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Stability and Instability of Fourth-Order
Solitary Waves

Steven Levandosky'
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We study ground-state traveling wave solutions of a fourth-order wave equa-
tion. We find conditions on the speed of the waves which imply stability and
instability of the solitary waves. The analysis depends on the variational charac-
terization of the ground states rather than information about the lincarized
operatot.
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1. INTRODUCTION

This paper is an analysis of the stability of traveling wave solutions of the
equation

Uy + A*u+u= f(u) (L.1)

where f(u)=|u|?~'u. We always assume p>1. If n=35, then we also
assume p <(n+4)/(n—4) and we define 2* =2n/(n —4). We show that
there exist solitary wave solutions of (1.1) and prove criteria for their
stability and instability. Our results parallel those for the analogous
second-order Klein-Gordon equations (see [6], [17], [19]). We show
that the solitary wave of speed ¢ is stable when the action function d&,(c),
defined by (3.14), is convex and is unstable when d,(c) is concave.

The interesting feature of the problem is that the solitary wave satisfies
a fourth-order elliptic equation. The stability of solitary waves of second-
order equations has been studied in many papers, including [16-18] for
the Klein—Gordon equations and [3], [22], and [23] for the Schrodinger
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equation. Also, higher-order equations such as the KdV equation [2, 20]
and generalized Boussinesq equations [11, 15] have been examined. In
each case, however, the solitary wave satisfies a second-order ODE. Using
a nodal analysis of the ground state, it is possible in some cases to obtain
information about the spectrum of the linearized operator. However, the
solitary waves of (1.1) satisfy a genuine fourth-order PDE (2.1}, for which
there is no maximum principle available. Thus the ground states may not
necessarily be positive and, in fact, may be oscillatory. So we cannot easily
obtain this spectral information, and therefore some of the standard techni-
ques for analyzing stability are no longer applicable. Instead we rely
entirely on the variational characterization of the solitary wave.

In one dimension an equation similar to (1.1), with a different non-
linear term, has been studied as a model for the suspension bridge [12].
Numerical evidence in the case of an exponential nonlinearity suggests that
traveling waves are unstable for small ¢ and exhibit soliton-like behavior
for ¢ near the critical value \/5 [13].

In Section 2 we prove the existence of a solitary wave. Solutions are
obtained by using the method of concentrated compactness developed by
Lions [9] to solve a constrained minimization problem. We use the scaling
property of the pure power nonlinearity to verify the subadditivity condi-
tions (2.5) and to scale away the Lagrange multiplier. In second-order and
pure fourth-order problems we can verify these conditions and eliminate
any multipliers by dilating in the independent variable [1]. The presence
of both fourth- and second-order terms in (2.1), however, prohibits such an
approach, and therefore we restrict our attention to homogeneous non-
linearities. We also note that the scale invariance allows us to solve the
minimization without any restrictions on the dimension n.

The results in this section apply to a more general class of
homogeneous nonlinear terms. For instance, take Fe C'(R"*1!) such that
VE(y,z)-(y,z)=(p+ 1) F(y,z) for all (y,z)eR"*'. If F(u, Vu)e L'(R")
for every ue H{R") and there exists some wue H*R") such that
LR,, F(u, Vu) dx >0, then nonlinearities of the form

S, Vu)y =V  Fu, Vu) — div, (V, F(u, Vu))

may be treated as well, In particular, the nonlinearities f{u)= =+ |u|? and
—3u* + (u,)* —2(uuy), are of this form. The latter arises in the study
of fifth-order KdV equations [4] and will be the subject of another
paper [8].

In Section 3 we show that the evolution equation admits solutions in
the space X= H*(R") x L}(R") which exist locally in time for given initial
data in X, provided p <2%/2,
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We discuss in Section 4 the properties of d,(¢) we shall need for the
stability analysis. Once again, we use the scaling property of our non-
linearity to write di(c) in terms of the minimum values of the functionals
used to obtain the solitary wave. We also establish bounds on dl which
imply concavity for small ¢ and convexity for ¢ near ﬂ

In Section 5 we show (Theorem 5.4) that the set of ground states is
stable whenever d\(c) is strictly convex. The proof consists of a compact-
ness argument based on the ideas of Shatah [17] and Cazenave and
Lions [3]. We use the variational properties of the ground states, along
with a convexity lemma of Shatah (Lemma 5.1), to establish the key
inequality (5.4).

