers have proposed language exten-
sions. For example, in Refs. 6–8, the authors describe data distribution
directives similar to the ones designed for High-Performance Fortran
(HPF). (9) Other researchers have proposed page placement techniques to
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map data to the most suitable processing nodes. (6) In Ref. 10, remote
procedure calls are used to employ distributed processing nodes. Another
related approach is to use explicit message passing for communication
across distributed systems and OpenMP within shared-memory multipro-
cessor nodes. (11) Providing architectural support for OpenMP essentially
means building shared-memory multiprocessors (SMPs). While this is not
new, an important observation is that increasingly large-scale SMPs con-
tinue to become commercially available. For example, recent reports of
SPEC OMP benchmarks include systems up to 128 processors. (www.spec.
org/hpg/omp2001/results/).

While most of these related efforts have considered language exten-
sions for OpenMP on distributed systems, our goal is to quantify the effi-
ciency at which standard OpenMP programs can be implemented using
advanced compiler techniques. We have found that, while results from
small test programs have shown promising performance, little information
on the behavior of realistic OpenMP applications on Software DSM
systems is available. This paper is meant to fill this void. It is organized as
follows. Section 2 will present basic compiler techniques for translating
OpenMP into Software DSM programs. Section 3 will discuss the perfor-
mance behavior of such programs. Section 4 will present advanced optimi-
zations, followed by conclusions in Section 5.

2. TRANSLATING OPENMP APPLICATIONS INTO SOFTWARE DSM

PROGRAMS

2.1. Brief Overview of OpenMP Constructs and the Microtasking

Model

At the core of OpenMP are parallel regions and work sharing con-
structs, which enable the program to express parallelism at the level of
structured blocks within the program, such as loops and program sections.
Work sharing constructs in OpenMP include the OMP DO loops in
Fortran (correspondingly, in C/C++ there are omp for loops) and
OpenMP sections. OpenMP directives for work-sharing constructs may
include a scheduling clause, defining the way work will be mapped onto the
parallel threads.

Currently, most OpenMP implementations use the Microtasking
Model (12) which fits in well with the fork-join type of parallelism expressed
by OpenMP. In this model, the master processor begins program execution
as a sequential process. During initialization, the master creates helper
processes on the participating processors. The helpers sleep until needed.
When a parallel construct is encountered, the master wakes up the helpers
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and informs them about the parallel code to be executed and the environment
to be setup for this execution. An important OpenMP property is that data
is shared by default, including data with global scope and local data of
subroutines called from within sequential regions. This can be implemented
efficiently on today’s Symmetric Multi-Processors, which support fully-
shared address spaces and low communication latencies. A discussion on the
overheads introduced by the OpenMP constructs may be found in Ref. 4.

2.2. Differences Between OpenMP on Shared and Distributed

Memory

In the transition from shared-memory to distributed systems, the first
major change is that each participating node now has its own private
address space, which is not visible to other nodes. The Software DSM layer
creates a shared data space, but the elements of this shared space now have
to be explicitly allocated. This creates a challenge for the implementation of
most OpenMP programs, where variables are shared by default. A second
point of distinction is that the access times for this shared data space
on distributed systems is much higher than those on an SMP. In previous
work, (13) we have discussed the overheads for the different OpenMP con-
structs on such a network using a page based Software DSM system. The
synchronization required to maintain coherence for the shared data is also
more expensive on clusters as compared to SMPs. We have found that this
coherency overhead often increases considerably with the size of the shared
data space used. In Section 4, we will revisit these distinctions.

2.3. Automatic Translation using the Microtasking Model

As a first step, our compiler converts the OpenMP application to a
microtasking form. Constructs for expressing parallelism, such as OMP
PARALLEL regions and OMP PARALLEL DO loops are translated by
extracting the parallel region or the loop body of the parallel loop into
a separate microtasking subroutine. The extracted parallel region or loop
body is replaced by a call to the corresponding microtasking subroutine.

