
Machine Learning, 18, 81-108 (1995)
© 1995 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Inferring Finite Automata with Stochastic Output
Functions and an Application to Map Learning
THOMAS DEAN tld@cs.brown.edu
Department of Computer Science, Brown University, Providence, RI 02912

DANA ANGLUIN dana.angluin@cs.yale.edu
Department of Computer Science, Yale University, New Haven, CT 06520

KENNETH BASYE kbasye@black.clarku.edu
Department of Computer Science, Brown University, Providence, RI02912

SEAN ENGELSON engelson-sean@cs.yale.edu
Department of Computer Science, Yale University, New Haven, CT 06520

LESLIE KAELBLING lpk@cs.brown.edu
EVANGELOS KOKKEVIS
ODED MARON oded@ai.rnit.edu
Department of Computer Science, Brown University, Providence, RI 02912

Editor: Leonard Pin

Abstract. It is often useful for a robot to construct a spatial representation of its environment from experiments
and observations, in other words, to learn a map of its environment by exploration. In addition, robots, like people,
make occasional errors in perceiving the spatial features of their environments. We formulate map learning as
the problem of inferring from noisy observations the structure of a reduced deterministic finite automaton. We
assume that the automaton to be learned has a distinguishing sequence. Observation noise is modeled by treating
the observed output at each state as a random variable, where each visit to the state is an independent trial and the
correct output is observed with probability exceeding 1/2. We assume no errors in the state transition function.

Using this framework, we provide an exploration algorithm to learn the correct structure of such an automaton
with probability 1 — S, given as inputs 6, an upper bound m on the number of states, a distinguishing sequence
s, and a lower bound a > 1/2 on the probability of observing the correct output at any state. The running time
and the number of basic actions executed by the learning algorithm are bounded by a polynomial in S~l, m, \s\,
and (1/2-a)-1.

We discuss the assumption that a distinguishing sequence is given, and present a method of using a weaker
assumption. We also present and discuss simulation results for the algorithm learning several automata derived
from office environments.

Keywords: Automata inference, noisy outputs, distinguishing sequences, map learning, spatial representation

1. Introduction

In previous work (Basye & Dean, 1989, Basye et al., 1989), we have argued that robot map
learning—inferring the spatial structure of an environment relevant for navigation—can be
reduced to inferring the labeled graph induced by the robot's perceptual and locomotive
capabilities. Following Kuipers and Byun (Kuipers 1978, Kuipers & Byun, 1988) and Levitt
et al. (1987), we assume that the robot has sensory capabilities that enable it to partition
space into regions referred to as locally distinctive places (LDPs), and that the robot is able
to navigate between such regions reliably.
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The graph induced by the robot's capabilities has vertices corresponding to LDPs and
edges corresponding to navigation procedures. In an office environment, the LDPs might
correspond to corridors and the junctions where corridors meet and the navigation proce-
dures to control routines for traversing the corridors separating junctions (Dean et al., 1990).

We are interested in algorithms for learning the induced graph in cases where there is
uncertainty in sensing. Uncertainty arises when the information available locally at an LDP
is not sufficient to unambiguously identify it (e.g. all L-shaped junctions look pretty much
alike to a robot whose perceptual apparatus consists solely of ultrasonic range sensors).
Uncertainty also arises as a consequence of errors in sensing (e.g. occasionally a T-shaped
junction might be mistaken for an L-shaped junction if one corridor of the junction is
temporarily blocked or the robot is misaligned with the walls of the corridors, resulting in
spurious readings from specular reflections).

In general, it is not possible for a robot to recover the complete spatial structure of the
environment (Dudek et al., 1988) (e.g. the robot's sensors may not allow it to discriminate
among distinct structures). As a result, we will be satisfied if the robot learns the discernable
structure of its environment with high confidence. In the following sections, we will define
precisely our use of the terms 'discernable' and 'high confidence.'

We are generally interested in the problem faced by a robot in obtaining a model of
the dynamics of its interactions with the environment. Our motivations for studying this
problem come from practical problems in robotics; however, the contributions of this paper
are primarily theoretical. In this and related papers (Basye et al., 1989, Kaelbling et al.,
1992), we extend the research on efficiently learning graphs and finite automata to handle
more realistic sources of uncertainty. In this paper, we consider the case in which movement
is certain and observation is noisy and show how a robot might exploit the determinism in
movement to enable efficient learning.

We present polynomial-time algorithms for inferring an unknown deterministic finite au-
tomaton with high probability given that the learner (i) can choose the actions that determine
state transitions, (ii) can observe the output associated with the state it is in with probability
better than chance, and (iii) is given a distinguishing sequence. A distinguishing sequence
is a sequence of actions such that for any starting state the sequence of outputs associated
with the states encountered in executing that sequence uniquely identifies the starting state.
To determine what state it is in the robot repeatedly executes the distinguishing sequence
gathering statistics and watching for patterns in the data. Given that the robot can uniquely
identify states, learning the automaton is relatively straightforward. The rest of this paper
describes the details.

2. Preliminaries

To formalize the problem, we represent the interaction of the robot with its environment as
a deterministic finite automaton (DFA). In the DFA representation, the states correspond to
LDPs, the inputs to robot actions (navigation procedures), and the outputs to the information
available at a given LDP. A DFA is a six tuple, M = (Q, B, Y, (, <?0,7), where

• Q is a finite nonempty set of states,

• B is a finite nonempty set of inputs or basic actions,



INFERRING AUTOMATA WITH NOISY OUTPUTS 83

• y is a finite nonempty set of outputs or percepts,

• C is the transition function, £: Q x B -» Q,

• qo is the initial state, and

• 7 is the output function, 7: Q —> Y.

Let A = B* denote the set of all finite sequences of actions, and a| denote the length of
the sequence a € A. Let q(a) be the sequence of outputs of length |a| + 1 resulting from
executing the sequence a starting in q, and qa be the final state following the execution of
the sequence a starting in q. An automaton is said to be reduced if, for all q\ ^ <j2 £ Q,
there exists a € A such that qi(a) ^ qz(a). A reduced automaton is used to represent the
discernable structure of the environment; you cannot expect a robot to discern the difference
between two states if no sequence of actions and observations serves to distinguish them.
A homing sequence, h £ A, has the property that, for all q\, q? £ Q, qi (h) = q<z (h) implies
q1h = q2h. Every automaton has a homing sequence; however, the shortest homing
sequence may be as long as |Q|2 (Rivest & Schapire 1989).

There are a variety of sources of supplementary knowledge that can, in some cases,
simplify inference. For instance, it may help to know the number of states, \Q\, or the
number of outputs, \Y\. It often helps to have some way of distinguishing where the robot
is or where it was. A reset allows the robot to return to the initial state at any time. The
availability of a reset provides a powerful advantage by allowing the robot to anchor all of
its observations with respect to a uniquely distinguishable state, q0. A homing sequence,
h, allows the robot to distinguish the states that it ends up in immediately following the
execution of h; the sequence of observations q(h) constitutes a unique signature for state
qh. Rivest and Schapire (1989) show how to make use of a homing sequence as a substitute
for a reset. A sequence, d 6 A, is said to be a distinguishing sequence if, for all q1, q2 £ Q,
q 1 ( d ) = q 2 ( d ) implies q1 = q2. (Every distinguishing sequence is a homing sequence, but
not the other way around.) A distinguishing sequence, d, allows the robot to distinguish the
states that it starts executing d in; the sequence of observations q(d) constitutes a unique
signature for q. Not all automata have distinguishing sequences.

