
Machine Learning, 18, 255-276 (1995)
© 1995 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Learning from a Population of Hypotheses

MICHAEL KEARNS AND H. SEBASTIAN SEUNG

mkearns@research.att.com, seung@physics.att.com
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, New Jersey 07974

Editor: Sally A. Goldman

Abstract. We introduce a new formal model in which a learning algorithm must combine a collection of
potentially poor but statistically independent hypothesis functions in order to approximate an unknown target
function arbitrarily well. Our motivation includes the question of how to make optimal use of multiple
independent runs of a mediocre learning algorithm, as well as settings in which the many hypotheses are
obtained by a distributed population of identical learning agents.
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1. Introduction

In this paper, we are concerned with the problem of combining a number of potentially
poor but statistically independent hypotheses in order to obtain a significantly better
approximation to an unknown target function. Our motivating scenario is a world in
which a large number of learning agents each collects a small but independent sample
and forms a hypothesis based on its sample. Although the data available to individual
agents is limited, the entire population regarded as a single entity has collected a large
number of independent examples. These examples are no longer directly available, but
have been translated into many individual hypotheses, each with potentially large error.
We are thus interested in learning not from random examples, but from the population's
many hypotheses. The goal is to combine a number of these limited accuracy hypotheses
in order to obtain a new hypothesis with arbitrarily small error.

There are two lines of prior research in computational learning theory and related fields
that immediately come to mind in our setting. The first is the recent work on combin-
ing "expert" opinions in an optimal on-line fashion (see (Cesa-Bianchi, et. al, 1993)
for recent results and an extensive bibliography). Briefly, in the research on experts,
we assume that have access to the predictions of a panel of experts, and our goal is to
make predictions with a mistake rate approaching that of the best expert. Since typ-
ically no assumptions are made regarding the sequence being predicted or the experts
(for instance, the sequence may be arbitrarily time-dependent, so an expert's perfor-
mance on any part of the sequence may be a poor predictor of its future performance),
approaching the best expert's mistake rate is the most that can expected in such mod-
els (Cesa-Bianchi, et. al, 1993).

In contrast, in this paper we make assumptions about both the desired predictions
and the "experts" (which we do not regard as being especially expert). The desired
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predictions are represented by a fixed, unknown target function chosen from a restricted,
known class, and each "expert" (or hypothesis) is the result of training on a small but
independent random sample of the target function. By making these assumptions, we
allow the possibility of somehow combining the independent hypotheses in a way that
considerably outperforms any single hypothesis.

The second loosely related line of research is the work on boosting weak learning
algorithms(Schapie, 1990; Freund, 1990; Freund, 1992), in which the goal is to combine
a collection of hypotheses from a mediocre learning algorithm in order to obtain an
arbitrarily accurate hypothesis. Although our goals are similar, a crucial difference is that
in the boosting work, we have control over the executions of the weak learning algorithm
and thus by modifying the training distribution we can force each subsequent hypothesis
to have a slight prediction advantage where the previous hypotheses have failed. Here we
assume no such mechanism, and each hypothesis is trained on the same fixed distribution.
Indeed, it is interesting to note that natural schemes for combining hypotheses that are
successful in the boosting setting, such as majority vote (Freund, 1990), often fail in our
setting.

/./. Overview of Results

We now give a summary of the paper. In Section 2, we introduce and motivate our
model, which we call population learning. Briefly, in this model a population learner
is provided with an oracle that on each call produces a function that is consistent with
an independent random sample of the unknown target function. Thus, each call to the
hypothesis oracle causes a new sample of m random examples to be drawn, and for a
function consistent with these m examples to be returned to the population learner. The
method by which the consistent function is chosen can sometimes be crucial and is a
parameter of our model. For several of our results, we concentrate on the case where
the returned function is chosen randomly from among all consistent hypotheses (that is,
by a Gibbs learner). We regard m as a fixed constant over which the population learner
has no control, but the population learner may draw as many hypotheses as desired in
order to obtain arbitrarily small error.

In Section 3, we analyze a simple population learning problem and introduce the impor-
tant and natural idea of the distribution induced on hypotheses by the hypothesis oracle.
This allows us to develop some general theory for population learning in Section 4.
We first introduce our central technical tool, the separation functions. These functions
essentially quantify how the distance between two possible target functions (measured
with respect to the target distribution) translates to the distance between the two corre-
sponding induced distributions on hypotheses (measured by Kullback-Leibler divergence
or variation distance). Intuitively, if this translation results in an extreme contraction of
distances, then population learning is difficult, and if this translation is relatively mild,
then population learning can be accomplished with a modest number of hypotheses.

With the notions of induced hypothesis distributions and separation functions in hand,
we next turn to the fundamental problem of providing general upper and lower bounds
on the number of hypotheses that must be drawn in order to obtain a desired level of
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accuracy. This is analogous to the problem of determining upper and lower bounds on
sample complexity in standard models of learning from examples.

For the upper bound, we formulate population learning as a problem of classical para-
metric distribution estimation of the induced distributions on hypotheses. We then invoke
the powerful tools of the uniform convergence literature to analyze the maximum likeli-
hood method for this problem, in order to obtain an upper bound which is polynomial in
the inverse of the separation functions and a dimension term. We then provide a lower
bound that is also polynomial in the inverse of the separation functions, thereby demon-
strating that these functions give a coarse and partial characterization of the required
number of hypotheses.

Section 5 gives several applications of the general theory. We analyze some simple
population learning problems, including problems where the hypotheses are initial in-
tervals of the real line, boolean conjunctions, and perceptrons. We also consider both
cases where the Gibbs algorithm is used to choose consistent hypotheses, and where an
arbitrary consistent hypothesis is chosen.

