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We examine the case when equally sized small moons arrange themselves on the
vertices of a regular n-gon for n > 7. For n > 4, there are at least 3 pure imaginary
characteristic exponents, each of which has multiplicity = 1, a surprising result
that makes it possible to apply the Lyapunov center theorem to verify the exist-
ence of some periodic perturbations. For sufficiently large n, when the regular
n-gon is the unique central configuration, the number of families of periodic
perturbations is at least equal to 2n — \_(n + 1 )/4J, where |_xJ is the greatest
integer less than or equal to x.
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1. INTRODUCTION

In the essay "On the Stability of the Motion of Saturn's Rings," which
James Clerk Maxwell submitted for the Adams Prize in 1855, he discussed
the linear stability of a singular planetary ring system made up of moons
of the same mass surrounding a central mass. He formulated the necessary
condition that the central mass be sufficiently larger than the total mass of
the moons (Maxwell, 1983). His analysis of the system, which was a
regular polygonal configuration, also yielded the following equation for the
characteristic exponents of the linearized equations of motion:

where a1 and a2 are constants that depended on the central mass, the
angular velocity, the mass of each moon, and the number of moons, n.
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Because of a minor error in his computations, allowing Maxwell to mis-
calculate one of the characteristic exponents, he missed discovering a
necessary condition for the linear stability of the ring system, that n > 7,
which Moeckel (1994) proved.

This ring system, which is sometimes referred to as Maxwell's Ring, is
an example of what we call a relative equilibrium because, for an
appropriately chosen uniformly rotating coordinate system, Maxwell's ring
becomes a restpoint of Newton's equations of motion. Hall (1997) detailed
a necessary condition for the existence of relative equilibria emanating from
a limiting configuration where the mass of each moon has tended to 0.
Dealing with the so-called (1+n)-body problem, Hall showed that the
relative equilibria of the (1 + n)-body problem must necessarily be a critical
point of some potential function. He proved that, for sufficiently large
values of n, the only relative equilibrium that can exist is Maxwell's ring.
He also showed that there can be other relative equilibria when n is small.
As an example, when n = 3, there are two other relative equilibria besides
Maxwell's ring.

The aim of this paper is to determine the existence of periodic pertur-
bations to Maxwell's ring. The main result used is the Lyapunov center
theorem, which requires certain information about the eigenvalues of the
linearized equations. It is shown that, when n is sufficiently large, the eigen-
values turn out to be pure imaginary and distinct except for a pair of null
eigenvalues. This is actually enough to show that there is at least 1 periodic
perturbation. But it is shown that the actual number is at least
2n — [_(n + 1 )/4J where [_x j = the greatest integer less than or equal to x.

2. PRELIMINARY EQUATIONS

2.1. The Equations of Motion

For i, j = 0, 1,...,n, let x i , x j e R2 and r i j=|x i — x j|, the Euclidean dis-
tance between xi and xj. Consider the Newtonian potential function U with
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where mi = the mass of the body at xi. The equations of motion for the
Newtonian 1 + n body problem is given by

where Vi represents the partial gradient with respect to xi.
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Let Xi = ( x i 1 , xi2) = (r i-cos 0i, ri sin 0i). Using the chain rule,

Also,

Define F i ( r , 6 ) = ( 1 / m i ) ( d U / d r i ) and G i ( r , 8 ) = ( 1 / m i r i ) ( d U / d 6 i ) . Hence, by
Eq.(3),

which is a system of 2n + 2 equations.
For a given relative equilibrium, we can choose r i ( t ) = ri and

0 i ( t ) = wt + 9i, where ri, 9i, and w are real and depend only on m0,
m1,..., mn. Thus at a relative equilibrium, it follows from Eq. (4) that

Let m0 = 1 and m1 = m2 = • • • =mn = e, where 0 < e « 1, and without
loss of generality, set the center of mass at the origin, £i=0 mixi = 0, so
that

For each s > 0, denote a corresponding relative equilibrium xe and let x0

be the limit of such equilibria as £ -»0. Hall found that x0 must necessarily
be a critical point of the function

where
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By treating x° as a critical point of V, it is possible to prove the existence
of certain families of relative equilibria for s > 0 emanating from x0 when-
ever the nullity of the Hessian matrix ( d 2 V / d 0 i / d d k ) at x0 is at most 1. For
example, the nullity of this matrix for Maxwell's ring is known to be
exactly 1. Furthermore, we can discard the lone 0 eigenvalue by using a
technique outlined by Siegel and Moser (1971). As a result, the families of
relative equilibria turn out to be analytic in e as well. By choosing an
appropriate uniformly rotating coordinate system, we simply set

for Maxwell's ring.
In order to examine the nonzero eigenvalues for the rest of paper, we

need the following important theorem. Let J = (_?/ Q).