3. Uncertainty in observation

In this paper, we are interested in the case in which the observations made at an LDP are
corrupted by some stochastic noise process. In the remainder of this paper, we distinguish
between the output function, 7, and the observation function, (p. We say that the output
function is unambigous if Vq\,qz 6 Q , j ( q 1 ) = 7(92) implies q1 = q2; otherwise, it is
said to be ambiguous. If the output function is unambiguous and ip — 7, then there is no
uncertainty in observation and learning is easy.

The case in which the output function is ambiguous and ip = 7 has been studied exten-
sively. The problem of inferring the smallest DFA consistent with a set of input/output
pairs is NP-complete (Angluin 1978, Gold 1978).1 Even finding a DFA polynomially close
to the smallest is intractable assuming P ^ NP (Pitt & Warmuth, 1989). Kearns and



84 T. DEAN, ET AL.

Valiant (1989) show that predicting the outputs of an unknown DFA on inputs chosen
from an arbitrary probability distribution is as hard as computing certain apparently hard
number-theoretic predicates. Angluin (1987), building on the work of Gold (1972), pro-
vides a polynomial-time algorithm for inferring the smallest DFA given the ability to reset
the automaton to the initial state at any time and a source of counterexamples. In Angluin's
model, at any point, the robot can hypothesize a DFA and the source of counterexamples
will indicate if it is correct and, if it is not, provide a sequence of inputs on which the
hypothesized and actual DFAs generate different outputs. Rivest and Schapire show how to
dispense with the reset in the general case (Rivest & Schapire 1989), and how to dispense
with both the reset and the source of counterexamples in the case in which a distinguishing
sequence is either provided or can be learned in polynomial time (Rivest & Schapire, 1987,
Schapire, 1991).

This last result is particularly important for the task of learning maps. For many man-
made and natural environments it is straightforward to determine a distinguishing sequence.
In most office environments, a short, randomly chosen sequence of turns will serve to
distinguish all junctions in the environment. Large, complicated mazes do not have this
property, but we are not practically interested in learning such environments.

The case in which (p ^ 7 is the subject of this paper. In particular, we are interested in
the case in which there is a probability distribution governing what the robot observes in a
state. There are several alternatives for the sample space of the distribution governing the
robot's observations.

• Each location is a single independent trial. Errors are persistent: visiting multiple times
doesn't help.

• Each visit to a location is an independent trial. Visiting multiple times helps.

• Each location is associated with a stochastic process that depends on the time of visi-
tation. Visiting at widely spaced times often helps.

• Each location/direction pair is treated distinctly. The direction from which you enter a
location matters.

In this paper, we concentrate on the case in which each visit to a location is an independent
trial. To avoid pathological situations, we assume that the robot observes the actual output
with probability better than chance; that is,

where, in this case, ip(q) is a random variable ranging over Y. This model is a special case of
the hidden Markov model (Levinson et al. 1983) in which state transitions are deterministic
and the stochastic processes associated with the observations of states are restricted by the
above requirement. The closer a is to 1/2, the less reliable the robot's observations. In the
following section, we provide algorithms that allow the robot to learn the structure of its
environment with probability 1 — 6 for a given 0 < 6 < 1. We are interested in algorithms
that learn the environment in a total number of steps that is polynomial in l /<5 ,1/ (a —1/2),
|Q|, \B\, and \Y\. We assume that the robot is given a.
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We do not consider the case in which the robot remains in the same state by repeating
the empty sequence of actions and observes the output sufficiently often to get a good idea
of the correct output. Our rationale for not considering this case is that the independence
assumption regarding different observations of the same state is not even approximately
satisfied if the robot does not take any overt action between observations, whereas if there
are overt actions between observations, the observations are more likely to be independent.

Note that it is often possible to determine whether your observations are seriously cor-
rupted (e.g. you notice fog, rain or some other obscuring process). This ability effectively
improves the accuracy of your observations.

4. Learning algorithms

In the following, we present a high-probability, polynomial-time procedure, LOCALIZE,
for localizing the robot (directing the robot to a state that it can distinguish from all other
states), and then show how this procedure can be used to learn environments in which the
robot is given a distinguishing sequence.2 Finally, we discuss how LOCALIZE might be
used to learn a distinguishing sequence in certain cases in which a distinguishing sequence
is guaranteed to exist. We do not assume a reset. We do, however, assume that the transition
graph is strongly connected (that is, every state is reachable by some sequence of actions
from every other state), thereby avoiding the possibility that the robot can become trapped
in some strongly connected component from which it can never escape.

4.1. The localization procedure

The procedure LOCALIZE works by exploiting the fact that movement is deterministic. The
basic idea is to execute repeatedly a fixed sequence of actions until the robot is certain to be
"going in circles" repeating a fixed sequence of locations visited, corresponding to a cyclic
walk in the underlying deterministic automaton. If we knew the period of repetition of the
sequence of locations, we could keep separate statistics on the outputs observed at each
location. These statistics could then be used to deduce (with high probability) the correct
outputs at those locations, and hence to localize the robot by supplying a signature for the
state the robot is in.

The problem then is to figure out the period of repetition of the walk with high probability.
We keep statistics for the alternative hypotheses for the period of the cycle, which are then
analyzed to determine with high probability the true period of the cycle.

This analysis is complicated by the fact that distinct states may be mistakenly conflated
if only local information is used. This can be seen in the simple example of a machine
with six states, one input symbol, a, and three output symbols, b, c, and d. Inputs cause
transitions from state i to state i + 1 mod 6. Output probabilities are as follows:
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State

0
1
2
3
4
5

6

.51
0
0

.51
0
0

c

.49
0
1
0
1
0

d

0
1
0

.49
0
1

We can now gather output statistics for this machine while repeating the distinguishing
sequence, and test different hypotheses as to the walk's period. For the hypothesis of period
two, we expect to see the output with frequencies:

States

{0,2,4}
{1,3,5}

b

.17

.17

c

.83
0

d

0
.83

This table looks quite plausible, so we could be led to the (erroneous) conclusion that
the automaton has two states, with outputs c and d. This sort of 'state conflation' can be
avoided by combining information gotten by considering different period hypotheses, as
we shall see below.

Recall that the Markov assumption implies a stationary probability distribution over the
outputs at each state. If the states are numbered from 1 to n and the outputs are cr, for
j = 1,2,..., k, let ai,j denote the probability of observing symbol a^ given that the robot
is in state i.

We assume an upper bound m on the number of states of the automaton. Let s =
b1b2 ... b|8| be a sequence of one or more basic actions; we assume that s is a distinguishing
sequence for the underlying automaton. Let qi be the state reached after executing the
sequence of actions sm+i that is, m repetitions of s followed by i repetitions of s. The first
m repetitions ensure that the robot is in the cyclic walk. The sequence of states q0, q1, q2,...
is periodic; let p denote the least period of the cycle. Note that p < m. Our main goal is to
determine (with high probability) the value of p.