Section 6 mentions several areas for further research.
We wish to emphasize that although some of the methods we propose here are com-

putationally efficient in the limited settings we consider, our primary concern in this
paper is with the statistics of learning from a population of hypotheses, that is, with the
number of independent hypotheses that are necessary and sufficient for learning in our
model (whether by a computationally efficient algorithm or not). In general we have left
the important problem of computational feasibility to future investigations.

2. The Population Learning Model

Imagine a world populated by a large number of initially identical learning agents. Each
agent wanders through the world, acquiring a limited number of independent examples
of an unknown target function, and then applies an internal algorithm for learning from
examples to the data it has collected in order to obtain a hypothesis function. We assume
that all agents use the same internal algorithm for learning from examples, so agents
differ only in the data they have gathered and its subsequent effects on their hypotheses.
In this paper, we wish to investigate the problem of learning not from examples, but
from the hypotheses computed by the independent agents.

A population learning problem will be defined as a triple (F, D, m) (we will add
some further components shortly). Here f is the class of possible {0, l}-valued target
functions over the input space X, D is a probability distribution over X (or density in
the case of continuous X), and m > 1 is a natural number called the agent sample size,
which is the number of random examples seen by each agent.

We assume that f, D and m are all known to the algorithm trying to solve the
population learning. We also assume that every agent sees the same number m of
random examples. In general, throughout the paper we will at any time be discussing a
fixed population learning problem, so for notational brevity we will not explicitly indicate
dependences on F, D and m except where necessary. Note also that we are studying a
"distribution-specific" model of learning, in the sense that D is fixed and known.
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As is typical of concept learning models, we seek algorithms that can find good ap-
proximations to an unknown target function f e F with respect to the distribution D.
However, in our model the algorithm (called a population learning algorithm) does not
have direct access to random examples of /, but only to a large collection of hypotheses
that have been independently computed using random examples of /. More precisely,
for the population learning problem (F, D, TO) a population learning algorithm is given
access to the oracle POP(f) that runs in unit time and behaves as follows on each call:

• Draw m inputs 5 = {x1 ,... ,xm} randomly and independently according to D. Let
Sf denote the set of inputs in S paired with the labels given by the target function
f e F.

• Choose an element h of the version space VS(S f) , which is the set of all functions
in f that are consistent with the labeled sample Sf (further details of this step are
discussed below).

• Return h.

Thus, we may think of each call to the oracle POP(f) as returning the hypothesis of a
single learning agent from a large population of agents, each member of which saw m
independent random examples of /. If we make l calls to this oracle, we obtain a pool
h1 , . . . ,h l of hypotheses. Although we expect each hi to have limited accuracy (because
each hi was obtained using only m examples), the total number of independent random
examples that was used to train the entire pool is l • m.

Despite the fact that a population learning algorithm has access only to the hi, for
sufficiently large £ in principle it may be possible to combine h1 , . . . , h l some manner
to obtain a new hypothesis / that is considerably more accurate than any of the hi.
Indeed, as l becomes large one might expect to be able to obtain f with arbitrarily small
error. It is exactly this type of statement that we wish to formalize and quantify in this
paper.

A crucial detail left unspecified by the given description of POP(f) is which element
of VS(S f) is returned by the oracle. The insistence that the chosen hypothesis be
consistent with the examples is in fact largely inconsequential to the general theory we
will develop, but is a reasonable working assumption. The method used to choose from
the version space amounts to an assumption on what common algorithm for learning
from examples is used by the learning agents. There are many reasonable and interesting
assumptions that could be made here. In this paper we will both develop a general theory
that applies regardless of what algorithm is used by the agents, and also study the details
of a model in which the agents use the so-called Gibbs algorithm.

In the general case, we add another item A (called the agent algorithm) to the descrip-
tion of a population learning problem (.F, D,m, A), Here A may be any randomized
algorithm that takes as input a set Sf of labeled examples of some f e F and outputs
some h € VS(S f) . Again, as for the other items in the quadruple defining a population
learning problem, we shall usually leave any dependences on A implicit for notational
brevity.
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Under agent algorithm A, the previously underspecified second step of the oracle
POP(f) is completed as follows: the h e VS(S f) chosen for output by the oracle is
simply A(S f) (the output of A when given the labeled sample Sf ). It is important to
note that the agent algorithm A is part of the description of a population learning problem
and thus is considered to be "known" by the population learning algorithm. Thus, we
allow population learning algorithms to be designed for the particular agent algorithm A
in question (as well as the particular F, D and m).

A special case of interest occurs when the agent algorithm A is the well-studied Gibbs
algorithm, which is known to be a near-optimal learning algorithm in terms of its expected
error as a function of the number of examples m (Haussler, Kearns, & Schapire, 1994).
This algorithm simply chooses h uniformly at random from the version space VS(S f).
This models a population in which each agent learns by choosing a consistent hypothesis
from F without bias, in the sense that given consistency with the training data, all
functions are equally likely to be chosen.

A population learning algorithm P for a population learning problem (F, D, m, A) is
an algorithm that for any target function f e F is given access to the oracle POP(f)
and two inputs 0 < e,6 < 1, and eventually halts by outputting a function f e F that
with probability at least 1-6 satisfies -D[fAf] < e.

Given any fixed population learning problem (F, D, m, A), in this paper we are pri-
marily interested in the population size required for learning. Thus, for a population
learning problem (F, D, m, A) we define the function £(e, S) to be the minimum over
all population learning algorithms P for (F, D, m, A) of the maximum number of calls
(over all target functions / e T) made by P to the oracle POP(f) on inputs e and 6.
Note that £(e, S) depends on all four parameters of the population learning problem.