In Section 6 we use a Lyapunov functional construction due to
Grillakis et al. [6] to show (Theorem 6.2) that a given ground state is
orbitally unstable when d{(c) < 0. We need to make the additional assump-
tion that there is a C' map ¢+ ¢,, where @, is a ground state with speed ¢,
in order to apply the implicit function theorem.

Finally, in Section 7 we consider standing wave solutions of (1.1). The
results of Sections 5 and 6 extend quite easily to this case, and the scaling
properties of the solitary wave equation (7.3) make it possible to determine
explicitly the intervals of stability and instability.

2. EXISTENCE OF MINIMIZERS

In this section we prove the existence of traveling wave solutions. In
the process, an essential result concerning the compactness of minimizing
sequences is established. Let u(x, 1) = ¢(x— ¢t) for ¢e R” be a solution of
(1.1). Then @ must solve

Lo+ ¥ o to=lol” o (2.1)
ij=1
For |&2 <2 we can obtain solutions of (2.1) by considering the following
constrained minimization problem. Let

I(w) =fw |Aw|? = |- Vw|® + |w]? dx

K(w) =JR” [w|?* " dx

and define

I, =inf{I(w): we H¥(R"), K(w) =1}
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for 0 <A< 1. We say a sequence {w,}7_, in H*R") is a minimizing
sequence if

lim I.(w.)=1I,

k—

lim K(w,)=1

k— o

Our main result in this section is the following.

Theorem 2.1. Let {w.}7_, be a minimizing sequence. Then there
exists a subsequence {wkj}, y; € R" and we H¥(R") such that w, (-— y;) = w
in H*(R"™). The function w is a minimizer of I, subject to the constraint
K(w) =1 and is therefore a weak solution of the Euler—Lagrange equation,

n
Awt Y clwe tw=p w2 w (23)
ij=1

Hence ¢ = u'/'?~Yw is the desired solution of (2.1). Solutions obtained
in this manner are referred to as ground states.

We establish Theorem 2.1 by applying the method of concentrated
compactness. By scaling it is easily seen that

112/12/(”1)11 (2.4)
and therefore the strict subadditivity condition
IL+1,_;>1, Ae(0,1) (2.5)

holds. Let {w,} ., be a minimizing sequence and define a sequence of
measures on R” by

Pr=dwi |* +|w|? (2.6)

Since
Low) 2 (1= (e2) [ 14w 4wl de = (1= 21272) Il (27)
for any we H¥R"), I, is coercive for |¢|* <2, and therefore {w,}=_, is
bounded in H*R"). So, upon passing to a subsequence if necessary, we

may assume that

lim pilx)dx=L>1,
Rﬂ

k— o0
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and after normalizing appropriately we may suppose
J Pelx)dx=L
R"

for all k. By the concentration-compactness lemma of Lions [9], there is
a subsequence (renamed p,) satisfying one of the following three condi-
tions.

1. Tightness. There exist y, € R” such that for any ¢> 0, there exists
R(¢g) so that for all £

J pkdeJ prdx —e (2.8)
By, Rle)) R"

2. Vanishing. For every R>0,

lim sup Prdx=0 (2.9)

k— o0 yeR" YB(y, R}

3. Dichotomy. There exists ae (0, L) such that for any &> 0 there
exist R, R, — v, v, € R”, and k, so that

<e and

j prdx| <e  (2.10)

R<|x—y l<Ry

J prdx—o
By R)
for k = k,.

Lemma 2.2. The sequence {p,}y_, is tight modulo the sequence of
translations { y,} -, in R™.

Proof. The proof follows from arguments given in [9] and [10]
which we present here.
First, suppose vanishing occurs. For R, fixed we have

(p+1)/2
[we |2+ dx < C(R,) <j |Awk|2+lwk|2dx> (2.11)

Li(y. Ry) B(y, Ry)

o

for all & and any yeR”, since p+1<2* and {w,} ., is bounded in
H*R"). By (2.9) we can choose k(e) so that k > k{(g) implies

sup prdx<e
yeRr YBly, Ry)
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so that by (2.11), we then have

[wil? Tl dx < Celr— D2 <j lAkaz+lwk|2dx> (2.12)
B

J.B(Y,Ro) (¥, Ry)

for k> k(g) and any ye R”. Now we cover R” with balls of radius R, in
such a way that for some integer m each point of R” is contained in at most
m balls. Then we sum (2.12) over these balls to get

Iwg I intll(Rn) <mCelP— b2 lwy HilZ(R") < Cele—nr2

This implies that lim, _, ., K{w,)=0 and therefore the constraint is lost.
Hence vanishing cannot occur.