Theorem 1 (Lyapunov Center Theorem). Consider a Hamiltonian
system w = JVH(w), where H(w) = 1 WT Kw+ O(|w|2) , a real power series in
some neighborhood of w = 0 with JK having the 2n eigenvalues Al, I2,..., ^n,
— A1, — A2,..., —!n. Let A1 be pure imaginary, with Aj//1 not an integer for

j> 1. Then there exists a family of real periodic solutions to the Hamiltonian
system which are analytic with respect to a real parameter a > 0 with period
•c(a) which is also analytic in a and r(0) = 2^/|A1|.

The reader should refer to Siegel and Moser (1971) or Chow and Hale
(1982) for the details of the proof of the theorem, which we refer to as
LCT.

2.2. The Main Results

We now present the main results that we wish to prove. Because of the
symmetries of Maxwell's ring, it is not unreasonable to think that certain
eigenvalues may be repeated, rendering the LCT useless and perhaps making
the problem of deciding the validity of Theorem 1 extremely difficult if not
impossible to resolve. Fortunately, this was not the case as indicated by the
following surprising result.

Theorem 2. The nonzero eigenvalues of Maxwell's ring for n > 7 are
distinct. This theorem makes it possible for us to conclude that periodic
perturbations to Maxwell's ring can actually exist.
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Definition 1. An open subset £ of R is said to be a segmented inter-
val if / = Uk=1 ( f i k , £k + 1), where ek -»0 as k -> oc. If ̂  is nonempty, then
we say that g is a n-s.i. (nonempty segmented interval).

Theorem 3. For Maxwell's ring and n > 7, there exists a n.s.i. / such
that, whenever E e j, there exists at least one family of periodic perturbations
to uniform motion. These perturbations are analytic in e.

Finally, we have the following.

Theorem 4. For Maxwell's ring and n>7, there are at least
2n — |_(n + 1 )/4 J families of analytic and periodic perturbations.

The eigenvalues that we have to study are the eigenvalues of the
linearization of (4) after we eliminate the 0th body from the equations. We
accomplish this by using (5), leading to the following set of equations: for
i = 1 to «,

which is a reduced system of 2n equations. Let u = r and v = 6. Then the
first-order system of differential equations corresponding to (4) is given by

Using Eq. (7), we define the following matrices:

It is important to realize that FB is not the same as Gr and that the matrices
above are not submatrices of the Hessian of V.

If we linearize (8) about the relative equilibrium where ri=1,
9t = (2ni/n), and 0 = w, the resulting system is given by
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The eigenvalues that we need will be precisely the eigenvalues of the coef-
ficient matrix above evaluated at Maxwell's ring.

The equation for the eigenvalues /I is, then, given by

P(A) is known to be an even polynomial (Siegel and Moser, 1971).
Near e = 0, we find that

where A, B, C, and D, are independent of e. With co= 1 + O(e), it follows
that

which leads us to believe that

Each of the eigenvalues does have one of these forms, and we classify these
eigenvalues as class (0) or class ( - 1 ) , respectively. A few lemmas are now
in order.

Lemma 1. Let lk be a nonzero class (0) eigenvalue. Suppose that
Ck = Cj implies that either j = k or lk = Aj. If £keR + , then yk is pure
imaginary.

Proof. Let £k = £j with j = k. Then lk = kj. Also, km=-Xk is an
eigenvalue since P(A) is an even polynomial. Because £k = £m, lk =
Am = — ^ k . This can happen only if 2k is pure imaginary. D

A similar proof leads to the next lemma.