When the program execution reaches these constructs, the master
process calls a scheduling and dispatching runtime library, which in turn
invokes microtasking subroutine on all helper processes. Besides this, the
master process explicitly invokes a synchronization barrier for ensuring
shared memory consistency before and after the parallel region. The
OpenMP standard also has a set of four scheduling clauses which can be
specified for parallel loops-static, dynamic, guided and runtime. Currently,
our compiler supports only static and dynamic scheduling.
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The fork-join overhead for the microtasking scheme is large in a dis-
tributed system, compared to the corresponding overhead on SMPs. The
worker threads (in this case, the participating processes on the distributed
nodes) spin-wait on a shared lock while they sleep and wait for work. In
a Software DSM with a release consistency model, there needs to be a
synchronization point after this lock is updated by the master process for
the update to be visible to the worker processes. This synchronization adds
to the fork overhead.

2.4. Shared Data Allocation and the Need for Inter-Procedural

Analysis

The previous subsection described the translation of OpenMP control
constructs. The next step is the conversion of OpenMP shared data into the
form necessary for Software DSM systems. In case of SMPs, implementing
OpenMP shared variables is straightforward, because all data is shared
between threads by default. The translation only needs to decouple the
variables that are explicitly declared as private. By contrast, in Software
DSM systems, all variables are private by default, and shared data has to
be explicitly allocated as such. The following issues arise when trying to do
so by the compiler.

The first issue arises because OpenMP shared data may include
subroutine-local variables, which reside on the process stack. Stacks on one
process are not visible to other Software DSM processes as described
in Section 2.2. The OpenMP compiler must identify these variables and
change their declaration to an explicit allocation in shared space. In our
Fortran implementation, the compiler places these variables into a shared
common block. An implementation issue arises if the variables are dynam-
ically sized, as the size of Fortran common blocks needs to be known at
compile time. In our experiments, this problem has arisen in very few cases
only, in which we have determined the maximal static variable sizes by hand.
A better solution would be to allocate these variables from the shared heap.

A performance-related issue is that shared data intrinsically incur
higher overhead than private data, as they are subject to the Software
DSM paging and coherency mechanisms. Solutions that would conservati-
vely allocate a large amount of data in shared space is thus not feasible.
In our experiments, this issue has become more pressing as we have tried
to implement realistic applications, such as the SPEC OMPM2001 bench-
marks, which have large shared data set size, as opposed to small kernel
programs. Therefore, we have chosen a strategy that carefully identifies the
minimal set of OpenMP shared variables and allocates them in Software
DSM shared space.
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The algorithm for identifying and placing variables in shared space is
presented in Fig. 1. All variables used within parallel regions, which are not
explicitly declared by OpenMP directives to be private, must be identified
as shared and allocated in the Software DSM shared space. For each such
variable, the possible scenarios are:

(a) It is used within a parallel region and declared within the
subroutine that contains the parallel region.

(b) It is used within a parallel region and passed as a parameter from
another program unit which calls the subroutine that contains the
parallel region.

(c) It is used in a subroutine that is called from within a parallel
region.

The THEN part of the IPA_ProgramUnit block of our algorithm
handles case (a). The IPA_Up block of our algorithm handles case (b). It
traces upwards in the call graph to identify the first point of definition of a
shared variable that is passed as a parameter to a subroutine containing
parallel regions. The IPA_Down block handles case (c). It identifies the
subroutines called from within a parallel region and recursively traverses
their call chains to identify all variables used within these subroutines.

To implement blocks IPA_Up and IPA_Down, we need to perform
Inter-Procedural Analysis. We assume the availability of an appropriate
compiler infrastructure, including a subroutine call graph, and use/def sets
for each program unit. In Fig. 1, UseSet(PU) and DefSet(PU) denote the
set of variables used and defined respectively, in the program unit PU.
ParamSet(PU) is the set of variables in the parameter list of PU and
LocalSet(PU) is the set of local variables in PU.

3. PERFORMANCE MEASUREMENTS

In this section, we describe and discuss initial measurements carried
out on the performance of OpenMP kernels, microbenchmarks and real-
application benchmarks on our cluster. The performance of the kernel
program provides an upper bound for the performance of OpenMP appli-
cations on our system. We have used the microbenchmarks to quantify the
performance of specific OpenMP constructs. We then examine the per-
formance of realistic OpenMP applications in two step. First, we examine
the performance of a representative OpenMP application and consider the
detailed behavior of different program sections. Second, we present the base-
line performance of our OpenMP-to-Software DSM translation scheme
across the set of SPEC OMP benchmarks.
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// The driver routine for the IPA algorithm to recognize shared data