Next suppose dichotomy occurs and choose &, &, € C*(R) that
0<&, & <1, and

Ex)y=1 for |x] <1, EMx)y=1 for |x|=1

Efx)=0 for |x| <2, Eyx)=0 for |x|=1

Then define

Wy 1(x) = ¢ <%> Wil x)

and

Wy, 2(X) =¢, (li;zy—kl> wi{x)
k

It is then easy to verify that

T (wy) = 1wy )+ 1:(wy ,) + Ole)

(2.13)
Klwy)=K(w, )+ K(w 5) + Ole)
for k = k,. By passing to a further subsequence we can define
Ae)= lim K(wg,)
k— o
(2.14)
Az(s)zklim Ki{w, 5)

We clearly have 4,(¢), 4,(e)€[0, 1] and |4,(e) + A,(e) — 1| = O(¢) and we
can therefore choose a sequence ¢; — 0 such that A, =lim; Ai(e)) exists.

J— oo



Fourth-Order Solitary Waves 157

Then A, =lim;_, ., A5(¢;) =1 —4,, and there are two possibilities.
If 4, €(0, 1) it follows from (2.13) and (2.4) that

Iwe) = IK(wk‘ ot ]K(Wk,z) + Ofg))
= [K(Wk, 1)2/(p+l)+K(Wk,2)2/(p+”] 11 + 0(8j)

Since {w.} >, is a minimizing sequence, we may send k to infinity and use
(2.14) to obtain

I > [/11(8;)2/(p+1) + /12(8])2/([’ + )] 1+ O(g)
Letting j — oo, we arrive at the contradiction
L2 ()P0 1 ()P D] L > 1

If A, =0 (and similarly if 4, =1), we have, since w, , is supported in
B(ykaR)7

I(Wk, l)?(l - ‘612/2) “Wk, 1 u%ﬁ(nn)

={1 —|5'2/2) “wk,l“H(z](B(yk,ZR)) by (2.7)

>(1-1e2) L( o A P L P
Yis

=(1—|¢1’/2)(a+ O(¢;)) by (2.10)

Thus, using {(2.13) and (2.4) again,
Liwg) 2 (1= 8%/2)(a+ Ole) + Ixqy, ,, + Ole)

=(1—181%/2) a + K(w, )PV I + Og;)

and sending k to infinity gives
I = (1—101%/2) a4 A5(e) P+ I + O(e,)
We let j— oo to get the contradiction
Lz3(1—|e)?2)a+ 1 >1,

Hence dichotomy does not occur and the lemma is proved. O

Proof of Theorem 2.1. By Lemma 2.2 there exist y, € R” such that
pil -+ ) is tight. Since K(w,) — 1, this implies that jw,(-+ y,)|”?+" is also
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tight. Now, since {w,}*_, is bounded in H*(R"), there is a subsequence
{wy} 2, and we H*(R") such that

ij(‘+)’k/.)“1'v€H2(R")
(R™)

loc

ij( S+ ykj) —wel?

Since {w,} is bounded in L*'(R”) and p + 1 <2*, it follows by interpola-
tion that wi -+ y) = w in L2YYR"). We now claim that W"f('+ yil—w

loc

strongly in L? *'(R"). Indeed, let £> 0 and choose R, such that
J. w(x)|?* de<e
|x| = Ry
By (2.8) there exists R(s) > R, and j,(¢) so that j= j(¢) implies
f b (x+ )P+ dx <e
Ix|=Re) 7

By the convergence in LZY'(R”) we can find j,(¢)> ji(e), so that for
J> j.(e) we have

1 .
Iwe, (4 ¥5) = w5 g0, Ry <&

Thus
fw Wy (x -+ ;) — w(x)|?  dy<e+27%e

and the claim is proved. Hence K(w)=1. Since the weak convergence in
H*R™) implies f(w)<I, we therefore have I(w)=1I,. The lemma then
follows since 14wy | 2oy = 1 4W] L2y and Ay — dw in L3(R"). 0