Several points regarding the model bear mentioning before we embark on our inves-
tigation. First, note that we fix the population learning problem (F, D, m, A), and then
seek an algorithm that works for all values of e and 6 for this problem. Thus, we think
of the agent sample size m as a constant, and a population learning algorithm can obtain
more information about the target only by drawing a larger number of hypotheses that
each have this same constant amount of training.

Second, note that we assume that the oracle POP(f) returns exact descriptions of
hypotheses, as opposed to only returning "black boxes" (input-output oracles) for hy-
potheses. Thus, in principle a population learning algorithm may not only evaluate the
sampled hypotheses, but may use the defining parameters of the sampled hypotheses in
any way it sees fit. For instance, if the function class f is a class of neural networks of
some fixed architecture, the population learning algorithm has access to the values of the
weights in the hypotheses returned by POP(f). Although the algorithms we propose
will technically use this capability, in general we suspect that there is little additional
power gained over black-box use of the hypotheses. For instance, for every specific
population learning problem analyzed in Section 5, our algorithms are easily coverted to
make only black-box use of hypotheses with no change in the required population size.

Finally, the population learning model could be viewed as an instance of what statisti-
cians call meta-analysis, in which multiple sources of perhaps secondary data are com-
bined to give a unified hypothesis.
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3. An Illustrative Example: The High-Low Game

In this example, the domain X is the real interval [0,1], and F is the class of all initial
intervals. Thus, each target function is a real number / 6 [0,1], and the positive examples
are the subinterval [0, /], with the interval (/, 1] being the negative examples. Let D be
the uniform distribution on [0,1]. These settings are also known as the "high-low game",
since each example x of f simply indicates whether x is smaller or larger than /.

Let us examine the population learning problem (F,D,m = 1, A = Gibbs). In this
problem, for target / the oracle POP(f) behaves as follows: a single x € [0,1] is
chosen uniformly at random. If x < / (positive example), then a random h 6 [x, 1] is
chosen uniformly and returned. If x > / (negative example), then a random h e [0, x)
is chosen uniformly and returned.

An important observation that applies to any population learning problem is that for
any target f € F, the oracle POP(f) induces a well-defined probability distribution qf

over f. Thus, for any h e F, we let qf [h] denote the probability that h is output by
the oracle POP(f) (or the density of qf at h in the continuous F case). Note that qf

depends crucially on the agent algorithm A. A population learning algorithm has access
to random draws from qf as its sole source of information. The function class F gives
rise to the associated class of induced distributions Q = {qf : f e F}.

It is the analysis of the problem of learning the distribution qf, and the relationship
between this problem and approximating the target function /, that will form the back-
bone of our entire approach. We will shortly obtain general upper bounds on required
population size by analyzing the classical maximum likelihood approach to estimating
qf . For the specific case of the high-low game, it turns out to be sufficient for the analysis
to compute Eh€qf[h] — E[ h], which is the expected value of the hypotheses h € [0,1]
generated by the distribution qf. (Throughout the paper, we use the subscript h € qf on
an expectation or probability to denote that h is chosen randomly according to qf , and
h e S to denote that h is chosen uniformly from the set S.) We may write

Here we have broken the expectation into two easily analyzed parts: the first where
the single example x is positive (in which case h is drawn randomly from [x, 1] and
thus has expected value x + (1 — x)/2), and the second where x is negative (in which
case h has expected value z/2). This calculation immediately suggests the following
population learning algorithm: draw hi , . . . ,h l from the oracle POP(f) and let havg =

( 1 / l ) X)Li ^*; then solve havg = f/2+ 1/ 1/4 for the final hypothesis /. Correctness and
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convergence of this procedure can be proven via Chernoff bounds, giving the following
theorem.

THEOREM 1 Let F be the class of initial intervals over [0,1], and D the uniform
distribution on [0,1]. Then for the population learning problem (F,D,m = 1, A =
Gibbs), l(e,6) = C>(l/e2 log 1/5).

This bound compares favorably with the 9(l/elogl/5) sample size that is required
for learning F from the random examples themselves (rather than the hypotheses) with
respect to the same distribution. Thus, even when each agent has seen only a single
example of the target function, a relatively small sampling of hypotheses can be combined
to find a much more accurate hypothesis. Note that our algorithm for this simple problem
is also computationally efficient.

3.1. Remarks on the High-Low Game

Several other points regarding this simple example bear mentioning. First of all, the
choice of the agent algorithm A can sometimes have great effect: let A be the consistent
algorithm that for a positive example x chooses the hypothesis h = x + 7, and for a
negative example x chooses the hypothesis h = x — 7 (for some small 7 > 0). Then
it easy to see that as 7 approaches 0, #/ approaches the uniform distribution on [0,1]
independent of f. This demonstrates that for the high-low game with m=1, it is not
possible to obtain a single finite upper bound on £(e,<5) that holds simultaneously for
all choices of A, and we must analyze the required population size for different agent
algorithms on a case-by-case basis.

Second, however, the effects of the particular agent algorithm A can sometimes be
overcome by a sufficiently large agent sample size m. Thus, we will later show that in
the m = 2 case of the high-low game, we can upper bound £(e, 6) by a polynomial in
1/e and 1/6 simultaneously for all agent algorithms. In general, we expect larger agent
sample size to make population learning easier (or at least not more difficult). However,
there are some subtleties involved with this intuition that we discuss later.