IPA_Driver

        G = {};        // G is the set of all shared global variables

        FOREACH ProgramUnit PU

                call IPA_ProgramUnit(PU);

// For every program unit, IPA algorithm is applied

IPA_ProgramUnit (ProgramUnit PU)

        IF ( PU is a microtasking subroutine ) 

       THEN        // it contains no nested OpenMP parallel constructs

                A = {};        // initialize a temporary shared variable set A

                A = UseSet(PU) U DefSet(PU);        

                A = A - ParamSet(PU) - LocalSet(PU);

               find the set P of private variables defined by the OpenMP directive for PU;

                A = A - P;

                G = G U A; 

               FOREACH subroutine PU_S called from within PU 

                        call IPA_Down(PU_S);

         ELSE

                // if this program unit contains an OpenMP parallel construct, then it has been replaced

                // by a call to the corresponding microtasking subroutine

                FOREACH Call Statement S to a microtasking subroutine

                        FOREACH parameter p in the parameter list of S

                                IF ( p belongs to the ParamSet(PU) ) THEN

                                        let param_loc be the position of p in PU’s parameter list;

                                        call IPA_Up(PU, param_loc);

// recursively add variables of non-local scope in subroutines called from within parallel regions

// to the set G

IPA_Down(ProgramUnit PU)

        B = {};        // initialize a temporary shared variable set B;

        B = UseSet(PU) U DefSet(PU);

        B = B - ParamSet(PU) - LocalSet(PU);

        G = G U B;

        FOREACH subroutine PU_C called from within PU

                IPA_Down(PU_C)

// trace up a shared variable passed as parameter to the point where it is first defined and add it to G

IPA_Up(ProgramUnit PU,  int param_loc)

        FOREACH ProgramUnit Caller_PU that calls PU

                FOREACH Call Statement S in Caller_PU that calls PU

                        let p be the parameter at position param_loc in the parameter list of S;

                        IF ( p belongs to the ParamSet(Caller_PU) ) THEN

                                set param_loc to the position of p in Caller_PU’s parameter list;

                                call IPA_Up(Caller_PU, param_loc);

                        ELSE

                                G = G U {p};

Fig. 1. Inter-procedural analysis algorithm for recognizing shared data: In our
implementation, the resulting set of shared variables, G, is placed in shared space
by including these variables in shared common blocks.
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3.1. Speedup Bounds: Performance of an OpenMP Kernel

In order to test the basic capability of scaling parallel code, we
measured the performance of a simple OpenMP kernel, which is a small,
highly parallel program that calculates the value of p using the integral
approximation >1

0
4.0

(1.0+x2)
dx. The OpenMP constructs used within the

program include a single OMP DO with a REDUCTION clause. The
execution times and speedups obtained (shown in Fig. 2) provides an upper
bound on the performance we can expect for our system. This kernel makes
use of only three shared scalar variables. Thus the coherence actions of the
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Fig. 2. Execution time and speedup of the PI kernel on 1, 2, 4, and 8 processors.
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Software DSM system at the barrier terminating the parallel region are
minor. This point will assume significance when we compare the perfor-
mance of this kernel to real applications.

3.2. Performance of the OpenMP Synchronization Microbenchmark

In order to understand the overheads incurred by the different
OpenMP constructs on our system, we have used the kernel benchmarks
introduced in Ref. 4. The overheads of our Software DSM are exhibited
clearly by the Synchronization Microbenchmark, shown in Fig. 3.

The trends displayed in Fig. 3 look similar to those for the NUMA
machines (such as the SGI Origin 2000) enumerated in Ref. 4. This is
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Fig. 3. Overheads of OpenMP synchronization constructs, as
measured by the OpenMP synchronization microbenchmark. The
overheads have been measured on a system of 1, 2, 4, and 8 processors.
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consistent with the fact that a NUMA machine is conceptually similar to a
Software DSM system. However, for a Software DSM system, the over-
heads are now in the order of milliseconds as compared to microseconds
overhead in NUMA SMPs. The barrier overhead provides an indication of
the potential loss of performance incurred by shared-memory coherence
activities. Coherence overheads usually grow with the increase in shared
memory activity within parallel constructs in a Software DSM. This fact is
not captured here, because the Synchronization Microbenchmark, like the
PI kernel benchmark, uses a very small amount of shared memory. To
quantitatively understand the behavior of OpenMP programs that utilize
shared data substantially, we next examine the performance of the SPEC
OMPM2001 benchmark suite on our system.