Lemma 2. Let hk be_class ( — 1). Furthermore, suppose that Ck = £j

implies that either j = k or lk = hj, If £keR, then hk is pure imaginary.
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Remark 1. Note that if hk is class (0) and /lj is class ( — 1), we can
see that U2/y2), cannot be an integer for small values of e>0.

Suppose

For sufficiently small values of s, the left side of Eq. (12) is monotonically
increasing as E -> 0. Thus, there exists e0j > 0 such that, given m e Z, there
is at most one value of £e(0 , e 0 j ) that satisfies (12) . Furthermore, these
values of s, as m ranges over all the integers, are isolated. Since, for each
n, there is only a finite number of class ( -1) eigenvalues, we can find
E0 = min j{£0j} that will work for all class ( — 1 ) A , - . As such we have just
proven the next lemma.

Lemma 3. Let Aj be class ( — 1) and A k =0 be class (0). Then there
exists a n.s.i. y such that, for every E€/, (tj/Xk) is neither an integer nor
the reciprocal of an integer.

We, also, have the following result.

Lemma 4. Let lj and Xk be two class ( — 1) eigenvalues with £j = (k.
Then there exists a n.s.i. y such that, for every ££ /, ( X j / X k ) is neither an
integer nor the reciprocal of an integer.

Proof. Suppose £ k <£ j . If £>0 is sufficiently small so that | A 2 + 1 | ,
|A2+1| <1, then ( A y

2 / 2 ) = (l-<y j+ O(£2))/(1-e^k+O(e2))=1+£(Ck-0 j)
+ (fi2) . We can choose £ so that

in the last equation. Therefore, 1 <(/l2/^) < 1 + 1 + 5. So ( A 2 / A 2 ) cannot
be an integer. Obviously, the reciprocal is also not an integer. D

If £ is sufficiently small and (k > 0, then
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Eventually, we need to examine the higher-order terms of X and, there-
fore, the matrices A, B, C and D in Eq. (10). Let

where 6ij = 9j — 6i. If A = (aij), etc., then for Maxwell's ring,

These formulas were obtained with the help of Mathematica. Note that
C — D is skew-symmetric.

3. MAXWELL RING

3.1. Preliminaries

Maxwell had already shown that when n > 7 and if £ is small enough,
then with two exceptions that he left out, the eigenvalues of the linearized
system are 0 or pure imaginary. The two unaccounted eigenvalues turned
out to be a conjugate pair of pure imaginary eigenvalues. We also remark
that if 3 < n < 6, exactly four of the eigenvalues have nonzero real parts
(Moeckel, 1997). Let r,= 1 and 0j = (2nj/n] for 7= 1, 2,..., n.

Lemma 5. For n>7 and for sufficiently small e > 0, except for a pair
of zero eigenvalues, all the roots of P(X] = 0 are distinct.
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The proof of the preceding lemma is spread throughout the rest of the
paper. First, we provide a few preliminary definitions and lemmas. For
n>4 and 0>k<n-1, let

Note that a0= —a 1 .

Lemma 6. For n > 7,

(a) If 1<k<(n+1) /2 , then ak>0. Equality holds only if k =
(n + 1)/2.

(b) If 1 <k<n, then a k = - a n _ k + 1.

(c) if 1<k(n-1)/2, then ak +1-ak = }}Zj=1(2/Sj)cos[(2njk/n)]

(d) If 1 < k < (n — 1 )/2, then <Tk — <rk-1 > ak +1 - ak.

(e) a2>a\ for n>7.

(f) a1 < (2n/n) £<"_-,1>/2 (1/j) for n > 3.

Proof. The proofs of parts (a), (b), and (c) of the lemma are given
by Perko and Walter (1985). Also, the proof for part (d) was done for
2 < k < (n — 1 )/2. For k=1, using part (c) and the definition of a0, we have
that

which completes the proof of part (d).
For part (e),

In order to estimate the last quantity, we apply the trapezoidal rule to
obtain the following:

Hence, (2n/n) £;~,1 S^4 + (t3/6n2) so that 2 £;-,'S,.<(4n/rc) +
( n 2 / 6 n ) < ( 4 n / n ) + 1 if n>4. Since 0<(n j /2n) <n/2 for7= 1, 2,..., w - 1,
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for n > 3. The last quantity is bigger than 8.32n/?r if n > 9. Therefore,

if n > 10. We can directly verify that part (e) also holds for n = 7, 8, and 9.
Part (f) follows from (17). O

Definition 2. Let J = f(A-) be defined on an open interval (a, b). We
say that f is concave if f(x0 + n(x 1 -x0)) > f (x 0 ) + > ( f ( x 1 ) - f(x0)) for
x, x1 e(a, b) with x0<x1 and //e(0, 1) (Fig. 1).