Finally, the high-low game is a simple problem for which several natural and naive
approaches to population learning fail. For instance, it is tempting to conjecture that a
general approach to population learning is majority voting: sample hypotheses h 1 , . . . , hl

and let / be the majority vote of these hypotheses. In the high-low game, it is easy to see
that this scheme is equivalent to choosing f to be the median of h 1 , . . . , hl. However,
when the target function / = 0, it can be shown that the median converges to the value
0.1865... as £ —> oo, and thus will not achieve arbitrarily small error even given an
infinite population size.

4. Development of the General Theory

Throughout this section, we assume a fixed population learning problem (F,D,m,A).
Thus far, we have observed that each target function / 6 f gives rise to an induced
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distribution qf e Q over F which is exactly the distribution sampled by the oracle
POP(f); note that each qf depends on all four parameters of the population learning
problem in addition to /. One natural approach to population learning would be to learn
an approximation q to qf , and somehow use q to find a good approximation to / itself.
Our approach to the high-low game can be viewed as a special case of this approach,
where all that was needed was an approximation to the mean of qf

In order to formalize this approach, we must specify what is meant by learning the
distribution qf (or more precisely, what measure is used to evaluate a hypothesis distri-
bution), and then study quantitatively how the problem of learning the distribution qf

relates to the original problem of learning the target function /.
We will find it convenient to consider two different standard measures for the distance

between two probability distributions. The first is the Kullback-Leibler divergence (which
is not a metric, since it lacks symmetry):

The second is the variation distance:

Both measures have analogues for densities in the continuous case; in developing our
general theory, however, we shall restrict ourselves to the case of distributions for sim-
plicity. We will use the following theorem due to Kullback (1967):

THEOREM 2 For any distributions qfl, qf2

4.1. The Separation Functions

Having defined these two closeness measures for probability distributions, we now intro-
duce their associated separation functions. This is our most important definition, and is
motivated as follows: suppose that in a population learning problem, two potential target
functions f1 , f2 £ F have disagreement D[f1Af2] = e. If we had access to random
examples of the target function, we could distinguish between f1 being the target and f2

being the target in 0(l/e) examples.
In population learning, however, all we have access to is either qf1 or qf2. If despite

the e separation between f1 and f2, the separation between qf1 and qf2 is much smaller
than e, then we may require a very large population size to achieve error e. On the other
hand, if the e separation between f1 and f2 implies a "significant" (say e2) separation
between qf1 and qf2 , then a modest population size may suffice. We thus define the
separation functions as:
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and

(In cases where the minimum does not exist, we instead take the infimum.) Here we
are violating our convention of leaving dependence on the agent sample size m implicit
for reasons we shall discuss shortly in Section 4.2. Both separation functions take e as
an argument, and find the closest (with respect to either Kullback-Leibler divergence or
variation distance) that two e-separated functions in F (with respect to D) can become
in the space Q of induced distributions. Note that by Theorem 2 we have OKL((-, in) >
(<7v(e, m))2 always.

Shortly we will provide evidence for the significance of the separation functions by
showing that they provide a rough characterization of the population size required for
any population learning problem. Specifically, we give upper and lower bounds on the
population size £(e,6) that are polynomial expressions in l/cr/a,(e,m) and l/ov(e,m)
(as well as 1/6 and various complexity measures of the population learning problem).
We first engage in a brief discussion of the dependence of the separation functions on
the agent sample size m.

4.2. The Role of Agent Sample Size

Let us briefly digress from the main development in order to discuss a primary but
unfortunately unfulfilled goal of our investigation, and to clear the air of any confusion
that this failure may cause. As we have indicated, a "nice" separation function would
have behavior such as o-/a,(e, m) > e2, so that large distances in the metric induced on f
by D would translate to large distances (either Kullback-Leibler divergence or variation
distance) in Q. We will soon see that such nice behavior leads to relatively modest upper
bounds on the required population size.

In the population learning model, we essentially regard m as a fixed constant, repre-
senting the limited amount of training received by each learning agent in the population.
In particular, we do not allow m to increase according to the desired error bound e given
to the population learning algorithm — m is independent of e, and all the population
learning algorithm can do to achieve smaller and smaller e is to take more and more
hypotheses of this fixed sample size m. Thus, an important question for us is how small
m can be while the separation functions still have nice behavior.

More precisely, note that in general we expect that as m increases, each induced
distribution qf (which of course implicitly depends on m) becomes more peaked around
/. For this reason, we expect that as m increases, KL(qfl ||gf2) and V(qf l, qf2) become
larger for any two functions fi, f2, and thus jKL,(e, m) and rv(e, m) should also increase
with m. While this much seems clear, the challenging problem is to obtain conditions
on m that are independent of e but that guarantee that KL, (e ,m) and <7v(e,m) are
polynomially large in e.



264 M. KEARNS AND H. SEBASTIAN SEUNG

To see the difficulty, let us lower bound rKL(e, m) in terms of e and m using some
standard methods from uniform convergence analysis and see why they are insufficient
for our purposes. Suppose we consider two functions f1, , f2 e F let e = D[ f 1 A f 2 ] ,
and let m be the fixed agent sample size. For any numbers 0 < r, s < 1 let us define
KL(r\\s) = r log(r/s) + (1 -r) log((l - r)/(l — s)); it is easy to show that this is lower
bounded by max{rlogl/s— 1,(1 — r)logl/(l — s) — 1}.

Now it is also true (Kullback, 1967) that for any F C F,

Thus to lower bound KL(qf1 ||qf2) let us choose F' to be the e/2-ball around f2 in F
with respect to D, that is

Now using uniform convergence methods (Vapnik, 1982; Haussler, 1992) one can show

and

for constants c, a > 0, where d is the Vapnik-Chervonenkis dimension of F. Thus using
Equation (1) and the lower bound on KL(r\\s) we obtain

for constants c1, c2,c3,c4 > 0. This first term of the lower bound has the desired "nice"
behavior: if two functions are at a distance e, then their induced distributions have
Kullback-Leibler divergence f(e2). Unfortunately, despite this machinery, the lower
bound is negative until m = f(l/e2), a condition that is unacceptable for the reasons
outlined above.