3.3. Performance Evaluation of Real Application Benchmarks

The SPEC OMPM2001 suite of benchmarks (5) consists of realistic
OpenMP C and Fortran applications. We performed a detailed instrumen-
tation of these applications in order to measure the performance as well
as the overheads incurred in the different program sections. The trends in
our performance measurements were consistent for these applications.
For brevity, we will limit the discussion of detailed measurements to the
EQUAKE benchmark, which is a C application from the SPEC OMPM
2001 suite.

3.3.1. Overall Execution Time

Figure 4 shows the execution times for the EQUAKE benchmark run,
using the train data set. For each processor, the total elapsed time has been
expressed as a sum of the user and the system times.

The figure shows a speedup of EQUAKE in terms of user times from
one to eight processors. However, considering total elapsed time, the over-
all speedup is much less. For eight processors, the performance degrades
so that no speedup is achieved. This fact is consistent with the system time
component, which grows from the serial to the eight-processor execution.
We verified that this system time component is not caused by system
scheduling or paging activity. Instead, we attribute the system time to
shared-memory access and coherence activities.

3.3.2. Detailed Measurements of Program Sections

We instrumented each program section to separately measure the time
spent in useful computation (Loop Time) and the time spent in waiting at
the barrier (Barrier Time). The barrier time provides information about
two effects: (a) The load imbalance caused by read accesses to shared data

234 Min, Basumallik, and Eigenmann



0

500

1000

1500

2000

2500

1 2 4 8

Number of Processors

T
im

e 
in

 S
ec

on
ds

System Time

User Time
.

Fig. 4. Baseline execution times for the equake SPEC OpenMP bench-
mark running on 1, 2, 4, and 8 processors, shown in terms of the measured
user times and system times.

that the Software DSM must retrieve from a remote node, and (b) The
overhead caused by the shared-memory coherence actions that must be
performed at the barrier.

The EQUAKE code has two small serial sections and several parallel
regions, which cover more than 99% of the serial execution time. We first
discuss two parallel loops, main_2 and main_3, which show the desirable
speedup behavior. The loop time and the barrier time are shown separately.
Loop main_3 is one of the important parallel loops, consuming around
30% of the program time. Figure 5 shows the behavior of these loops.

Loop main_2 shows a speedup of about two and loop main_3 shows
almost linear speedup on eight processors in terms of elapsed time. In both
cases, the loop time itself speeds up almost linearly, but the barrier time
increases considerably. In fact, main_2 has a considerable increase in
barrier overheads from the serial to the eight processor execution. In
main_3, the barrier overhead is within a more acceptable range. The reason
is that the loop body of main_2 is very small. By comparison, main_3 has a
larger loop body, which amortizes the cost of the barrier. The comparati-
vely small barrier time in main_3 mainly reflects the slight load imbalance
caused by data being accessed from remote nodes.

We next look at the performance of the serial sections (serial_1 and
serial_2) and the most time-consuming parallel region (smvp 0) within the
program. Figure 6 shows the behavior of these regions. In our system, the
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1, 2, 4, and 8 processors. The total execution time for each is expressed as a sum of
the time spent within the loop and the time spent on the barrier at its end. Timings
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performance of the serial section may be affected as well, when executing in
parallel. This is because a serial section may contain read references for
which the data was last written by a remote node, or may contain several
write references to shared memory, which will increase the coherence over-
head at the barrier. As previously discussed in Section 2.3, barriers
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Fig. 6. Normalized execution times for the serial sections serial_1, serial_2
and the parallel region smvp_0. For each region the times are normalized
with respect to the serial version.

have to be placed at the end of a serial region, so that shared memory write
operations by the master processor become visible to the other processors.
Figure 6 shows that these factors result in serial section serial_1 experienc-
ing a slowdown, with growing number of processors. Section serial_2 is
relatively unaffected. The parallel region smvp_0 also suffers from the same
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effect—it contains several parallel loops and after each of these, a barrier
has to be placed. The parallel region svmp_0 takes up more than 60% of
the total execution time, hence its performance has a major impact on the
overall application.