For each I = 0 , . . . , |s| — 1, we also consider the sequence of states q\ reached after
executing the sequence of actions sm+ib1b2 • • • bf. That is, q\ is the state reached from
qi by executing the first t basic actions from the sequence s. For each £, the sequence
9o > l{' <?21 • • • is also periodic of period p.

For each (., consider the sequence of (correct) outputs from the states q\:

The output sequence



INFERRING AUTOMATA WITH NOISY OUTPUTS 87

is also periodic, of some least period pe dividing p. Since we are not assuming the outputs
are unambiguous, pg may be smaller than p. We can show, however, that p will be the least
common multiple (LCM) of all the pt's.

It is clear that p is a multiple of each pe, so suppose instead that the LCM p" of all the pis
is a proper divisor of p. This implies that as we traverse the cycle of p distinct states,

the output sequences qi(s) must repeat with period p" < p, which implies that two dis-
tinct states have the same sequence of outputs, contradicting the assumption that s is a
distinguishing sequence.

Thus, it would suffice if we could determine each of the values pf, and take their LCM.
In fact, what we will be able to do is to determine (with high probability) values re such
that pe divides re and re divides p - this also will be sufficient. To avoid the superscripts,
we describe the procedure for the sequence q0, q1, q2, • • •', it is analogous for the others.

Consider any candidate period TT < m, and let g be the greatest common divisor of p and
TT (GCD(p, TT)). For each 0 < i < •K - 1, consider the sequence of states visited every TT
repetitions of s, starting with m + i repetitions of s. This will be the sequence of states

Since qi is periodic of period p, this sequence visits each state of the set {qi+kg : k =
0,1, . . . ,p/g — 1} in some order, and then continues to repeat this cycle of p/g states.

Here's an example for p = 15, ?r = 10, g — 5. In this case, row r of Table 1 gives the
indices of the states visited every 10 repetitions of s, starting from m + r repetitions of s,
assuming that the basic period of the states under repetitions of s is q0, q1, ... q14.

Note that in Table 1, the set of states visited for row r is the same as the set of states
visited for row r + 5, for 0 < r < 4. This holds in general: the set of states visited every •n
repetitions of s starting from m + r repetitions of TT is the same as the set of states visited
every TT repetitions of s starting from m + r + g repetitions of TT. Thus, the sequence of sets
5o, Si , . . . , STT-I is periodic with period g.

Table 1. Sequences of visited states.

Step#

0
1
2
3
4
5
6
7
8
9

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
0
1
2
3
4

States visited

5
6
7
8
9
10
11
12
13
14

0
1
2
3
4
5
6
1
8
9

10
11
12
13
14
0
1
2
3
4

5
6
7
8
9 ...
10 ...
11 ...
12 ...
13 ...
14 ...
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In the special case TT = p, row r will consist exclusively of visits to state qr. In the special
case g — 1, that is, ir and p relatively prime, each row will consist of repetitions (in some
fixed order) of a visit to each of the p states.

4.1.1. What we observe. Of course, what we can observe is just the stochastically deter-
mined output at each state the robot visits. The overall operation of the algorithm will be to
repeat the action sequence s a total of m + m2t times, where t will be chosen to ensure that
we know the true output frequencies accurately, with high probability. For each candidate
period TT < m we form a table with TT rows numbered 0 to ?r — 1, and k columns, one for
each possible output symbol ffj. In row r and column j we record the relative frequency
of observations of symbol Oj after executing srn+r+v* for v = 0 ,1 , . . . , mt — 1. Since
TT < m and r < TT — 1, these observations are all available in a run containing m + m2t
repetitions of s.

If in this table each row has a "majority output" whose observed frequency is at least
\ + jsep, where

sep=(a- i ) ,

the table is said to be plausible.3 Otherwise, the table is ignored. If the table is plausible, we
then take the sequence of w majority outputs determined by the rows and find the minimum
period TT' (dividing TT) such that the sequence of majority outputs has period TT'. As our
candidate for the period of the sequence of outputs we take the LCM of all the numbers TT'
obtained this way from plausible tables.

4.1.2. Justification. Why does this work? When ir = p, the rows of the table correspond
exactly to the distinct states qr, so with high probability in each row we will get a frequency
of at least \ + |sep for the correct output (provided t is large enough) from each state,
and therefore actually have the sequence of correct outputs for the cycle of p states, whose
period is (by hypothesis) p'. Thus, with high probability the table corresponding to TT = p
will be plausible, and one of the values n' will be p' itself.

When TT ̂  p, as we saw above, the set of states Sr visited in row r is determined by
g = GCD(w,p) and r mod g. In the limit as t becomes large each state in Sr is visited
equally often and the expected frequency of aj for row r is just the average of aitj over
i € Sr. Since the sets Sr are periodic over r with period g, the expected frequencies for
a given symbol in rows 0 ,1 ,2 , . . . , TT - 1 is periodic, with least period dividing g. Thus,
provided t is large enough, if the table for TT is plausible, the value TT' will be a divisor of g
(with high probability), and so a divisor of p.

Thus, with high probability, the value we determine will be the LCM of p' and a set of
values TT' dividing p, and therefore will be a multiple of p' and a divisor of p, as claimed.
Recall that we must repeat this operation for the sequences q\ determined by proper prefixes
of the action sequence s, and take the LCM of all the resulting numbers. However, the basic
set of observations from m + m2t repetitions of s can be used for all these computations.
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4.1.3. Required number of trials. In this section, we use straightforward tail-bound
arguments to determine a sufficient bound on t to guarantee that with probability 1 - <5,
the observed output frequencies converge to within ^sep = |(a - |) of their true values.
Recall that p denotes the least period of the sequence <?o, <7i, Qi,

First consider the frequency table for IT. Let g = GCD(p, ?r) and p = gh. Let Sr =
{<7ii!<7i2! • • • ,&,,} be the set of states visited in row r of the table. Let vu denote the number
of visits to state q^ used in calculating row r. The expected frequency of observations of
output aj in row r is

The total number of visits to states in row r is mt, and the states are visited in a fixed
cyclic order. Since h < m, each state in Sr is visited at least t times in row r. More
precisely, for each u, vu is either \mt/h\ or \mt/h~\.

To ensure that n events occur with probability 1 - <5, it is enough to ensure that each of
them occurs with probability 1 - £. If we choose t sufficiently large that for each state
i in Sr the observed frequency of output cr, is within |sep of a^j with probability at
least 1 - 6/\s\km3, then with probability at least 1 - <5/|s|fcm2, the observed frequency of
symbol aj in row r will be within ^sep of its expected value frj, and with probability at
least 1 - 6/\s\m, each of the at most km entries in the table for TT will be within |sep of
its expected value. In this case, the probability will be at least 1 - 6/\s\ that all the values
in all the (at most m) tables will be within ^sep of their expected values. We repeat this
operation for each of the s\ proper prefixes of s, so, in this case the probability is at least
1 — 6 that all the observed frequencies in all the tables considered for each prefix of s will
be within ̂ sep of their expected values.

We consider what happens in the case that all the entries in all the tables are within ^sep
of their expected values. In the case ir = p, the expected value of the correct output for state
qr and hence row r of the table is at least a, which means that the observed frequencies
for the correct outputs will all exceed 5 + |sep, and the table will be plausible and the
"majority outputs" will be the correct outputs, of period p' by hypothesis.

