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EDITORIAL

Machine Learning and Concept Formation

The task of concept formation

The vast majority of research in machine learning has focused on the
acquisition of concepts. Yet despite this emphasis, little of the work has
any direct relevance to modeling human concept learning. For a variety
of reasons, machine learning researchers have tended to make assumptions
that violate our knowledge about the representation, use, and acquisition
of human concepts.

For instance, most AI researchers have attempted to describe concepts
in logical terms, as the conjunction or disjunction of features. However,
we know that many human concepts cannot be described in such a logical
formalism. Some instances of a concept are more typical than others; e.g.,
robins are more typical birds than penguins. This would seem to require a
more flexible representation, combined with some form of partial matching.

Another common assumption is that concept learning is supervised; i.e.,
a benevolent teacher is present to direct the learning process. However, we
know that much human concept learning is unsupervised. Children form
useful concepts long before they acquire enough language to benefit from a
tutor's advice, and they seem to accomplish this through direct interaction
with their environment.

Researchers have also tended to focus on learning one or a few concepts
at a single level of abstraction. However, we know that humans organize
their concepts into large hierarchies that describe categories at varying
levels of specificity. Thus, models of concept learning should address the
formation of conceptual hierarchies as well as the formation of individual
categories.

Finally, much of the work on concept acquisition has used nonincremental
learning methods. Yet we know that humans interact with their environ-
ment over time, encountering new instances and incorporating them into
memory one after another. This strongly suggests that humans form their
conceptual hierarchies in an incremental fashion, and that this process is
closely related to the classification of new instances. Thus, models of hu-
man concept learning should employ incremental methods that are fully
integrated with a performance element.
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Taken together, these observations suggest a new task for machine learn-
ing - the task of concept formation. We will use this term to refer to the
acquisition of conceptual hierarchies in which each concept has a flexible,
non-logical definition and in which learning occurs incrementally and with-
out supervision. We believe these features characterize much of the process
of human concept learning.

Models of concept formation

Exceptions to the above trends certainly exist. For instance, much of the
work on learning from examples has taken an incremental approach. Sim-
ilarly, research on conceptual clustering has focused on the construction of
concept hierarchies from unsupervised data. And recent work on learning
from examples has explored more flexible concept representations and par-
tial matching (Michalski, 1987; Quinlan, 1987). But very few researchers
have broken with all the assumptions listed above and focused on the full
task of concept formation.

However, the papers by Lebowitz and Fisher in the current issue do ex-
actly that. Neither author puts forth his system as a psychological model
per se, but both reject the four assumptions listed above and replace them
with more plausible ones. Thus, Lebowitz's UNIMEM and Fisher's COB-
WEB allow partial matching to occur, and the latter system replaces logi-
cal concept definitions with probabilistic descriptions. Both systems learn
without aid from a tutor and both construct entire concept hierarchies
rather than single-level categories. Finally, both COBWEB and UNIMEM
acquire knowledge incrementally, modifying their concepts and hierarchies
in the very act of classifying new instances. In other words, they fully
integrate the learning and performance aspects of classification.

Fisher's and Lebowitz's systems also share a number of other features.
Like Feigenbaum's (1963) early EPAM model of human learning, both
UNIMEM and COBWEB construct their concept hierarchies in a top-down
fashion, though each includes other means for modifying the hierarchy
as well.1 In addition, both incorporate numeric information into their
concept representations, though the interpretation of these numbers is quite
different.

Moreover, both Fisher and Lebowitz explicitly reject the systematic
search paradigm that has dominated research on empirical learning meth-
ods. In contrast to Mitchell's (1982) breadth-first search or Michalski's
(1983) beam search, the authors in this issue allow only one 'hypothesis'
in memory at a time. Their systems can be viewed as searching the space

1We should briefly mention Hanson and Bauer's (1986) WITT, a concept formation
system that also rejects the assumptions listed earlier. Unlike UNIMEM and COBWEB,
this system constructs hierarchies in an agglomerative manner, from the bottom up.
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of concept hierarchies, but the search method is very weak and best char-
acterized as hill climbing. This strategy is not guaranteed to achieve the
optimum solution, but the heuristic approaches used by COBWEB and
UNIMEM give good results in practice and they have very low computa-
tional requirements. We expect that other machine learning researchers
will soon follow their lead on this dimension.

Evaluating models of concept formation

The two papers in this issue also share a common theme in their at-
tempt to carefully evaluate concept learning behavior. Lebowitz examines
the effect of varying UNIMEM's parameters on the quality of the resulting
concept hierarchies. Using the domain of universities, he shows how two
parameters - the percentage of features needed to create concepts and the
percentage needed to retain them - affect the quality of the resulting hi-
erarchies, using a number of dependent measures. These empirical studies
help clarify the inner workings of UNIMEM.

Such a parametric analysis would be inappropriate for COBWEB, since
that system has no parameters. Instead, Fisher emphasizes that the knowl-
edge acquired during concept formation can be used for prediction, and he
uses this fact to evaluate COBWEB's behavior. Using the domain of soy-
bean diseases, he measures his system's ability to make accurate predictions
as a function of two variables - the number of instances encountered and
the dependence between features. As one would expect, predictive abil-
ity improves as more instances have been seen and as one increases the
correlations between features.

Both Lebowitz and Fisher test their systems on real-world tasks, but de-
spite their attractions, such natural domains have drawbacks as well. For
instance, one has no control over the characteristics of the domain, nor can
one easily determine whether the optimal solution has been found. Thus
Fisher turns to artificial tasks, studying the effect of domain regularity on
whether COBWEB finds the optimal clustering and on its time to con-
vergence. The use of artificial domains lets him systematically vary task
characteristics in a way that is impossible for real-world domains.

Finally, both authors show a concern for the time required to incorporate
new instances into memory. Lebowitz shows empirically that UNIMEM's
time for incorporation increases only gradually with the number of in-
stances encountered. Fisher shows analytically that the update cost for
COBWEB increases only logarithmically with the number of instances.
Thus, the papers arrive at similar results using two different approaches.



102 P. LANGLEY

In summary, the two papers in this issue are innovative along two impor-
tant dimensions. First, they question some assumptions commonly held in
the machine learning community and then present running systems that
are based on alternative assumptions. Second, they support their novel
approaches with extensive empirical studies that clarify the nature of the
learning algorithms and the conditions under which they are useful. Fisher
and Lebowitz each make significant additions to our understanding of con-
cept formation, but their contribution extends beyond this class of prob--
lems. We encourage other researchers to imitate their examples by propos-
ing novel methods and by supporting them with careful experiments and
analyses. Therein lies the path to a true science of machine learning.
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