To summarize our measurements, we note that a naive transformation
of realistic OpenMP applications for Software DSM execution does not
give us the desired performance. A large part of this performance degrada-
tion is owing to the fact that shared-memory activity and synchronization
is more expensive in a Software DSM scenario and this cost is several
orders of magnitude higher than in SMP systems. The underlying Software
DSM system that we have used implements Lazy Release Consistency (14) at
the page level. At every synchronization point, the participating processes
exchange information about which node has written to which pages in the
shared memory since the last synchronization. If one node has written to
a page in shared memory, the page is marked invalid on all other nodes.
When a node tries to read from a page that has been marked invalid,
it requests updates from all the nodes that have written to the page before
the last synchronization point. Thus, barrier costs now increase with the
number of shared memory writes in parallel regions. Shared memory reads
may become very expensive depending upon which node last wrote the
required data item. Realistic applications use a large shared-memory space
and display rich and complex access patterns. The resulting high data
coherence overheads explain the seemingly contradicting performance
behavior of kernels and real applications. Having examined a representa-
tive application in detail, we next provide the results of our performance
evaluation across several applications in the SPEC OMPM2001 suite.

3.4. Performance of the Baseline OpenMP Translation on Software

DSM

Using our compiler, we translated four SPEC OMPM2001 Fortran
programs and evaluated the performance on a commodity cluster consist-
ing of PentiumII/Linux nodes, connected via standard Ethernet networks.
Figure 7 shows the resulting speedups. These benchmark programs are
known to exhibit good speedups on shared memory systems. (15) However,
their performance on Software DSM systems shows different behavior. The
programs WUPWISE and MGRID exhibit speedups, whereas the perfor-
mance of SWIM and APPLU degrades significantly as the number of
nodes increases. Evidently, porting well-performing shared-memory programs
to Software DSM does not necessarily lead to uniformly good efficiency.
A better understanding of the causes of performance degradations is nec-
essary. In Section 4 we will analyze the causes for performance degradation
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further and propose optimization techniques for OpenMP programs on
Software DSM system.

4. ADVANCED OPTIMIZATIONS

The baseline translation of SPEC OMPM2001 Fortran programs,
described in Section 3.4, shows that shared-memory programs require
optimization in order to get a desirable performance on Software DSM.
Software DSM implementations have shown acceptable performance on
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kernel programs. (16) However, kernels differ from realistic shared memory
applications in two essential ways: (1) in terms of the size of the shared-
data space and (2) in terms of access patterns for the shared data.

As described in Section 3.3.2, as the size of shared data is increased,
we observed that the coherence and update traffic increased as well. This
effect is not brought out by kernel programs, which use a very small
amount of shared data. Typical realistic shared memory applications, such
as the SPEC OMPM2001 applications, may have data sets that are in the
order of gigabytes. Large data sections are placed in the shared address
space, which significantly affects this message traffic.

Secondly, a realistic application typically consists of several algorithms
that access the shared data in different ways. These access pattern may
result in complex message patterns in the underlying Software DSM layer
that are expensive from a performance viewpoint. Kernel programs do not
exhibit these communication patterns of full-sized applications and thus do
not bring out these incurred costs. When a kernel program does use a large
amount of shared data, it may actually exaggerate the effect of locality.

To address the above issues, we have implemented optimizations that
fall into three categories.

• Reduction of shared data space through privatization.

• Improving locality through selective data touch.

• Overlapping computation and communication through dynamic
scheduling and barrier elimination.

4.1. Privatization Optimizations

This optimization is aimed at reducing the size of the shared data
space that must be managed by the Software DSM system. Potentially,
all variables that are read and written within parallel regions are shared
variables and must be explicitly declared as such. However, we have found
that a significant number of such variables are read-only within the parallel
regions. Furthermore, we have found that, for certain shared arrays, the
read and write references access disjoint parts of the array from different
nodes and a node only reads from the region of the array that it writes to.
We refer to these variables as single-owner data. In the context of the
OpenMP program, these are shared variables. However, in the context of a
Software DSM implementation, instances of both can be privatized with
certain precautions.

Privatization of the read-only shared variables is accomplished by the
following steps
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1. The variables belonging to this class are recognized as those that
are read and not written within any parallel regions.

2. The statements in the serial regions that define (write or update)
these variables are marked to be executed redundantly on all
nodes. These updates need not be followed by any barrier
synchronization since the changes are being made to private
variables only. However, they must be preceded by a barrier if
other shared variables need to be read for these updates.