Corollary 1. Let 0 < k < ( n + 1 / 2 ) . If the point (k, ak] is connected to
the point (k + 1, a k + 1 ) by a line segment Lk, then Jk Lk is a concave graph.

Proof. Since \Jk L is a polygonal curve determined by the vertices
(k, a k ] , we need only to show that ( r k > ( ( r k + 1 + a k _ 1 ) / 2 . This is immediate
from Lemma 6(d). D

Fig. 1. The graph of a concave function.
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Fig. 2. The graph of (Jtk Lk for 0 < k < 10 = (n/2) for n = 20.

The graph of Uk L for n = 20 for 0 < k < 10 = (n/2) is given in Fig. 2.

Corollary 2. Let 1 < k < (n - 1/2 with k = (n/2) - 1. Then ak+1

ak-1 >Vk + 2-ak .

Proof. Using Lemma 6(d), we have ak — ak-1 > ak + 2 — ak +1 for
1 <k<(n-3)/2. By Lemma 6(a, b, d), this is also true if k = (n- 1)/2. The
corollary follows immediately. D

3.2. The Class (-1) Eigenvalues

Using Eq. (9),

If A2 K - 1, let A2 = -1 + st. where af -> 0 as e -» 0. If £ > 0 is small
enough, then A= +i[1 — 1eC]- We can also choose e to be small enough
that A 2 <- 1 so that (G0-^2I) - 1 = (eB-/l2I+ O(£2))- 1 exists and is
given by
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Using this equation and Eqs. (10) and (18),

Hence, examining the O(s) part of Eq. (19), it must be that £ — Sw1, tends
to an eigenvalue £ — 3co1 of the matrix A +4B±2i(C— D). It is enough to
consider the eigenvalues of A + 4B + 2i(C — D). In order to see this, we
need to exploit the fact that the matrices A, B, C, and D are all circulant.

Definition 3. We say that an n x n matrix Q — (qjk) is circulant if and
only if q ( J + 1 , k +1) = qjk, where we take q ( n + j , k ) = q ( j ,n + k ) = qjk.

The eigenvalues ek and the eigenvectors vk for k = 0,1,2,..., n —1 of
such matrices are given by

Because they have the same eigenvectors, A, B, C, and D are simulta-
neously diagonalizable. Thus, £k — 3w1 = cnk + 4( k + 4yk, where

are the eigenvalues of A, B, and 1(C — D), respectively. Let

then ocn = a0. Similarly, /?n = /?0 and yn = y0. We now have the following
lemma.

Lemma 7. For n^3 and for k = 0, 1,..., n — 1, we have
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Proof. Using Eqs. (15) and (19),

The imaginary part has dropped out from the last equation because of
symmetries. Since cos[(2njk/n)] = cos[(2nj(n — k}/n)],

which proves part (a) of the lemma. A similar procedure can be used to
show that parts (b) and (c) are also true. D

Corollary 3. y0 = 0.

Proof. From part (c) of the preceding lemma, y0= —y0. D

Remark 2. Note that with part (c) of the preceding lemma, we need
only to consider the eigenvalues of the matrix A +4B + 2i(C— D).

From (15) and (19), the eigenvalues of A + 4B+2i(C-D) are

Lemma 8. If n>7, £k-£n-k+1 for 1 < k<n/2.
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Proof. By (22),

where

Only the real terms remain in (23), giving the following:
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Thus from (16),

By Lemma 6(a), the right-hand side of (25) is positive if 1 <k<(n/2).
Using Lemma 6(b) for £ = («/2), C(n/2) -;(n/2) + 1 = |o-(B/2) + iX«/2) + i +
16ff(»/2)-l = Hicr(»/2) + T60-(n/2)-|,which is also positive.