Lemma 2.3. Suppose 1 <p<2*—1 and let ¢ e H¥R") be a weak
solution of (2.1). Then @ € H}(R™),

Proof. We use the following bootstrap procedure. Suppose that
@ e H¥(R™). We can assume k < n/2, since otherwise ¢ € L*(R") and there-
fore |@|? ™' ¢ € HY(R"), which implies ¢ € H*(R"). So we have ¢ e L(R"),
where s=2n/(n—2k) and ¢,, € L'(R"), where r=2n/(n—2k +2). It then
follows that |p|?~' ¢, € LYR") for

rs _ 2n
(p—lyr+s pln—2k)+2

q:.
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If ¢g>2 then |p|?~ !¢, eL¥R") and we conclude as before that
¢ € H(R"). Otherwise, |¢|?~' ¢, € H'(R") where

_n~p(n—2k)—2
- 2

[
Thus ¢ € H¥(R") for
n

K =l+5=pktd—2(p—1)

So we have after j iterations that ¢ € H%(R"), where k; = h/)(2) and h(x) =
px+4—(n/2)(p—1). The only fixed point of /1 is xo=(n/2) —[4/(p —1}],
and since p <2* —1, x,<2. Since p>1, it then follows that 4'(2) — cc.
Thus ¢ € H3(R"). |

Remark 2.4. The restriction on p for r>=5 permits the variational
characterization of solutions of (2.1). It also allows us to solve the solitary
wave equation for small ¢, If p>2* — |, then, by a Pohozaev-type identity,
the solitary wave equation cannot have solutions in H*R") for all ¢ in
some interval around zero.

3. LOCAL EXISTENCE

We can write the evolution equation (1.1) as a system of two equations,

H, =7
(3.1)

v,= —Au—u+|ul”"tu
which may be written in the form
u,=Bu+ f(u) (3.2)

where

0 !
BZ(—AZ—I o>

u=[u,v], and f(u)=[0, |u|? ' u]. We consider B as an operator on the
space X = H*R")x L¥R") with domain D(B)=H*R")x H¥R"). The
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following functionals are formal invariants of the evolution equation and
are essential to the stability analysis. Let

_ 1 2 1 2 1 2 1 p+1
E(u)_jwzmm 3 P+ 3l ol e

2 +1
(3.3)

Q,-(u)zj vy, dx, i=1,.,n

and define §: X » R by O(u)=(Q,(u),.., Q,(u)). The evolution equation
may be written in terms of E as

du ,
E=JE(u) (3.4)

where J: X* — X has domain D(J)= L*R") x H*(R") and is given by

By a solution of (1.1) on the interval [0,¢,) we mean a function
ue C([0, t5); X) such that

d
E<v, u(f)y =<{E(u(t)), —Jv) (3.5)

holds in the sense of distributions on [0, ¢4) for all ve D(J), where (-, >
denotes the pairing of X* with X. We assume the following throughout.

Assumption 3.1. Given initial data ve X, there exists ty>0 which
depends only on |v) x and a unique solution w of (1.1) such thar u(0)=v,
E(u(t)) = E(v), and O(u(t)) = Q(v) for all te[0, t,).

The following result shows that the assumption holds in dimension
n <5 with no restrictions on p and in dimension n =5 if p <2%/2,

Theorem 3.2. Suppose 1 <p<2*/2. Then for every w,e X, there
exists toa>0 such that Eq.(3.2) has a unique integral solution
u(t)e C([0, t); X) with u(0)=u,, and if t,< cc,

lim Jlu(?)]y=0oc

1=y
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The theorem follows from a theorem of Segal [ 16] once we show that
B is the infinitesimal generator of a C,-semigroup of bounded linear
operators on X and that f is locally Lipschitz on X [14]. This is the
content of the following lemmas.

Lemma 3.3. The operator B is the infinitesimal generator of a
Cy-semigroup of unitary operators on X.

Proof. Define an inner product on X by
([ul, vl], [uz, UZ])=JR,. (Aul Au2+ulu2+ Ulvz) dx

Then for ue D(B),

(Bu,u)=({v, —4%u—ul, [, v])

=\ (dvdu+vu—v d2u—vu)dx=0
RR

and therefore B is skew adjoint. The lemma is thus a direct consequence of
Stone’s theorem. 0

Lemma 34. The map f:X— X given by f(u)=[0, |u|?~ u] is
locally Lipschitz.