In the case of ?r ^ p, no output GJ whose expected frequency frj in a row is at most |
can have an observed frequency exceeding ^ + |sep. Thus, each output with an observed
frequency exceeding \ + |sep has a true frequency of greater than |, and so is uniquely
determined for that row. This guarantees that if the table for TT is plausible, then the
"majority output" from row r is uniquely determined by the set Sr, and the sequence of
"majority outputs" will be periodic of some period dividing g = GCD(7r,p), as claimed.
Thus, assuming all the values in all the tables are within |sep of their expected values,
the LCM of the values of IT' will correctly determine a value q that is a multiple of p' and a
divisor of p. Since this is true for each prefix of s, the correct value of p is determined.

According to Hoeffding's inequality, given a variable X that is an average of t identical
Bernoulli random variables with mean /j., and any error bound 0 < T < 1, we have:
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Since the number of observations of symbol a-j in state i in t visits to state i is such a
variable, with mean otij, and we are interested in

and in achieving probability of failure at most . ,^ma, it suffices if

Recall that the total number of repetitions of s is m + m2t, so s must be executed at least

times. The number of basic actions executed is thus

Recall that \s\ is the length of the distinguishing sequence, m is an upper bound on the
number of states in the automaton, a > \ is a known lower bound on the probability of
the correct output from a state, k is a bound on the number of possible outputs, and 6 is
a bound on the probability that the procedure will fail. Note that the dependence on s is
polynomial, the dependence on k is logarithmic.

4.1.4. The LOCALIZE algorithm. Based on the discussion above, we now present
LOCALIZE.

1. For simplicity, we assume that all the possible outputs are known and correspond to the
integers 1, . . . , k. Build a table T(TT, £, r, j) of size m x s\ x m x k. Initialize all the
table entries to zero.4

2. Execute the sequence s m times to ensure that the robot is in a closed walk that it will
continually traverse for as long as it continues to execute s.5

3. Initialize the sequence counter: R <— 0 and the step counter: c <— 0.

4. Execute s at least A/" times, incrementing R each time. After executing each individual
step, do:

(a) Increment the step counter: c <— c + 1. Let £ = c mod s\, and j be the output
observed immediately following execution.

(b) For each 7r = l ,2 , . . . ,m — 1, the table entry T(TT, f, R mod TT,J) is incremented
by 1.
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5. Let

6. Let P be the LCM of all ir' such that there exist TT and i such that for all r < TT
there exists j such that F(ir,t,r,j) > | + |sep and i"' >s the period of the outputs
arg maxj F(ir,£,r,j) for r = 0,1,...,IT — 1.

7. Conclude that the robot is currently located at the state corresponding to row r =
R mod P in the main table for P, and return, as the hypothesis for the correct outputs of
the distinguishing sequence s from this state, the sequence of outputs arg max, F(P, l, r,
j) for £ = 0,1,..., | s|-l concatenated with the single output arg maxj F(P, 0, (r + 1)
mod P, j).

4.2. The map learning procedure

Now we can define a procedure, BUILDMAP, for learning maps given a distinguishing
sequence, s. Suppose for a moment that LOCALIZE always returns the robot to the same
state and that the robot can always determine when it is in a state that it has visited before.
In this case, the robot can learn the connectivity of the underlying automaton by performing
what amounts to a depth-first search through the automaton's state transition graph. The
robot does not actually traverse the state-transition graph in depth-first fashion; it cannot
manage a depth-first search since, in general, it cannot backtrack. Instead, it executes
sequences of actions corresponding to paths through the state transition graph starting from
the root of the depth-first search tree by returning to the root each time using LOCALIZE.
When, in the course of the search, a state is recognized as having been visited before, an
appropriate arc is added to the inferred automaton and the search 'backtracks' to the next
path that has not been completely explored.

The algorithm we present below is more complicated because our localization procedure
does not necessarily always put the robot in the same final state and because we are not
able to immediately identify the states we encounter during the depth-first search. The first
problem is solved by performing many searches in parallel,6 one for each possible (root)
state that LOCALIZE ends up in. Whenever the LOCALIZE is executed the robot knows
(with high probability) what state it has landed in, and can take a step of the depth-first
search that has that state as the root node. The second problem is solved by using a number
of executions of the distinguishing sequence from a given starting state to identify that state
with high probability.

The algorithm, informally, proceeds in the following way. The robot runs LOCALIZE,
ending in some state q. Associated with that state is a depth-first search which is in the
process of trying to identify the node at the end of a particular path. The actions for that path
are executed, then the distinguishing sequence is executed. The results of the distinguishing
sequence are tabulated, then the robot begins this cycle again with the localization procedure.
Eventually, the current node in some search will have been explored enough times for a



92 T. DEAN, ET AL.

high-probability determination to be made about its unique signature. Once that is done,
if a node with the same signature has been identified previously in this search, the two
nodes are identified in the hypothesized state transition graph and the search backtracks.
If the signature is new, then a new node with the corresponding signature is added to the
hypothesized graph and the search proceeds to the next level of depth. We now explain the
algorithm more formally.

4.2.1. The BUILDMAP algorithm. With each state, q, that the robot ends up in using
LOCALIZE, we associate a set, Vq, of pairs (x, y), where x is a sequence of basic actions
representing a path through the state transition graph and y is a high-probability estimate
of the sequence of outputs obtained by executing the distinguishing sequence, s, after
executing the actions in x starting from q. That is, with high probability qx(s) = y. In
addition, each q has a current path, xq and signature estimation table, Tq. The signature
estimation table is indexed in one dimension by s\, the length of the distinguishing sequence,
and in the other dimension by k, the number of possible outputs. The set of states in
the hypothesized automaton is acquired over time from the output of LOCALIZE and the
high-probability signatures obtained in identifying states. We will refer to states and their
signatures interchangeably. Each time a new signature is encountered, the robot initializes
the associated data structures as follows.

1. Vq^{(X,q)}

2. xq <- First(S)

3. For each 0 < i < \s\ and 1 < j < k, T q [ i , j ] <- 0.

Here we assume that the set of basic actions, B, is ordered and that First(-B) denotes the
first action in B. The null sequence is denoted A. Using the above initialization subroutine,
the map-learning procedure BUILDMAP is described as follows.

1. Execute LOCALIZE, ending in some state q.

2. If q is new, then initialize it.

3. Execute xq.

4. For current output a^, increment Tq [0, j].

5. For i from 1 to |s|,

(a) Execute next basic action in s, getting output aj.

(b) Increment Tq [i, j].

6. If sum of the entries in a row of Tq equals M (in this case the distinguishing sequence
has been executed M times from the end of the current path), then

(a) Let y = s 1 . . . S|s|, where Si = argmax., T q [ i , j}.
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(b) Add{z,,i/)toV,.

(c) If there is no other entry in Vq with signature equal to y, then set xq to the concate-
nation of a;, and First(S), else backtrack by setting xq to the next unexplored path
in a depth-first search of Vq or return Vq if no such path exists.

(d) For all 0 < i < \s\ and 1 < j < k, T q [ i , j ] <- 0.