For /c= 1, set £„ = £„ and use Eq. (24) and Lemma 6(bj to get

Lemma 9. If 1 < k < (n- 1)/2, then £*-£„-*• <0 f or < 27.

Proof. Applying a procedure similar to that used for (22) and (23),

Also, Ci — Cn-1 =2n — 3 (02+ C1), which is negative if n > 27 by Lemma 6(e, f).
n

Remark 3. We can verify by direct computation that C i ~ C « - i > 0
for 7<n< 11 and that £i -Cn-1 <0 when 12<«<26 (Fig. 3).

Lemma 10. C0, C1, Cn- i ̂ ^ distinct for n^l.

Proof. For H^ 12, we have that £o<d by Lemma 8. First, suppose
that n is even. Hence, C 2 > U - n C 3 > C K - 2 C n /2>C n / 2-n- BY Lemma 9
and Remark 3, C i < C n - i , C2 <C n - 2 .— Cn /2-i <Cn/2 + i- So that C0, C i - C n _ i ,
£2—. Cn C»-*v.., C»/2 + i, U/2 is strictly increasing.

If « is odd, then by Lemma 9, Co, Ci, C«- i , C2,-, f*, £„-* Cn + i/2 is
strictly increasing.

For w = 7, 8, 9, 10, and 11, we can directly verify that either
Co, t»-l i < = ] , ^2' —, t*' <,„-/[,—•, <,a/2+l ' C«/2 °r SO, C«- l • SI, S2v, t*< Sn-*' —'

Cn +1/2 is strictly increasing. D
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Fig. 3. £* - Co vs k for n = 7 and n = 20.

Remark 4.

(a) Because of the last lemma and Lemma 2, the class ( — 1) eigen-
values for Maxwell's ring must be all imaginary when n ̂  7. Also,
the LCT is applicable to the n class (— 1) eigenvalues, resulting
in n families of periodic perturbations analytic in £.

(b) By the implicit function theorem, one can show that each con-
jugate pair of class ( — 1) eigenvalues represents an analytic func-
tion of e.

3.3. The Class (0) Eigenvalues

It is not enough simply to show that these eigenvalues are distinct
because of the variation in the lead coefficient £k at O(s), which happens
to be the lowest order. Nonetheless, it is still possible to prove the existence
of periodic perturbations for the class (0) eigenvalues. We show that the
cardinality of this subset tends to (3n/4) as n -> oo. As usual, we proceed by
examining the coefficients in the expansion of A2 in terms of e;

Using (9),
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Using (10),

Let l\= -eC* for k = 0, 2,..., « - 1. With co=\ + \EWI + O(e2) and if £ is
small enough, then

Therefore,

Hence, £ tends to an eigenvalue of 35 as e -> 0. We have just proven the
following result.

Lemma 11. For «^3, every class (0) eigenvalue A can be written as
X2 = E(( + K), where K -» 0 as e, —> 0. The values of ( are precisely the eigen-
values of 35.

Lemma 12. For Maxwell's ring, ifn^l, then

(a) Co, Civ, CL«/2j >s a strictly increasing sequence.

(b) The class (0) eigenvalues are at most pairwise equal.

Proof, (a) If 1 ̂ £^U/2J, the next set of equations follows from
Lemma 11, Eq. (15b) the definition of ak, and some trigonometric iden-
tities,
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so that

which is positive if 1 < k < ( n — 3 )/2.
Suppose that k = (n/2) — \. Applying Lemma 6(b) to (29),

Therefore, the sequence C l v . . , CL«/2j 's strictly increasing.
We need to show only that Co<d- Now

since a2>al for «>7. Applying Lemma 6(f) , the last quantity above is
positive for «^11. We can directly verify that ^CT, + ^a2 — (n/2) is
positive for n = 7,, 8, 9, and 10.

(b) That the class (0) eigenvalues are at most pairwise equal follows
from part (a) and Lemma 7. D

Corollary 4. For n>7 , the following hold:

(a) For k = 0,.., n - 1, £* > 0. Equality holds only ifk = Q.

(b) If n is even, then £(/1/2) > (k if k^(n/2).

(c) If n is odd, then C ( n - i ) /2 = f(n + iy2>C* if k^(n-\)/2 and
k*(n + l)/2.