In fact, it is possible to argue that the desired condition on m needed to enforce
niceness of the separation functions cannot be expressed solely in terms of a parameter
of the function class F such as the Vapnik-Chervonenkis dimension. It appears that
the best we could hope for is a statement of the form: provided m > F(F, D), we
have <7v(e, m) > e2 (or some similarly large function of e), for some function F of the
function class F and distribution D. We have been unable to obtain such a result so far.

In any case, our belief that the separation functions may be sensitive functions of m,
combined with our inability to quantify this sensitivity, prompts us to explicitly indicate
the dependence on m for these functions.
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4.3. A General Upper Bound on Population Size

An important observation regarding the separation functions is given in the following
lemma, whose proof is immediate from the definitions of (TKL(€, m) and 0v(e,m).

LEMMA 1 For any or

then

Given the machinery we have developed thus far, we can now recast population learn-
ing as a problem in parametric distribution estimation. The population learner receives
l hypotheses h 1 , . . . , hl drawn independently at random from a distribution. The learner
knows that this distribution is a member of the class Q, which is parametrized by F. We
study the case where the learner uses the method of maximum likelihood estimation, and
thus outputs a hypothesis / that is a maximum of n=i If IM w*m respect to f'. This
method treats f' e F as an abstract parameter that does nothing more than parametrize
the distributions qf 6 Q. This method may be of more theoretical than practical rele-
vance, since the likelihoods q f [h] are generally difficult to compute. Nevertheless, the
bounds on the population size required by maximum likelihood are a useful first step
towards bounds for more practical learning algorithms.

The classical analysis of the error of the maximum likelihood method, involving the
Fisher information, requires that the distribution class Q be a smooth function of contin-
uous, real-valued parameters. As will be illustrated by specific examples in Section 5, F
(and hence Q) often admits no continuous parametrization. Furthermore, even in the case
of a continuous parametrization, the likelihood can be nondifferentiable in its parameters,
as noted by Amari(Amari, Fujita, & Shinomoto, 1992). Hence classical statistics is not
typically applicable to the learning problems of interest here.

Instead we proceed by invoking uniform convergence theorems (Haussler, 1992; Pol-
lard, 1984; Dudley, 1978) to bound fluctuations in empirical log-loss. These theorems
are relevant because maximizing the likelihood is equivalent to minimizing the empirical
log-loss, which is —1/^$^=1 logg/<[/ii]. Hence maximum likelihood is but a specific
case of the general class of empirical loss minimization algorithms. Combined with
Lemma 1, which relates log-loss in Q to loss in the parameter space f, the uniform
convergence bounds lead to the following upper bound on population size, whose proof
is omitted due to space considerations, but is a fairly straightforward application of the
main theorem of Haussler(1992).

THEOREM 3 Let (F,D,m,A) be any population learning problem. Then

and
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Here dim(Q) is the combinatorial dimension (Haussler, 1992) of the distribution class
Q, and M is a bound on the empirical log-loss of any distribution in Q.

Let us take a moment to absorb this result. First of all, the combinatorial dimension
dim(Q) is a generalization of the Vapnik-Chervonenkis (VC) dimension (Vapnik & Cher-
vonenkis, 1971) and can be considered a standard and natural notion of the "complexity"
of the population learning problem. In the finite F case, dim(Q) < log \ F \ . We refer
the interested reader to Haussler(1992) for details. Secondly, although the appearance of
the bound M in the population size upper bound might initially seem worrisome (since
we have no a priori reason to assume a finite bound on — log qf (h\ for all /, h € F),
this is often a technicality: we can typically get around any difficulty using quite general
"clamping" techniques that choose a hypothesis from a restricted subclass that excludes
degenerate distributions with large loss.

The bounds in Theorem 3 depend on e and m through the separation functions. Al-
though it seems intuitively clear that the separation functions should tend to increase
with m and decrease with e, we have not succeeded in characterizing this dependence
rigorously, and it appears that uniform convergence theory may be too coarse a tool
for this task (see the extensive discussion of this issue in Section 4.2). This technical
difficulty is related to the difficulty of performing the quenched average in statistical
mechanical analyses of learning (Seung, Sompolinsky, & Tishby, 1992). In the absence
of general bounds, we must settle for calculation of the separation functions for some
specific learning problems, to be done in Section 5.

A more positive statement about Theorem 3 is that the dependence of £(e, 6) on e is
captured in the polynomial dependence on l/cKL (e,m) and l/av(e,m). This demon-
strates the importance of the separation functions: good lower bounds on the separation
functions lead to good upper bounds on the required population size. If we can prove, for
instance, that JKL(e,m) is bounded below by e2, then we have shown that l ( e , 6 ) has an
0(l/e4) dependence on e. If, on the other hand, aKL(e,m) grows like e" where n is a
complexity measure such as the Vapnik-Chervonenkis dimension, we face the possibility
of exponentially large population size. Indeed, in the following subsection we show that
this possibility can in fact be realized, and complete our rough characterization of l(e, 6)
by providing a lower bound expressed in terms of the separation functions.