7. Go to Step 1.

4.2.2. Required number of steps. The above procedure will return the results of the first
depth-first search that is finished. The returned Vq contains all of the information required
to construct the state transition graph for the automaton with high probability assuming
that LOCALIZE succeeds with high enough probability and that the estimations used in
identifying states are correct with high enough probability. In the following, we show how
to guarantee that these assumptions are satisfied.

The result of the depth-first search is correct if all of its arcs have been correctly identified.
This requires at most m\B\ correct node identifications; one for executing each basic action
from each state.

A node is correctly identified if its signature is correctly determined, which will be the
case if each of its \s\ components is correct. A component of the final signature is correct
whenever the maximal frequency in the associated row of T is the one for the correct output.
An individual observation of a signature element is correct if LOCALIZE succeeded (we
started where we think we started) and the state is perceived correctly; this will happen with
probability a/3, where /3 = 1 - 6 is the probability that LOCALIZE succeeds. In the worst
case, the next most likely element of the table will have expected frequency 1 - a/3, giving
a separation between these two probabilities of 2a/9 - 1. The row will yield the correct
answer if all of its entries are within a/3-1/2 of their expected values. Using Hoeffding's
inequality as before, after M trials, the probability that an individual table element is in
error is bounded above by

In order to guarantee that the total error probability of the algorithm is less than rj, we must
ensure that the error probability for a single table entry is less than r]/(\s\km\B\). This will
be the case if

At worst, we must perform \Q\ depth-first searches,7 each of which requires |Q||B| nodes
to be identified.8 To identify a node, we must execute the distinguishing sequence there M
times. To do that requires JV + 1 executions of the distinguishing sequence; A/" of them to
localize to the root of the search, plus 1 to identify the node. In addition, each attempt at
node identification requires the path to be followed from the root of the tree to the node; the
length of the path is bounded above by \Q\. Thus, the number of steps required is at most
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which is

Substituting in our bounds for M and M, in order to assure an error probability less than
r\, we must take a number of steps on the order of

The parameter /3 must be chosen so that l/(2cc) < /3 < 1; under that constraint, it may
be chosen so as to minimize the number of steps while keeping total error less than r\.
For purposes of analysis, we might choose 0 to be in the middle of its allowed range, or
l/(4a) + 1/2. Making this substitution, the a/3 - 1 terms become (a - \)/1, and the
1/(1 - (3) term becomes 4a/(2a - 1), which is bounded above by 2/(a - |). As a result,
the entire algorithm is polynomial in l/(a - 5), \Q\, \B\, k, m, and |s|.

4.3. Learning distinguishing sequences

The above procedures rely on the robot being given a distinguishing sequence. If we are
not given a distinguishing sequence but know that such sequences exist, it would be useful
to be able to learn one. In this section, we consider the problem of learning distinguish-
ing sequences.

4.3.1. Do we need a distinguishing sequence ? The homing sequence algorithm of Rivest
and Schapire (1989) learns a DFA environment in polynomial time by means of exploration
and counterexamples. A counterexample is an action sequence that leads to an observation
different from the prediction of the current map. The counterexamples are necessary to this
result; there is no polynomial-time algorithm to learn arbitrary strongly-connected DFA
environments using exploration only, even if the goal is identification with high probability.

By contrast, exploration-only suffices for the polynomial-time learning algorithm we
present above. Of course, there are two provisos: (1) the target DFA environment has a
distinguishing sequence and (2) the algorithm is given a distinguishing sequence for the
DFA. The question arises whether we could dispense with assumption (2): assuming only
that the DFA environment has a distinguishing sequence, could there be a polynomial-time
algorithm to discover one incrementally using exploration only?

For one subclass of DFAs with distinguishing sequences, the answer is yes, namely, the
permutation automata, as shown by the results of Rivest and Schapire. However, for the full
class of DFAs with distinguishing sequences, the answer is no. That is, the class of DFA
environments with distinguishing sequences cannot be learned in polynomial time using
exploration only, even if the goal is identification with high probability.

In the remainder of this section, we sketch an adversary argument to prove this claim.
The class of automata used in the proof was arrived at by modifying the standard class of
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'password automata' to have distinguishing sequences without compromising their 'cryp-
tographic' attributes. This shows that our algorithm will not be able to do entirely without
a distinguishing sequence. However, in the next section we show how to use a random
generator of sequences that produces correct distinguishing sequences only some small (at
least inverse polynomial) fraction of the time.

Lemma 1. Any algorithm that can learn the class of DFA environments with distinguishing
sequences by exploration only will take exponential time on some environments, even if the
goal is identification with high probability and a reset operation is available.

Proof. Let n > 1. We describe a particular class Cn of DFA environments with the
property that each DFA in Cn has O(n) states and a distinguishing sequence of length
O(n2), and any algorithm that identifies every element of Cn by exploration only must take
a nonpolynomial (in n) number of basic actions when the target is some DFA in Cn.

Each environment has 4n +1 states, numbered 0 to 4n, 2n + 1 basic actions of the form,
6, a0, a 1 , . . . , a2n-1, and three output symbols, *, 0,1. State 0 is the start state and state 4n
is the dead state. All states have output symbol * except state 2n, which has output symbol
either 0 or 1. Since state 2n is the only state with a distinguished output, we call it the
signal state.

Choose any subset of cardinality n from the set 0 ,1 , . . . , 2n — 1, say

Note that there are (2^) ways to form such a subset. Let

The set G determines the transitions of the DFA as follows. Let 0 < j < 4n — 1. If j is
even, let k = j/2 mod n and define

1 • <5(j, aik) = (j + 1) mod 4n,

2. 6(j,b) = ( j - l )mod4n,

3. 6(j, air) = j for air € G - {aik}.

If j is odd, let k = (j — l)/2 mod n and define

1. 6(j, ^ J = (j - 1) mod 4n,

2. 6(j, 6) = (j + 1) mod 4n,

3. 6(j, air) = j for air 6 G - {aik}.

All other transitions are to the dead state, 4n; in particular, all transitions on the n symbols
a, not from the set G are to the dead state. Call the symbols in G good choices.and the
other flj's bod choices. Figure 1 depicts a generic example of a C2 DFA.



96 T. DEAN, ET AL.

Figure 1. Generic example of Cz DFA. Gc denotes the set of bad choices.

Intuitively, the 4n non-dead states form a ring that can be traversed from the start state 0
in increasing order back to the start state by the string

and in the reverse direction by the string

The left half of either of these strings will proceed from the start state to the signal state, In.
Note that symbols aik that are good choices either move one state around the ring or stay

in the same state. Hence the string

starting from an even numbered state j in the ring moves around the ring in increasing
order until it comes back to j. If we execute d starting from an odd numbered state j, we
move around the ring in decreasing order until we come back to j. Since in either case we
are bound to encounter the signal state in a unique location in the string, the string d is a
distinguishing sequence for this DFA. (Note that if we execute d from the dead state, we
do not encounter the signal state at all.) The length of d is O(n2).

Thus, every DFA environment in the class Cn has a distinguishing string, determined
by the corresponding set G. Intuitively, what prevents us from using this information to
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learn elements of the class Cn? If we are given an unknown element of Cn, we do not
know G, that is, which subset of n of the 2n symbols ctj are "good choices." If we try to
guess this information, we are liable to include a "bad choice" that will leave us in the dead
state capable of gathering no more useful information until we issue a reset. Moreover, to
identify the environment, we must visit the signal state, which means we have to execute
all and only the "good choices" appropriately interspersed with 6's.