Proof. Let u;, u, € X and compute

) = flaae= [ o177 e~ g 2= ]

= [ 1PU0) 1 4+(1 = 206)) 1)~ (g =)

2Ap—
< P2 oy — ”2”%2'(&" fHuy | + |u2|]|L(,.ﬁ,-|‘),E(R,,)

Since p < 2*/2 this shows that
I/ () = flug) < Clluy [+ luzflx)? 7 liug =yl x

and therefore f is locally Lipschitz. O

-

Next let ¢ be a ground state with velocity ¢ and denote ¢ =
[, ¢-Vg]. Then ¢ satisfies

E(p)—¢-0(9)=0 (3.6)

865/10/1-11
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We define, for |82 <2,
d(¢)=E(¢)—7¢-0(p) (3.7)

The stability or instability of the ground state ¢ will bendetermined by
whether or not d is convex in ¢ The relation between E, O and the func-
tionals used to find the traveling wave is given by

Ia(u)——K(u)+lJ lv—¢ -Vul>dx  (3.8)
P 2 Jpe

Note that this shows that d(¢) is well defined and that, in fact,

N St __pr—l
d(c)—z(p+I)K(f/))—z(erl)lg((p) (3.9)

for any ground state ¢.
Since Eq. (1.1) is invariant under orthogonal transformations, we may

choose ¢={c¢, 0,..., 0) = ¢, for ce(—\/i ﬁ), so that (2.1) becomes
Po+cp +o—lol”  o=0 (3.10)

If ¢ is a solution of (3.10) obtained as in Section 1, we say ¢ is a ground
state with speed ¢. Then for ¢ =[¢, ¢, ], we have

E'(¢) —cQi(p)=0 (3.11)

If we define
L) = [ |4ul ~ ¢ luy, |7 + [u]? dx (3.12)
R’l

we may then write (3.8) as

I 1 I
E(u)—ch(u)zilc(u)—mK(u)+§ R,,|U_C”X1'2dx (3.13)

Let
di(c)=E(@)—cQ(p) (3.14)
so that, as above, we have

== p_
2p+1)

d\(c) K(q)):z(”pjrl)lc(co) (3.15)
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By the invariance of the laplacian under orthogonal transformations, it is
easily shown that

d(¢) =d(|c]) (3.16)

and therefore d is radial.
By stability we mean the following. A set S< X is stable with respect
to (1.1) if, given £> 0, there exists d >0 so that for any ve X with

inf flv—wjy<d

weS

the solution u(z) of (1.1) with data u(0)=v can be extended to a solution
in C([0, oc); X) and

sup inf flu(¢)—wly<e

0<t<c wes

Otherwise we say S is unstable.

4, PROPERTIES OF d(¢)

In this section we examine the dependence of ¢ on the parameter &. We
prove the following.

Lemma 4.1. The function d\(c) is continuous, decreasing in |c|, and
differentiable at all but countably many points of ( —\/5, ﬁ).

First define

. I{u)
Mle) = uel}Il%fIR") Ku)¥e+h

(4.1)
It is clear that this infimum is attained at any ground state, so that by
{3.15) we have

__r—1 (p+1/(p—1)
dl(c)_z(p+l)(M(C)) (4.2)

Define the set of all ground states with speed ¢ as

Sc= {l// EHZ(R'I): K([/j):]c([l/) :(M(C))(P+l)/(p—l)}
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and define the tubular neighborhood about S, by
U,,={ueX:inf{lu—y|y: yeS.} <e}

where we denote w=[y, cy,,] for Yy €S,. We now prove Lemma 4.1 by
investigating the behavior of M(c).

Lemma 4.2. M(c) is continuous and strictly decreasing in |c| on
(—ﬂ, \/5).