Single-owner data is transformed to private arrays on each node. The
size of each private instance is set to the size of the partition accessed by
each node in the original program. This case is rather common in the
OpenMP C codes, which allocate certain arrays as temporaries, or scratch
spaces on each node.

The first benefit of privatization stems from the fact that access to a
private variable is typically faster than access to a shared variable, even if
a locally cached copy of the shared variable is available. This is because
accesses to shared variables need to trigger certain coherency and book-
keeping actions within the Software DSM. Privatization thus reduces the
access time of many memory references compared to the original refer-
ences. The overall coherency overhead is also reduced because coherency
has to be now maintained for a smaller shared data size.

An additional important benefit of privatization is the effect on elimi-
nating false sharing. Consider a program executing on two nodes A and B
in a page-based Software DSM system. Now, consider a page that contains
a truly shared variable X as well as a shared array Y. Assume Y is used as
a temporary, thus it is single-owner data and would be privatizable by our
method. Node A writes to its scratch space in Y in a parallel loop, in which
both nodes also write to X. In a later parallel loop, A tries to read from its
scratch space in Y, but it finds that this page has been written also by node
B (since both nodes wrote to X ). By the Software DSM coherence mecha-
nism, the access to Y has to wait for an update from the other node B,
though A is actually trying to read only the part of Y that it wrote to. This
is a form of false sharing, which is eliminated by privatizing Y.

4.2. Selective Data Touch

Page-based Software DSM systems implement consistency by exchan-
ging information at the page level. Between synchronization points the
participating nodes exchange information about which nodes wrote into
each page. A node that writes to a page in shared memory thus becomes
the temporary owner of that particular page. The way this ownership
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changes during the program may significantly affect the execution time for
the application. We will describe two cases where this effect significantly
degrades the performance.

The first example code excerpt is from subroutine CALC2 of the
SWIM program. In Fig. 8, there is an OpenMP parallel loop followed by a
serial loop. The nodes mostly access pages they have themselves written in
the parallel loop, and for these accesses they need not request updates from
other nodes. Then the master node writes a single row of each shared array
in the serial loop. If the array is allocated column-major, this could result
in an invalidation of pages occupied by the array on all other nodes. When
the array is accessed subsequently by the other nodes, all of them would
have to request updates from the master node. This would incur substantial
overhead, even though the actual array elements requested may already
reside on the requesting node. The described scenario is also an example of
false-sharing, due to the page-level granularity at which the Software DSM
maintains coherence.

The second example code is from subroutine RHS of APPLU, shown
in Fig. 9. In the first parallel loop, each node will write to the part of the
shared array rsd partitioned according to the index k. However, in the
second parallel loop each node will read the shared array rsd using index j.
This access pattern change will incur a large number of remote node
requests in the second parallel loop.

The manner in which shared data is read and written thus makes a
considerable difference in the execution time. In this respect, though the
access pattern for shared data may not impact SMP systems much, it may
degrade performance significantly for a distributed system. To avoid inef-
ficient access patterns, the program needs to be selective about which nodes

Fig. 8. Selective data touch: Subroutine CALC2 code from SWIM.
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!$OMP PARALLEL DO
      DO k=2, nz-1
       DO i=ist, iend
        DO j=jst, jend
         DO m=1, 5
          rsd(m,i,j,k)=...
          ...
         ENDDO
        ENDDO
       ENDDO
      ENDDO
      ...
!$OMP END PARALLEL DO

!$OMP PARALLEL DO
      DO j=jst, jend
       DO i=ist, iend
        DO k=2, nz-1
         DO m=1, 5
          rtmp(m,k)=rsd(m,i,j,k)-...
          ...
         ENDDO
        ENDDO
       ENDDO
      ENDDO
      ...
!$OMP END PARALLEL DO

!$OMP PARALLEL DO
      DO k=2, nz-1
       DO i=ist, iend
        DO j=jst, jend
         DO m=1, 5
          rsd(m,i,j,k)=...
          ...
         ENDDO
        ENDDO
       ENDDO
      ENDDO
      ...
!$OMP END PARALLEL DO

!$OMP PARALLEL
      DO j=jst, jend
       DO i=ist, iend
!$OMP DO
        DO k=2, nz-1
         DO m=1, 5
          rtmp(m,k)=rsd(m,i,j,k)-...
          ...
         ENDDO
        ENDDO
!$OMP END DO
       ENDDO
      ENDDO
      ...
!$OMP END PARALLEL