These intuitions may be turned into an adversary argument as follows. Suppose A is
an algorithm that identifies with high probability every environment in Cn by exploration
only, possibly using resets. The adversary will simulate A, returning certain observations
in response to the successive basic actions executed by A. The adversary gets to pick
the DFA subject to its being consistent with the observations it has already returned. The
adversary keeps track of the set T of possible environments, as well as the current state of
the learning algorithm in each one. Initially T contains all the elements of Cn, each one in
its initial state.

In response to each basic action executed by A, the adversary updates the current state of
A for each element of T. As long as there are more than two elements of T, the adversary
returns the observation * and removes from T any DFAs that don't have output * at the
current state. If there are only two elements of T, then if they both have the same output at
their current states, the adversary returns that observation to A. Otherwise, the two DFAs
have different outputs, and the adversary selects one of them and answers consistent with
that one for all remaining actions.

Note that for every choice of G, there are two corresponding DFAs in Cn that have the
same transition function and only differ in the output (0 or 1) from the signal state; any
sequence of actions from A will reach the same state in both machines. How many DFAs
can be eliminated from T by an observation of *? We claim the answer is at most two. To
be eliminated, a DFA must be in its signal state. But, for a DFA corresponding to G to be in
its signal state, the sequence of actions since the last reset (or the beginning of the sequence,
if there have been no resets) must contain all of the actions from G and no action aj not in
G. Since this condition cannot be satisfied simultaneously for two distinct sets G, at most
the two DFAs corresponding to a single G can be eliminated from T by an observation of *.

If the algorithm A gives its output before T is reduced to one element, then it must make
an error when the target environment is at least one of the elements of T. This shows that
any deterministic algorithm A that successfully identifies every element of Cn must, when
the target is some element of Cn, execute enough basic actions to eliminate all but one
element of Cn; this requires at least 2" basic actions, since (2^) is bounded below by 2n.

If the algorithm A is randomized we consider the possible runs of A against the adversary
described above until A halts. Let T be the random variable that is the value of T when A
halts. If the probability that A executes more than 2n-1 basic actions before it halts is at
least one half, we are done. Otherwise, consider the runs in which A halts before executing
2™"1 basic actions. For these runs, T contains more than half the elements of Cn. Thus,
if we consider instead an adversary that chooses uniformly at random a DFA from Cn and
returns observations consistent with that DFA, the probability is at least 1/4 that the output
of A will be different from the chosen DFA. Thus, A does not succeed in identification with
high probability. D
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If it is desired that the target DFAs be strongly connected, it suffices to add the "reset"
as a basic action, to take the DFAs back to their start states. Note that in the construction
above, the number of basic actions is proportional to the number of states, or "places."
What if the number of basic actions is bounded by a constant? A somewhat more elaborate
construction shows that even in this case the class of DFAs with distinguishing sequences
cannot be learned in polynomial time using exploration only. The key idea is to use binary
coding for the symbols aj, guaranteeing that the new states necessary to implement the
coding have outputs that distinguish them "locally" - still requiring the correct sequence of
"good choices" to distinguish them globally. The details of this refinement are omitted.

4.3.2. Using a 'weak' distinguishing sequence oracle. In the last section, we showed
that, in general, without either a source of counterexamples or a distinguishing sequence
we cannot learn a DFA in polynomial time. However, all is not lost. Suppose that we are
given an oracle that generates candidate distinguishing sequences, such that it (a) generates
sequences s of length at most •$, polynomial in |Q|, and (b) generates correct distinguishing
sequences with probability 1 — C« bounded below by an inverse polynomial in |Q|. We
assume that sequences are generated independently. Then we define a procedure that, given
two different candidate maps of the environment, determines with high probability which,
if either, is in fact the correct map. That is, the procedure fails iff at least one of its inputs is
a correct map and it outputs an incorrect map. We then use the oracle to generate a series
of possible distinguishing sequences. Each sequence is used to build a map, which is then
compared against the current candidate map; the 'better' one is kept as the new candidate.
If enough such comparisons are performed, we can ensure that the output of this procedure
is a correct map of the environment (and its generating sequence a distinguishing sequence)
with high probability (1 - £). We describe the procedure in more detail below.

First, we develop the procedure COMPARE for comparing two different maps that chooses
a correct map for the environment with probability at least 1 — K. Given two non-equivalent
DFAs and the current state of the robot in each, q\ and q-2, a sequence of inputs a (a
discriminating sequence) can be generated (in polynomial time) such that ~i(q\a) ^ 7(92^)-
|a| is bounded by the product of the sizes of the two DFAs (and thus, by m2). Thus, after we
execute a, at least one of the DFAs will predict an output different from that observed. A
correct DFA will predict the observed output with probability at least a, while the incorrect
map will do so with at most 1 - a probability. Hence, we repeatedly generate and execute
discriminating sequences, incrementally maintaining a record of each DFA's frequency of
prediction error. If we perform enough such trials, if either DFA is correct, it will be the
one with the lower estimated prediction error (with high probability). We need to perform
enough trials so that the estimated frequency of prediction error is within \ (a - \) of the true
value, with probability at least 1 - K. We can now derive V, the number of discriminations
needed to do a successful comparison with probability at least 1 — K. Using the Hoeffding
bounds as previously, we get
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COMPARE is invoked with two triples, i.e., COMPARE((Mj, 91, si), (M2, q2, s 2 ) ) , each
consisting of an automaton, the current state of the robot in that automaton, and a distin-
guishing sequence used in constructing that automaton. The procedure returns one of the
two triples.

1. ni <— ri2 <— 0.

2. Repeat Z> times:

(a) If M1 starting at 91 is equivalent to M2 starting at q2. then return (Mi,9i,si);

(b) Else:

i. Find a discriminating sequence a such that 7(910) ^ 7(92^).
ii. Execute a and observe output y.

iii. If y ^ 7(910), HI <- ni + 1.

iv. If y / 7(920), n2 <— n2 + 1.

v. q1 <— q1l. 92 <— 920-

3. If n1 < n2, return (Mi, 9i,si);

4. Else return (M2,92,52).

Now, given this comparison procedure and a distinguishing sequence oracle as described
above, we can determine the number of comparisons C needed to ensure that with probability
at least 1 — £ the map output is correct (and its generating sequence is a distinguishing
sequence). We first get bounds on the probability of not getting a correct map output, given
C comparisons (we assume an initial map is generated first). The probability of a single
map-building step not resulting in a correct map is < C+(1~C)T? = 1-(1-??)(1—0>, since
either the sequence used was not a distinguishing sequence (the oracle 'failed'), or it was and
the map-building step failed. Note that each map-building step is assumed to be independent
from the others (as provided by the algorithm described above). Thus, the probability of not
generating a correct map over C trials is bounded by (1 - (1 - ij)(l - £))c. The probability
of not accepting a correct map in some comparison is bounded by K£. Hence, the total
probability of failure is bounded by (1 - (1 — 77) (1 - Q)c + K,C. We now wish to choose
C so that this probability is less than £. We do this by finding bounds that cause each term
to be less than |. First, we get a lower bound on C:

It suffices if
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Given this lower bound on C, we can determine an upper bound on K so that C comparisons
suffice. We have:

We can now substitute our bound for K to get a complete bound for T>:

The total number of exploration steps required is determined by C + 1 invocations of
BUILDMAP plus C invocations of COMPARE, each requiring at most D executions of
action sequences of length at most m2. Thus, using the bound for BUILDMAP given
above, we have a (loose) bound on the number of primitive actions required to identify an
automaton with high probability,

which is polynomial in the relevant variables. Note that, like b for BUILDMAP, 77 is a free
parameter that may be chosen to minimize the number of steps taken. Intuitively, we can
allow each map to be less probably correct, if we check more of them. Of course, 77 must
be inverse polynomial in the number of DFA states.