Proof. By Lemma 12, Co> Civ, CLn/2j is a strictly increasing sequence.
Therefore, by Lemma 7, the sequence C,-Ln/2j, CB-L n /2j + i.-« C«-i is
strictly decreasing.

(a) Using the definition of £*, Eqs. (15b) and (20), we get (o = 0' The
fact that („_ , = Ct > 0 = C0 completes the proof of (a).

(b) If n is even, then n\_n/2 j = n/2, so that Cn/2 is indeed the unique
maximum.

(c) If » is odd, then «-|_«/2J = (« + l)/2. Also, L«/2J = («- l)/2.
Therefore, by Lemmas 7 and 12, £<«-i)/2 and C<« + i)/2 represent
the maximum value of C, completing the proof of the corollary
(Fig. 4). n
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Fig. 4. C*- os k for « = 20.

Remark 5.

(a) We can see immediately that, if n is even, the nonresonance con-
dition of the LCT holds for the index n/2.

(b) For 4<«<6, we can verify directly that Lemma 12 is also true
if we exclude the index 0. The fact is that only £, and £ „ _ , are
negative.

For now, the most that we can say about the class (0) eigenvalues is
that they are at most pairwise equal. We now proceed to examine the
higher-order terms of A2.. Let /12= —£(£ + /?), where /c->0 as e-»0. using
(28),

In obtaining the last matrix, we opted to use A* = is1'2 Ck'2 + O(e), which is
made possible by Lemma 7.

Lemma 13. Let X2k = —s(Ck — Kk). Then as e-»0, e~*/2Kk->Kk, which
is an eigenvalue of 2iC,^2(C — D). Furthermore,

865/10/1-5
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Proof. We can assume that the matrices in (30) are all diagonalized
since they are all circulant. In particular, the entire matrix in (30) will also
be in diagonal form. Because (3 — A2)" P(A) = 0, it must be that this matrix
has some rows that have nothing but O's as entries. Likewise, 35 — (,kl must
have some rows that are also 0 since the eigenvalues of 3/f are precisely the
Cfc's by Lemma 11. Since these eigenvalues are at most pairwise equal, there
must be exactly 1 or 2 of these rows that are equal to 0. By Lemma 7, if
the kth row is one such row, then so is the (« — £)th row. Upon dividing
the other terms in (30) by e1/2, the matrix E~l/2KkI-2Ck

/2 i(C-D) +
O(si/2) in (30) should still have either row k or row n — k equaling 0.
Allowing e —> 0, we see that E~ll2ftk tends to an eigenvalue Kk of
2/([/2(C — D). An application of the definition of yk completes the proof.

D

Remark 6.

(a) It should be noted that Kk= — Kn_k while £* = £„-*• Also,
K0 = 0.

(b) If we can show that yk ^0, then the nonzero class (0) eigenvalues
are distinct for sufficiently small values of e. We state this result
in the next lemma.

Lemma 14. If n"^ 21, for k = 0, 1,..., |_«/2J, we have y t^0. Equality
holds only if k = 0 or n/2.

Proof. We already know that y0 = 0 by Corollary 3. For the rest, we
first try to obtain an expression for the successive differences among the
yk's and to get an inequality similar to the one given in Lemma 6(d). Then
we show that yln/2A ^ 0. We have that, for 0 < A: < (n - 1 )/2,
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So that

By Corollary 2, for 1 ^k s£ (n - 1 )/2 with k ^ («/2) - 1, the quantity on the
right increases as k increases. Therefore,

completing the first part of the proof.
Now suppose that n is odd. Therefore, yLn/2j = y(n_i)/2 = — y(n + \v2 by

Lemma 7(c). By Eq. (32) and Lemma 6(b, c), y(n +1)/2 -y (n_ i)/2 =
-R((7(« + 3)/2-c r(«-i)/2) = l< T(n-i)/2- Also, by Lemma 6(a), we find that the
right-hand quantity is positive. Since y ( n _ i ) / 2= — 7(W + i)/2. it must be that
y (»-D/2<0.

Next, suppose that n is even. By Lemma 7(c), yn/2= —Jn/2- Hence,
y«/2 = 0. Using Lemma 6(a, b) and (33), yn/2-y(n/2]-i = TeK^j+i -
Vn/i) = sff«/2 > 0 that y(n/2)-1 < 0.