4.4. A General Lower Bound on Population Size

THEOREM 4 Let (F, D, m, A) be any population learning problem. Then

and

Proof: The proof is most easily done for the variation distance; the Kullback-Leibler
lower bound then follows from Theorem 2. Thus let e' — 2e, and let f1,f2 € F be
such that D[f1Af2] > e' and V(qf1 ,qf2) = 0-y(e',m). Such functions must exist by
the definition of o-v(e',rn). Let P be a population learning algorithm requiring at most
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l calls to the oracle POP(f) to obtain error smaller than e (for some small constant 6)
for any f e f.

To prove the lower bound, we will choose the target function randomly between f1

or f2, and we may assume without loss of generality that under these conditions, P
outputs either f\ or f2. Let us define two complementary sets of l-tuples of functions
in F: Tf1 = {T C Fl : P(T) = f1} and Tf2 = {T C Fl : P(T) = f2}. Here
P(T) e {f1, f2} is the output of algorithm P when the sequence T = ( h 1 , . . . , h l ) is
returned by the oracle. We assume that P is deterministic; the same proof holds with
only minor modification if P is randomized. Thus, Tf1 is the set of all sequences of l
functions causing P to output f\, and similarly for Tf2.

We now analyze the probability (over the random choice of f1 or f2 as the target
function /, and the subsequent random choices of POP(f) from q/) that algorithm P
outputs the wrong function; notice that if this event occurs, the error of P's hypothesis
is at least e'. We may write

Here we have used the equality Now

Now it is not hard to show that for any A, A', B, B' < 1

Applying this to the above equation gives

Now the first term in this final expression is bounded above by <Tv(e',m), and so by
induction the sum of the two terms is bounded above by i • ov(e',m). Thus
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The expected error of P is thus |(1 - l • (v(e',m))e'. Thus to obtain expected error
smaller than e = e'/2 requires l = f ( l / rv (2e , m)), as desired. D

Note that we suspect the existence of stronger lower bounds, since Theorem 4 lower
bounds only the dependence on the separation functions. It seems plausible that a lower
bound also incorporating dim(Q) is the right answer, but the given bound is sufficient
for an initial characterization of population size.

Let us review where we are. At this point we have shown that the population size is
roughly characterized by rv (e ,m) or rKL(e, m) and the dimension term dim(Q). A
natural question to pose is how different are the given bounds from the usual bounds
on the number of random examples required for learning from examples? The answer
to this lies in how dramatically the separation functions may contract distances. For
instance, if we could somehow prove that for any population learning problem we have
<Jv(e,m) > e2 then we would have shown (at least for finite classes, where dim(Q) is
bounded by log \ F \ ) that the population size required for learning is always polynomially
bounded by the number of random examples required for learning.

Unfortunately, and not surprisingly, the answer is not so simple in general, as the sep-
aration functions can greatly contract distances. For instance, one can show that for F
the class of all parity functions over n boolean variables, D the uniform distribution over
{0, l}n, and for small values of m, even when the agent algorithm A is the Gibbs algo-
rithm we have c r ( 1 / 2 , m) < l/2n (in this problem, e = 1/2 is the only relevant value
since every pair of target functions disagree on 1/2 the inputs). Theorem 4 immediately
implies an exponential lower bound on the population size for this problem, whereas it is
well-known that O(n] random examples suffice for learning from examples. Thus, given
a population learning problem, in general we must expect to make a specific argument
for polynomial population size.

In the Section 5, we make such arguments for several population learning problems
by lower bounding a separation function. In doing so, we illustrate a case where it is
possible to analyze the effects of increasing the agent sample size m, and a case where
we can prove small population sizes regardless of the agent algorithm A.

4.5. More General Learning Models

It is worth noting that all of the theory we have developed in this section for the population
learning model can actually be applied to a much more general setting of learning from
secondary data. The only properties of the population learning model that we have used
in this section are:

• The existence of a primary metric space Z. In the population learning model, the
primary space was Z = F and the metric was simply that induced by the distribution
D.
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• The existence for each z € Z of an induced distribution qz over some secondary
abstract data space Y. In the population learning model, for f e F, qf happens to
be over Y = F, and is defined by POP(f).

Thus in general, we could study the problem of learning a point close to a target point
z e Z when given access only to qz. The separation functions can be defined, and both
our upper and lower bounds will apply to this more general setting.

5. Applications of the General Theory

We now give polynomial upper bounds on the population size required for several popu-
lation learning problems of interest. The general approach is to lower bound a separation
function and then apply Theorem 3. It should be noted that since Theorem 3 is obtained
by Haussler(1992) in an extremely general setting, we suspect the existence of consid-
erably better upper bounds than those we provide here; for now, however, we restrict
our efforts towards proving polynomial bounds, leaving improvement of the polynomial
degree for future research.

5.1. The High-Low Game with Any Agent Algorithm

Recall that in Section 3, we argued that in the high-low game with agent sample size m =
1, it was impossible to obtain an upper bound on population size that held simultaneously
for all consistent agent algorithms. In the following theorem, we show that with m — 2,
we can obtain such a uniform bound. We include a proof sketch that is illustrative of
the type of reasoning used to prove such bounds.

THEOREM 5 Let F be the class of initial intervals over [0,1], and D the uniform
distribution on [0,1]. Then for any consistent agent algorithm A, the population learning
problem (F, D, m = 2, A) satisfies l (e , 6) = O(l/e8 log 1/e + log 1/6).

Proof: We demonstrate that the separation function for the variation distance obeys
q(e,2) = f (e2) ; the stated upper bound on l ( e , 6 ) can then be obtained as outlined in
Section 4.3 and Theorem 3.