The complete procedure for learning map with high probability given an oracle for gen-
erating distinguishing sequences is described below, where BUILDMAP is assumed to take
a distinguishing sequence as input and return as output an automaton and the current state
of the robot in that automaton.

1. s1— oracle output.

2. ( M 1 , q 1 ) <- BUILDMAP(SI).

3. Repeat C times:

(A) S2 <— oracle output.

(B) (M2,q2) <-BUILDMAP(s2).

(C) (Mitqi,si) *-COMPARE({Mi,qr1,Si),(M2)g2,S2»

4. Return (Mi,qi,si).
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Figure 2. Graphs for office environments.

5. Empirical investigations

This paper is primarily concerned with showing that certain problems have efficient (in the
sense of polynomial time) solutions. We suspect that the polynomial functions we have
provided to bound the performance of our algorithms are pessimistic. To investigate these
suspicions, we implemented the learning algorithms for LOCALIZE and BUILDMAP and
experimented with them in simulated environments. In this section, we describe some of
those experiments and analyze the resulting data.

All of our results require environments with distinguishing sequences. We hypothesize
that many natural environments and office environments in particular possess short distin-
guishing sequences. To test this hypothesis, we constructed a variety of office environments
and determined the length of the shortest distinguishing sequence, assuming that such a se-
quence existed. Figure 2.i depicts the state-transition graph for the the fifth floor of the
Brown CS Department. Three other graphs typical of the ones that we used in our ex-
periments are shown in Figure 2.ii through 2.iv. The length of the shortest distinguishing
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Figure 3. Length of the shortest distinguishing sequence as a function of the number of states in the environment.

sequence for Figure 2.i is four. The lengths of the shortest distinguishing sequences for
Figures 2.ii, 2.iii, and 2.iv are two, three, and two respectively.

We generated a large number of graphs by starting with a d x d grid of locations and
constructing a graph of n edges by selecting n pairs of adjacent locations according to a
uniform distribution without replacement. The actions available at a location consist of
movement in each of the four directions (e.g. N, E, W, S) along axes of the grid; if there
is not an edge in a particular direction, the action corresponds to a self transition. The
outputs for locations encode the junction type (e.g. L-shaped or T-shaped) and orientation
(e.g. facing N, E, W, or S) for a total of sixteen possible outputs, including the degenerate
output corresponding to a location with no adjacent corridors. The probability that the robot
observes the correct output is a and the probability that it observes an output other than the
correct one is 15 . For fixed d with n in the range of d to d2, the length of the shortest
distinguishing sequence is pretty much constant. For the graphs that we have looked at, the
length of the shortest distinguishing sequence seems to increase roughly as the square root
of the number of states. Figure 3 shows the length of the shortest distinguishing sequence as
a function of the number of states in the environment, averaging over sets of environments.

It should be noted that while the outputs encode information about orientation the algo-
rithm does not exploit this information. We ran similar experiments ignoring orientation
with only four outputs corresponding to crossing-, straight-, L- and T-shaped junctions with
no significant difference in performance. It should also be noted that simpler algorithms
would suffice for the case in which the robot can reverse its actions. Again, our algorithm
does not exploit this property; we used the undirected graphs because they were easier
to generate, as they did not require a check for strong connectedness. We hand-crafted a
small number of directed graphs and the algorithms actually performed better than in the
corresponding undirected versions of the same graphs.

The theoretical results indicate that for a DFA consisting of 21 states LOCALIZE needs
as many as 76206 steps for a — 0.8. In our simulations, however, LOCALIZE is successful
100% of the time with no more than 50 steps using a distinguishing sequence of length three.
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Figure 4. Percentage of correct state identifications for LOCALIZE as a function of the number of repetitions of a
distinguishing sequence of length four in the environment of Figure 2.i.

Figure 5. Number of correct map identifications out of 20 for BUILDMAP as a function of the number of
experiments for each state transition.

We also observed that the performance of LOCALIZE is largely insensitive to a, continuing
to perform with 100% accuracy having executed 50 steps with a as low as 0.5. We believe
this is largely due to the fact that errors are distributed uniformly over the incorrect outputs;
it is straightforward to construct alternative error distributions that require a lot more work
on the part of LOCALIZE. Figure 4 shows a graph of the percentage of correct state
identifications for LOCALIZE running on the environment of Figure 2.i as a function of the
number repetitions of the distinguishing sequence. This graph typifies the performance of
LOCALIZE running on the range of graphs that we considered in our experiments.

We observed similar results for BUILDMAP in that the map-learning algorithm performed
quite well with far fewer steps than required by the theoretical results. Figure 5 shows a
graph of the percentage of correct map identifications for BUILDMAP as a function of the
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Figure 6. Comparison of BUILDMAP running on directed and undirected versions of the same graph.

number of experiments performed for gathering statistics to infer each state transition. The
four lines in Figure 5 correspond to the four graphs in Figure 2 with BUILDMAP generally
converging more quickly the smaller the graph.

As mentioned earlier, BUILDMAP achieves no advantage from the fact that our sample
graphs are undirected. Figure 6 compares the performance of BUILDMAP running on
directed and undirected versions of the same graph. The dashed line corresponds to the
undirected graph. In this and similar cases, BUILDMAP actually performed better on the
directed versions of undirected graphs.

In the process of experimenting with BUILDMAP, we discovered a simple modification
to the algorithm that improves both the theoretical and empirical performance markedly.
Executing the distinguishing sequence tends to force the robot into a subset of the set of
all states; we refer to the states that the robot ends up in after executing a distinguishing
sequence as sinks. For instance, there are six sinks for the automaton shown in Figure 2.iii
given a particular distinguishing sequence of length three. If there is a single sink or the
robot always ends up in the same sink, then the robot will construct a single depth-first
search tree of size \Q\. In practice, however, the robot tends to bounce back and forth
between sinks, constructing several depth-first search trees each of which may grow to
some significant percentage of \Q\ before one of the trees is complete. Much of the work
in constructing the final automaton can be duplicated in constructing different search trees.
Since the output of the distinguishing sequence provides a unique signature, the robot can
construct a global table of signatures summarizing the information in all of the search
trees and thus avoid duplicating search effort. Statistics gathered in one search tree can be
combined with statistics gathered in another.