Next we show that y{ < 0.

To complete the proof, suppose that yk^Q, for some k, with
1 <k<(n/2) — 1. We can also suppose that yk +, — yk>0, which is made
possible by the fact that y^ <0 and that the successive differences form a
strictly increasing sequence. Using Eq. (33), we have the following:

As a result, 0^y f c <y t + 1 <...<7L(n_1) /2J, which directly contradicts what
we have found. Hence, we conclude that yk^Q, for k = 0, I,..., \_n/2J, and
that equality holds only if k = 0 or (n/2) (Fig. 5). D

The following lemma is now immediate from Lemmas 12, 13, and 14.

Lemma 15. For Maxwell's ring, ifn^-1, then the nonzero class (0)
eigenvalues are distinct.

Proof. By Lemmas 7 and 12, equality between the nonzero class (0)
eigenvalues can happen only when Xk = kn_k. Lemmas 13 and 14 make this
impossible. D
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Fig. 5. yk vs k for n = 20.

Remark 7.

(a) Because the nonzero class (0) eigenvalues are distinct for «>7 ,
an extension of Lemma 1 to include Kk leads to the fact that the
nonzero eigenvalues are pure imaginary. Furthermore, each con-
jugate pair corresponds to an analytic function of s ^ 0.

(b) Note that, for the case that n is odd, there is also a unique maxi-
mum absolute value for all class (0) eigenvalues and this corre-
sponds to the index k = (n — 1 )/2.

(c) Applying the LCT, by the preceding remark and Remark 5, if n
is even, there is at least 1 family of periodic perturbations corre-
sponding to the index («/2). If K is odd, then there are at least 2
families of periodic perturbations corresponding to the indices
(n- l ) /2 and («+l ) /2 .

We derive something more substantial than what the preceding
remark states by examining the O(e3/2) a bit more closely.

Lemma 16. If |_(« + 1 )/4J < k < n - \_(n + 1 )/4J, then ak + }< ok.

Proof. Because of Lemma 6(a) and (b), we need to show only that
this is true if |_(" + l)/4_K/c^L«/2J. There are four cases to consider:
« = 0, 1, 2, or 3 (mod 4). Because of Lemmas 6(a) and 6(d), we need to
show only that ^=cr L ( n + 1 ) / 4 J + 1 -<T L ( n + 1 ) / 4 J <0.

First, suppose that n = Q (mod 4). Using Lemma 6(c), we have that
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Because n = 0 (mod 4), we have that COS[TT//H] =COS[TT(«— j)/2]-
Using this and the fact that S/ = S n _ _ j and that n = 0 (mod 4),

This is an alternating sum whose terms are decreasing. Since the lead term
is negative, d < 0.

Next, suppose that n = 1 (mod 4). Let k = (n — l)/4. Using Lemma
6(c),

Using the definition of Sj,

Since 0<(7ij/2n)<(n/2), this is a decreasing alternating sum whose lead
term is negative. Therefore, this part of (34) is negative. The second part
of the sum is

Now this is an increasing alternating sum. The last nonzero term is equal
to sin[(7i/2)(K — 2)]{cos[(7i/2«)(n — 2)]} -1, which is negative since
cos[(7r/2n)(n—2)] >0 and since sin[(n/2)(n — 2 ) ] = -1 because n = \
(mod 4). Hence, the second part of the sum is negative. Therefore, d<0.

The proofs for the two remaining cases, n= 2 or 3 (mod 4), are similar
to the preceding cases and are omitted. D

Lemma 17. For Maxwell's ring, if n>27 and if \_(n + l ) /4J^ / r<
n-L(«-l) /4J, then yk + i>yk.

Proof. For 1 ̂ k^(n — 3)/2, we need to show this only for k =
|_(« + 1)/4J because of Lemma 7(c) and since yk + l — y k is an increasing
sequence. Using Eq. (32), we have



By the preceding lemma, the expression inside the brackets is negative. To
complete the proof, we also have that yn/2-i<^ = Jn/2<0 and —y(n +1)/2 =
7(n-l)/2<0. D

Corollary 5. // ym = min0 < y t < n_, {yk}, then w ^ L ( « + l)/4J for
n^21.