(a) original code (b) after selective touch optimization

Fig. 9. Selective data touch: Subroutine RHS code from APPLU.

touch which portions of the data. For example, in the first case mentioned
above, a single-row update in the serial region can be performed in parallel
by the nodes ‘‘owning’’ the data. This consideration needs to be factored
into the decision which parallel loops to execute as such. The tradeoff
differs from that in SMPs, where small parallel loops may be executed
serially to eliminate fork-join overheads. The second case can have a con-
sistent access pattern across loops if the compiler partitions the inner
k-loop instead of the outermost j-loop of the second loop nest.

4.3. Dynamic Scheduling of OpenMP Parallel Loops

The non-uniform access time for shared memory elements on a
Software DSM system may result in a variance in the time required for
otherwise balanced loop iterations.

Consequently, for several OpenMP loops, though the OpenMP appli-
cation did not specify dynamic scheduling, we found it beneficial to have
dynamic iteration scheduling for the Software DSM implementation.
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The disadvantage of dynamic scheduling is the additional synchro-
nization required for each iteration. However, we found that the overhead
incurred is usually negligible when compared with the performance benefit
obtained. Furthermore, in our experiments, this optimization was often
useful in recognizing the need for the selective touch optimization men-
tioned above. A speedup through dynamic scheduling indicated that certain
nodes, owing to the pattern of shared memory access in earlier parts of the
program, waited considerable lengths of time to receive updates from other
nodes.

4.4. Results

We applied the described optimizations by hand to several of the
SPEC OMPM2001 benchmarks and achieved marked performance
improvements. Figure 10 shows the final performance obtained by the
baseline translation and subsequent optimization. We present the speedups
for four Fortran codes (WUPWISE, SWIM, MGRID, APPLU) and two
C benchmarks (ART, EQUAKE). The baseline translation for the Fortran
programs was performed by our compiler and C applications were trans-
formed by hand.

We found that for two of the Fortran codes, WUPWISE and
MGRID, the baseline translation already had acceptable speedups, and so
we did not apply further optimizations.

For the two other Fortran codes, our optimizations achieved
improvements. In the case of SWIM, the baseline translation degraded in
going from one to four nodes. By comparison, the optimized version shows
a major improvement with speedups of 1.53 on two nodes and 2.14 on four
nodes. APPLU still exhibits performance degradation in going from two to
four nodes, but the degradation is less compared to the baseline code.

For both of these codes, selective touch optimizations were useful. In
SWIM, the application of this transformation was by parallelizing an array
update that was serial in the original code. For APPLU, we used work-
sharing on an inner loop (though the outer loop was specified as the
OpenMP parallel loop) to control the pattern in which writes occurred to
the shared memory.

For the C applications, we found opportunities to apply all three
optimizations. ART gained considerably after privatizing several arrays
that were not declared as private in the original code. In ART, the main
OpenMP parallel loop is already specified for dynamic scheduling.
However, in EQUAKE, we derived a benefit from making certain parallel
loops dynamically scheduled, though the original OpenMP directives
did not specify this. For both these codes, the optimizations improved the

244 Min, Basumallik, and Eigenmann



0

0.5

1

1.5

2

2.5

3

W
U

P
W

IS
E

M
G

R
ID

S
W

IM

A
P

P
LU

A
R

T

E
Q

U
A

K
E

S
pe

ed
up

Single Processor 2 processors - baseline
2 processors - optimized 4 processors - baseline
4 processors - optimized

Fig. 10. Performance of four Fortran 77 and two C benchmarks from
the SPEC OMPM2001 benchmark suite after baseline translation and
optimization.

speedups on two nodes to almost match the baseline speedups on four
nodes, and we achieved further speedups on four nodes.