6. Related work

In this paper, we focus on the case in which movement is certain and observation is noisy, and
show how a robot might exploit the determinism in movement to enable efficient learning. In
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the more general case in which both movement and observation are noisy, we are somewhat
pessimistic regarding efficient learning methods even if the robot is given a distinguishing
sequence. In (Basye, 1992, Basye et al., to appear), we consider some assumptions about
the robot's ability to systematically explore its environment and the source of recognition
errors that will allow the robot to learn a model efficiently.

Besides the work mentioned earlier on inferring the smallest consistent automaton, there
is other research within the theoretical machine learning community on learning DFAs
and their stochastic counterparts. Rudich (1985) provides algorithms for inferring the
graph structure and transition probabilities of Markov chains in the limit. Aslam and
Rivest (1990) consider the problem of inferring an undirected, degree-bounded, edge-
labeled graph from the sequence of edge labels observed in a walk of the graph. Tzeng
(1992) considers the problem of exactly learning automata with probabilistic transitions in
polynomial time assuming a learning model similar to Angluin's (1987), involving a source
of counterexamples. Anyone seriously interested in the problems of inferring automata
should read Moore's seminal paper (1956) establishing the conventions for the type of
automata employed in this paper and introducing the notions of state identification and
distinguishing sequence for such automata.

Yannakakis and Lee (1991) have shown that it is PSPACE-complete to determine whether
or not a DFA has a distinguishing sequence. (There exist machines whose shortest distin-
guishing sequence is exponential in length.) However, they also show that it can be deter-
mined in polynomial time whether a DFA has an adaptive distinguishing sequence, and, if
so, find such a sequence of length O(|Q|2) in polynomial time. An adaptive distinguishing
sequence (as distinct from the preset distinguishing sequences employed in this paper) is
not really a sequence at all but rather a decision tree whose branches are determined by
the robot's observations. As such, we can not directly substitute adaptive distinguishing
sequences for the preset distinguishing sequences used in LOCALIZE and BUILDMAP.

Several disciplines besides computer science are concerned with problems similar to the
one explored in this paper. The literature on adaptive control (Goodwin & Sin, 1984)
and signal processing (Widrow & Stearns, 1985) provides a variety of system identifica-
tion algorithms, but researchers in these areas are primarily interested in learning in the
limit. Hidden Markov Models (HMMs) have both probabilistic transitions and probabilis-
tic outputs. Levinson et al. (1983) provide a survey of HMM learning methods and their
application to speech understanding. Rimey and Brown (1991) show how HMMs can be
applied in learning action sequences to control camera movements in machine vision. The
work on HMMs generally assumes that the underlying automaton can be reset to its initial
state and is primarily concerned with learning in the limit.

One important direction for future research involves exploiting structure available in the
state space. The algorithms described in this paper are polynomial in the size of the state
space; however, the state space is likely to be exponential in the number of features provided
by the robot's perceptual capabilities. An interesting problem for future research concerns
inferring and then taking advantage of independence among perceptual features. Donald
and Jennings (1991) describe methods for constructing representations of space based on
equivalence classes induced by a robot's perceptual capabilities. Rivest and Schapire's
diversity representation of the state space (Rivest & Schapire, 1987) provides an approach
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to reducing the storage required in representing automata. Bachrach (1992) shows how
to implement Rivest and Schapire's learning algorithm in a connectionist architecture. In
some problems, it is advantageous for a representation to coalesce distinct environmental
states that require the same response from the robot. Whitehead and Ballard (1991) deal
with the problems that arise in reinforcement learning when perception maps different states
to the same internal representation.

7. Conclusions

In this paper, we provide general methods for the inference of finite automata with stochastic
output functions. We demonstate that it is possible to exploit determinism in movement to
enable efficient learning. In previous work (Basye & Dean, 1989, Basye et al., 1989), we
concentrated on problems in which the state transition function is stochastic (e.g., in the
context of map learning, this means that the robot's navigation procedures are prone to error).
In future work, we intend to combine our results to handle uncertainty in both movement
and observation. We are also interested in identifying and exploiting additional structure
inherent in real environments (e.g., office environments represent a severely restricted class
of planar graphs) and in exploring more forgiving measures of performance (e.g., it is
seldom necessary to learn about the entire environment as long as the robot can navigate
efficiently between particular locations of interest).

With regard to more forgiving measures of performance, it may be possible to extend the
techniques of this paper to find e-approximations rather than exact solutions by using the
probably approximately correct learning model of Valiant (1984). Such extensions would
require the introduction of a distribution, Pr, governing both performance evaluation and
exploration. As one simple example, suppose that the robot operates as follows. Periodically
the robot is asked to execute a particular sequence of actions chosen according to Pr; we
assume that, prior to being asked to execute the sequence, it has performed localization
and that immediately following it executes the distinguishing sequence. Performance is
measured in terms of the robot's ability to plan paths between locations identified by their
distinguishing sequence signatures, where the paths are generated according to Pr. The
problem with this approach is that the starting locations of the sequences are not determined
solely by Pr. In fact, all that Pr governs is Pr(s|<7start). where <?start is the start state. In order
for the above approach to work, the marginal distribution governing the possible starting
locations of the robot, Pr(gstart), must be the same for both training and performance
evaluation. In future research, we will be exploring a number of different approaches to
specifying e-approximations.
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Notes

1. There has to be some requirement on the size of the DFA, otherwise the robot could choose the DFA corre-
sponding to the complete chain of inputs and outputs.

2. In (Basye, 1992, Basye et al., to appear), we consider a more efficient approach for the case in which 7 is
unambiguous which, under more restrictive conditions than those required in this paper, infers the underlying
automaton by estimating the transition probabilities on the observed states (i.e., the probability of observing i
next given that the robot observed j last).

3. The arguments in this paper require that a > \ and they exploit the separation between a and ̂ . It
appears to be straightforward to relax this requirement somewhat. Let Pij be the probability of observing
output j/j given that the robot is in the state <ft. Let Pi = maxj{Py}. We assume that there exists one
output that is observed more frequently than any other (i.e., if Pij = Pik = P* then j = k). Let Sj be
the difference between the most frequently observed and the second most frequently observed outputs (i.e.,
Si = minj{Pi* — Pij\P? < Pij}), and s be a lower bound on the si (i.e., s = minj{si}). We see no
obstacle (other than a slightly more complicated proof) to extending our arguments to work with a separation
of s. We have observed empirically that the algorithms described in this paper work well without modification
in many cases in which a < |.

4. If the outputs are not known, then the table can be constructed incrementally, adding new outputs as they
are observed.

5. Following Step 2, the next action should be the first action in a.

6. The idea of using multiple searches starting from the states resulting from LOCALIZE is similar to the way in
which Rivest and Schapire (1989) run multiple versions of Angluin's L* algorithm (Angluin, 1987) starting
from the states the robot ends up in after executing a given homing sequence.

7. Note that we must use m, an a priori bound on the number of state in order to choose M and A/" to guarantee
a certain level of confidence. The number of nodes that are identified in the depth-first search need not be
estimated in advance, however, so we use \Q\, the actual size of the state space here, rather than m.

8. In the BUILDMAP algorithm presented here, a number of searches may be carried out in parallel, potentially
duplicating work unecessarily. In fact, though, the different depth-first searches need not be treated as inde-
pendent; a global signature table can be constructed by the separate searches working together. This removes
a factor of \Q\ from the number of steps required, but complicates the algorithm somewhat.
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