Proof. According to Lemma 17, it must be that m^\_(n + l)/4j or
m ^ n — \_(n + 1 )/4J. Because of Lemma 14 and Lemma 7(c), we also know
that m ̂  L«/2 J. Thus, m ̂  |_(« + 1 )/4J. D

Remark 8. Since y\, ym<® for «>27, and since the (k, — yfc)'s are
the vertices of a concave polygonal graph when 1 ̂  k ^ m, it must be that
7i> ?2v", ym i§ a strictly decreasing sequence.

Lemma 18. If 1<j<k<m,then (yk-yl)/(yj-yl)<(k-l)/(j-1)
for n ̂  27.

Proof, since (yk-yi}l(yj-yi) = (yk-yi)l(yk-i-y\)(yk-i-yi)l
( y k - T . - y \ ) - - - ( y } + \-y\)(yj-y\), it is enough to show that ( y j + i - y t )
( y j - y \ ) < J l ( J - 1 ) - We have seen that yj+l-yj>yj-yj_1> ••• >y2-Vi-
Then

Lemma 19. For n ̂ 27, if(m + l)/2 ̂ j^m, then 0 < (ym/yj) < 2.

Proof. By the preceding lemma, (ym — yl)/(^- — yl} < (m — 1 )/(j — 1) if
j<m. Since 0>yi>yj^ym for «^27, it must be that ( y m / y j ) ^ ( y m - y i ) /
(VJ-y1)<(m-1)/(j-1).And(m-1)/(j-1)<2 if(m + 1)/2<j<m. D

Lemma 20. For n^27, if n—m<j^n-(m + \)/2. 77ze« 0<(y f c /^)
<2.

Proof. The proof is similar to that of the preceding lemma. This time
we make use of the fact that yk= —J(n-k)- ^
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As a result, (j- l ) [ y j + 1 -yj + yj-y^ > j \ _ y j - y i ~ \ . And so, (yj+l-y^l
(yj — y i ) < J l ( J — \ ) - And the lemma follows. D
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Lemma 21. If(m+1)/02<j^.n — (m+1)/2, then there exists a n.s.i
stick that for £= 1, 2, 3,..., n, for every K€/, ^k/^j ^ not an integer for
n<21.

Proof. Without loss of generality, suppose that Xk/kj = d, a positive
integer. Now, d>2 since the class (0) eigenvalues are distinct. If this is the
case for sufficiently small values of £ > 0, it must be that £*/C; = ( y k / y j ) 2 > 4.
We consider four cases:

Examining the O(s3/2) terms, using Eq. (31), it ought to be that j k /y j = d,
which is at least 2. Now }k /} j<0 for ( i i i ) and ( iv ) . Therefore, only (i)
or ( i i ) can occur. If (i) is true, then we cannot have j<m, for this would
contradict Lemma 19. On the other hand, if j>m, then yj< }k < 0 since
these start to increase starting with the index m up to the index n/2. This
is contrary to what we have of lk and Aj and, thus, cannot happen either.
The argument for case ( i i ) uses Lemma (7c) and is similar to that for
case ( i ) . D

The application of the LCT now makes it possible for us to make the
following remarks.

Remark 9. (a) By the preceding lemma and Corollary 5, we now
know that if

then at least one family of periodic perturbation exists, corresponding to
Kk. The number of indices satisfying the above inequality tends to (3n/4) as
n -> oc. This, coupled with the fact that there are at least n families of class
( — 1) periodic perturbations, implies that total number of families of peri-
odic perturbations is, at least, 2n — | _ ( n + 1 )/4_|. This includes only those
that we have verified by the LCT. This also proves Theorem 4.

(b) We can show numerically that, if 4 < n < 6 , then there are n — 3
periodic solutions. It is known that, for these values of n, four of the eigen-
values have nonzero real part.



(c) The question of the remaining approximately n/4 eigenvalues
remains open. The higher-order coefficients [at O(e z)] have turned out to
be extremely more complex than the expressions (,k and Kk in that these
involve not only sums but also products of the eigenvalues of A, B, C, and
D, so that patterns, if any, are much more difficult to discern.
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