Let / 6 [0,1] be a potential target function. Recall that in the population learning
problem (F, D,m = 2, A), POP(f) draws two points uniformly from [0,1], labels them
according to /, and applies the consistent agent algorithm A to the resulting sample to
obtain the returned hypothesis h € [0,1]. Without loss of generality, we will use XL to
denote the smaller of the two chosen sample points, and XR to denote the larger.

To prove that av (e, 2) = 0(e2) it suffices to show that for any e and any target functions
f1 ,f2e [0,1]1   such that D[f1Af2] > t, V(qf 1 , qf2) = Q(e2). For S, SL, SR C [0,1], let
us use qf \S\XL 6 SL,XR € SR] to denote the probability that qf generates a hypothesis
h falling in S given that in the two-point sample, XL fell in SL and XR fell in SR.

For f1,f2 satisfying D[f1Af2] = e (let us assume without loss of generality that
f1 < f2 = f1 + e). we first have that for any 5 C [0,1],
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This is because the behavior of POP(f) depends only on the labeled sample, and not
directly on the target function, so as long as both f1 and f2 give the same labeling to
the sample the conditional distribution of hypotheses is identical regardless of which
function is the target.

Now let z be the midpoint between f1 and f2, so z = (f1 + f2)/2 = f\ + e/2. It is
easy to see that

and

Furthermore, the probability that XL 6 [ f 1 , z ] and XR & [ z , f 2 ] is e2/4. Thus, if we
restrict our attention only to the conditional cases of XL and XR discussed so far, we
have found two regions on which qf1 and qf2 differ by 0(e2): that is, qf1 is e2/4 more
likely than qf2 to generate a hypothesis in [0,z] and qf2 is e2/4 more likely than qfl

to generate a hypothesis in [z, I}. It is fairly straightforward to show that the remaining
cases of XL and XR do not alter this difference, thus giving qfl [[0, z}} = qf2 [[0, z]] + e2/4
and gf2 [[z, 1]] = af1 [[z, 1]] + e2/4. Either of these suffice to show V(q f 1 , qf2) > e2/4,
as desired. D

Better upper bounds for this problem may be possible by direct analysis of the Kullback-
Leibler separation function. The proof of Theorem 5 also provides a case where it
reasonably straightforward to analyze the beneficial effects of increased agent sample
size TO. In the proof, we lower bounded rv(e, 2) by the probability we drew a sample
XL ,XR such that XL [ f 1 , z ] and XR e [ z , f 2 ] . The arguments given hold for any
m, but now the probability that we draw a set 5 of m points from D such that there
exists X L , X R € S satisfying XL € [ f 1 , z ] and XR e [z,f2]can be lower bounded by
1 — 2(1 — e/2)m « 1 — eacm for some constant a. Thus in the high-low game, for any
consistent A and any m we have rv(e, m) > 1 — eacm, giving considerably improved
population size upper bounds for large m via Theorem 3. This is a rare case where we
can precisely quantify the effects of increasing TO, as opposed to the general situation
discussed in Section 4.2.

5.2. Conjunctions with Gibbs and Any Distribution

The high-low game is a one-dimensional learning problem, so we have not examined
the potential effects of high dimension on the separation functions (other than for the
class of parity functions with small agent sample size in Section 4.4, where we saw that
the contraction of distance was exponentially small in the dimension). We now examine
some population learning problems in high-dimensional spaces and find that often the
effects are rather modest, and still permit polynomial population size. We begin with
the well-studied class of boolean conjunctions, for which we can actually obtain a bound
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that holds simultaneously for any fixed distribution. Here we restrict our attention to the
m — 1 case.

THEOREM 6 Let Fn be the class of all monotone conjunctions over n boolean variables,
and let D be any distribution over {0,1}n. Then for the population learning problem
(F,D,m=l,A= Gibbs) we have l(e, 6) = O(n5/e* log n/e + log 1/5).

Proof: We proceed as usual by demonstrating an appropriate lower bound on rv(e, 1).
Thus, let f1 and f2 be any monotone conjunctions, and let .D[ f1Af2] = e. Let T1 be the
set of variables appearing in f1 but not in f2 and let T2 be the set of variables appearing
in f2 but not in f1. Let e1 be the probability with respect to D that an x is drawn
satisfying f1(x) = 1, f2(x) = 0 and let e2 be the probability that f1(x) = 0, f2(x) = 1;
note that e1 + e2 = e.

First let us describe the behavior of the Gibbs algorithm in this context. Given a
positively labeled x, a random consistent hypothesis is obtained by randomly choosing a
subset of the variables set to 1 in x, and forming the conjunction of this subset. Given a
negatively labeled x, a random consistent hypothesis is obtained by choosing a random
subset of all the variables, then rejecting the trial unless the chosen subset contains at
least one variable set to 0 in x.

To demonstrate a difference between qf1 and qf2 we may restrict our attention to points
where f1 and f2 disagree. Thus, suppose that f1 is the target and we draw x such that
f 1 ( x ) = 1, f2(x) = 0 (which happens with probability e1). Then the expected number of
variables in T1 chosen by the Gibbs algorithm is |T1|/2 (since all these variables must be
set to 1 in x), and the expected number of variables in T2 chosen is at most (|T2| —1)/2
(since at least one variable in T2 is set to 0). On the other hand, if f1 is the target and
we draw x such that f 1 ( x ) = 0, f2(x) = 1 (which happens with probability e2), then the
expected number of variables in T1 chosen is at least |T1|/2 (the fact that T1 contains
at least one variable set to 0 can only introduce a bias towards larger subsets), and the
expected number of variables in T2 chosen is |T2/2 (since all variables in T2 must be set
to 1 in x). If for any monotone conjunction h, we let x1(h) denote number of variables
in h appearing in T1, these facts are easily combined to give

By symmetric arguments, if X 2 ( h ) denotes the number of variables in h appearing in T2,
we have

Since either we may assume without loss of generality that
Now
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where we have used the fact that x1(h) < n always. Thus we have V(qf 1 ,q f 2 ) > e/8n
or rv(e, 1) > c/8n. Application of Theorem 3 then yields the stated bound on £(e,$).