4.5. Ongoing Work: Other Schemes for Improving OpenMP

Performance on Software DSM Systems

In our ongoing project we are exploring transformations that can
further optimize OpenMP programs on a Software DSM system. We
expect the following techniques to have a significant performance impact.
The realization of such a compiler is one objective of our ongoing project.
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Data Prefetch and Forwarding. Prefetch is a fundamental tech-
nique for overcoming memory access latencies and has been shown to be
useful in case of Software DSM systems. (17) Closely-related to prefetch is
data forwarding, which is producer-initiated. Forwarding has the advantage
that it is a one-way communication (producer forwards to all consumers)
whereas prefetching is a two-way communication (consumers request data
and producers respond). An important issue in prefetch/forwarding is
to determine the optimal prefetch point. Prefetch techniques have been
studied previously, (18) albeit not in the context of OpenMP applications for
Software DSM systems. We expect prefetch/forwarding to significantly
lower the cost of OpenMP END PARALLEL region constructs, as it
reduces the need for coherence actions at that point.

Barrier Elimination. Two types of barrier eliminations will become
important. It is well known that the usual barrier that separates two con-
secutive parallel loops can be eliminated if permitted by data depen-
dences. (19) Similarly, within parallel regions containing consecutive parallel
loops, it may be possible to eliminate the barrier separating the individual
loops.

Page Placement. Software DSM systems may place memory pages
on fixed home processors or the pages may migrate between processors.
Fixed page placement leads to high overhead if the chosen home is not the
processor with the most frequent accesses to this page. Migrating pages can
incur high overhead if the pages end up changing their home frequently. In
both cases the compiler can help direct the page placing mechanism. It can
estimate the number of accesses made to a page by all processors and
choose the best home.

Automatic Data Distribution. Data distribution mechanisms have
been well researched in the context of distributed memory multiprocessors
and languages such as HPF. Many of these techniques are directly applic-
able to a Software DSM system. Automatic data distribution is easy in
regular data structures and program patterns. Hence, a possible strategy is
to apply data distribution with explicit messaging in regular program sec-
tions and rely on Software DSM mechanism for other data and program
patterns. This idea has been pursued in Ref. 20, and we will combine our
approaches in a collaborative effort. Planned enhancements include other
data and loop transformation techniques for locality enhancement.

Adaptive Optimization. A big impediment for all compiler opti-
mizations is the fact that input data is not known at compile-time.
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Consequently, compilers must make conservative assumptions leading to
suboptimal program performance. The potential performance degradation
is especially high if the compiler’s decision making chooses between trans-
formation variants whose performance differs substantially. This is the case
in Software DSM systems, which typically possess several tunable param-
eters. We are building on a prototype of a dynamically adaptive compila-
tion system, (21) called ADAPT, which can dynamically compile program
variants, substitute them at runtime, and evaluate them in the executing
application.

In ongoing work we are creating a compilation system that integrates
the presented techniques. As we have described, several of these techniques
have been proposed previously. However, no quantitative data of their
value on large, realistic OpenMP applications on Software DSM systems is
available. Evaluating these optimizations in the context of the SPEC OMP
applications is an important objective of our current project.

Our work complements efforts to extend OpenMP with latency man-
agement constructs. While our primary emphasis is on the development
and evaluation of compiler techniques for standard OpenMP programs, we
will consider small extensions that may become critical in directing com-
piler optimizations.

5. CONCLUSIONS

In this paper, we have described our experiences with the automatic
translation and further hand-optimization of realistic OpenMP applications
on a commodity cluster of workstations. We have demonstrated that the
OpenMP programming paradigm may be extended to distributed systems,
such as clusters. We have discussed issues arising in automating the
translation of moderate-sized OpenMP applications with an underlying
layer of Software DSM and proposed solutions to these issues. We have
also presented several optimizations in the context of the page-based
Software DSM, which improve the performance for the studied applica-
tions considerably.

As part of a quantitative performance evaluation, we have found that
a baseline compiler translation, similar to the one used for OpenMP
programs on SMP machines, yields speedups for some of the codes but
unacceptable performance for others. We then evaluated the performance
after applying certain optimizations, such as access privatization, selective
touch, and dynamic scheduling. We found that, across the board, these
optimizations have a palpable benefit.

Currently, our optimizations are limited to source-level transforma-
tions on the applications within the scope of the API provided by the
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Software DSM system. In the next phase of optimizations, we intend to
adapt the Software DSM system to the needs of the compiler and applica-
tions. We also intend to couple our Software-DSM-based implementation
and optimizations with hybrid message passing alternatives. (20) We antici-
pate that these unified approaches will enable commodity clusters to be
used for a larger class of applications, as well as greatly simplify the
program development for networked computing environments.
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