5.3. Learning from a Population of Perceptrons

The population learning formalism can also be applied to the learning of homogeneous
linear threshold functions (perceptrons) with respect to a spherically symmetric input
distribution. This learning problem is nontrivial, yet analytically tractable, so that the
Kullback-Leibler divergence can calculated to within very tight bounds for the case of
agent sample size m = 1.

THEOREM 7 Let fn be the class of homogeneous linear threshold functions on Rn+l,
and let D be any spherically symmetric distribution over Rn+1. Then for the population
learning problem (Fn, D, m = 1, A = Gibbs) we have

Proof: Each perceptron in the concept class is parametrized as sgn(u; • x), where w 6
Rn+1 is constrained to lie on the unit n-sphere Sn (the magnitude of w does not matter).
As shorthand notation, we will refer to a perceptron by its weight vector w. We assume
a spherically symmetric input distribution D on the input space X = Rn+1. The angle
#12 between two unit vectors w1 and w2 is defined by w1 • w2 = cos 613. It is easily
shown that the probability of disagreement between two perceptrons is proportional to
/)
f i o .

This result depends on w1 and w2 only through the angle #12 because of the spherical
symmetry of the input distribution D.

For the case m = 1, the ratio of the probability density dqw1 to the uniform density
dqo is proportional to 1 — D[wAwi], that is,

because all version spaces determined by a single example have the same volume. The
normalization constant 2 is set by noting that the expectation of D[wAwi] for w drawn
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according to dq0 is 1/2. An analogous result holds for dqw2. In this continuous setting,
the Kullback-Leibler divergence is defined by

In the appendix, this is evaluated using spherical coordinates. The resulting integral can
be tightly bounded for large n using Laplace's method. The result described by Equation
(7) depends on w1 and w2 through their angle, and implies

for small e = D[wi&W2\. In particular, this implies that the separation function
&KL(e, 1) = i(e2/\/n). The only obstacle to application of Theorem 3 is the lack
of a simple bound on dim(Q) due to the infinite cardinality of F. However, by con-
structing a maximal e-separated set in F, we can obtain a finite concept class F' of
cardinality £>((l/e)n), the learning of which is equivalent to the learning of F. This
construction leads to a bound on l (e , 6) that is equivalent to that provided by Theorem 3
with the substitution of dim(F') = 0(nlogl/e) for dim(Q). D

6. Future Research

There are many open problems in the population learning model. Here is a small sam-
pling:

• Effects of Agent Sample Size. It would be nice to prove general quantitative theorems
regarding the effect of increasing the agent sample size m. This is perhaps the most
important open problem, and some of the difficulties involved in its solution were
discussed in Section 4,2. For instance, for the high-low game in Section 5, we
showed that o v(e,m) grows like 1 — e~aem; can we give general conditions under
which such exponential behavior occurs?

• Natural Algorithms. The maximum likelihood or empirical loss minimization pro-
cedure we proposed, while providing very general upper bounds on population size,
does not seem like the most natural method of combining hypotheses. On the other
hand, we know that certain intuitive methods such as majority vote fail. It would
be interesting to obtain good upper bounds on other natural approaches, such as
weighted voting schemes.

• Bounds on dim(Q). We suspect that except for degenerate classes, the combinatorial
dimension dim(Q) can be bounded by a slowly growing function of the Vapnik-
Chervonenkis dimension of F. It would be interesting to give conditions for this.
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Technical Appendix

This appendix gives the details of the calculation of the Kullback-Leibler divergence
between two densities dqw1 and dqw2 induced on F by two perceptrons w1 and w2 . We
parametrize the concept class F = Sn using spherical coordinates:

Here and The spherically symmetric measure
on is given by

where the normalization constant An is the area of 5™, or

To write the densities dqw1 and dqw2 in spherical coordinates, we first align our co-
ordinate system so that w1 = ( 0 , . . . , 1) and w2 = (0, . . . ,sin0i2,cos#i2), which is
consistent with w 1 - W 2 = cos 612. This choice of coordinates, which involves no loss of
generality, leads to

For the sequel we define

for notational brevity.
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Substitution of this result in Equations (2) and (3) yields the induced densities

In spherical coordinates, the Kullback-Leibler divergence of Equation (4) takes the form

The last equality was obtained by performing the integral over d</?n-2 • • -dtpi, yielding
An-2, the area of Sn - 2 .

For large n, we can derive an asymptotic expansion for this integral using Laplace's
method (Erdelyi, 1956):

LEMMA 2 (Laplace's Method) Let

where X is a large positive parameter and the integration domain I in RN contains some
neighborhood of the origin. If the minimum of f in I is at the origin, f and g possess
fourth-order Taylor expansions about the origin, and the Hessian of f at the origin is
positive definite, then

where f2 and g2 ore the second-order Taylor expansions of f and g.

The proof of this lemma can be found in many textbooks, but the intuition behind
it is simple. As A becomes large, only the neighborhood around the minimum of /
contributes to the integral. Hence the integral can be approximated by Taylor expanding
f and g.

The integral of Equation (5) can be put in the form of Equation (6) by setting / =
— logcosipn-i ~ logcosi^n, A = n - 1, and g equal to the rest of the integrand. We
Taylor expand / and g to second order, and perform the resulting Gaussian integrals,
yielding

where we have used
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