Proof. Suppose 0<c¢,<¢, <\/§. It is clear that M{(c,)> M(c,)>0.
Let u be a minimizer with speed ¢, and compute

I (u) I(w) 2_c
M(CI) SK(“);/(p+1)=K(u)22/(p+l) K(uz)z/(p-f-l) J[R" |uxl|2dx
c3—cl
=M(C2)+K—(um-) JR" ]uxl|2 dx (4.3)
So
3(cy—cy) deg—e) I (u)
|M(CZ)_M(CI)I S'—Wﬁ J‘Rn lux‘IZdXS(z—Cg) K(u)z/(p+1)
M(c,) M(0)
= Rand —““S - M

ey —cy) (2—6%) 3(ey—cy) (2——C§) (44)
and thus M is locally Lipschitz on ¢ <2. O

Motivated by the bounds obtained in Lemma 4.2 we set
a(c) =inf“ I, |2 dx: wesc}
R'l
per=sup {1 dxiyes.

Lemma 4.3. M is differentiable at ¢, if and only if o(c,) = B(cy).

Proof. From (4.3) we see that, for ¢; <c¢,,

—(cy+¢3) Pley) < M(c,) — M(cy) o —(c, +¢y)alcy)
(M(c)))YP=0 7 e,—e; T (M(cy)Y®D

(4.5)
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We now claim that

lim sup a(c) < B(c;)

c—=>¢

Let {c,} be any sequence so that ¢, — ¢, and let v, € S, . Then by the con-
tinuity of M,

IC,(Uk) - (M(Cl))(P+1)/(p—l)
and
K(vp) = (M(c,))p+e-1

Thus {v,} ., is a minimizing sequence for /. and, by Theorem 2.1, has a
strongly convergent subsequence Vg, (modulo translations) to some ve S,,.
Hence

J{R{n l(vk/)xI lz dx '[IR" |U”‘Ilzdx

and thus

lim sup a(c, ) < flcy)

Jj— 0

which proves the claim. Applying the claim to (4.5) shows that

lim Mc)=M(c,)  —c fley)

e e c—c T (M(ep))¥e=D
Similary we see that

lim M(c)—M(c,)  —caley)

e (M(c)))?p=1

Thus the left and right derivatives of M exist everywhere and are equal
whenever a(c,) = f(c,). O

Lemma 4.4. o(c|)=p(c\) <o is right continuous at ¢, < f is left
continuous at ¢,.

Proof. By the inequalities in {4.5),

Bley) > x(¢a) > Bley) S afcy)
(M) 7P~ DZ (M) P07 (M(e )PP D7 (M(c, )27

(4.6)
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for ¢, <c,. Thus a(c)/(M(c))¥?~" and B(c)/(M(c))¥*®~" are increasing
functions of ¢. Applying Theorem 2.1 once shows that a(c) is lower semi-
continuous and f(c) is upper semicontinuous. Hence a(c) is left continuous
and f(c¢) is right continuous. By (4.6) it follows that

lim+ al(c) = flc,)

C—bC|
and

lim f(c)=alc,)

c—>¢

and the lemma is proved. 0

To prove Lemma 4.1, note first that (4.2) and Lemma 4.2 imply that
d,(¢) is continuous and strictly decreasing in |c| on ( —\/5, \/5 ). Next, the
monotonicity of a/M*?—1 and /M??=1 together with the continuity of
M, shows that a(c) and B(c¢) are continuous at all but countably many
points of ( —ﬂ, 2). Hence by Lemma 4.2 and Lemma 4.3, it follows that
d,(c) is differentiable at all but countably many points of { —\/5, \/E). 0

We now wish to obtain bounds on d,(c) in order to determine regions
of convexity and concavity. We first find an upper bound on d(c) for ¢
near \/5

Lemma 4.5. Suppose 1 <p <2* —1. Then
di(c) < C2—c) (4.7)

where y=(2n—(n—2)(p+1)/2(p—1)).

Proof. We consider the case n=1 only, as the result for n> 1 follows
similarly. First let {,=(/2~¢%)/2, {,=(/2+¢c*)/2. Then {={ +{,i
solves (% + 22+ 1 =0 and therefore e*%*, ¢*% are solutions of the linear
equation @, + c*¢,. + @ =0. Define g, € H(R) by

g.(x) =61 (cos L Ix] +%sin 6 1x|)
2

Integrating by parts we see that

Ic(gc)=2 2—¢c?



Fourth-Order Solitary Waves 167

Also, for ¢ near /2 we have for some constant C that

C

2—¢?

K(g.) =

and therefore

K [c;;g/(cIZJr 0 <2~ CZ)(p+3)/(2(P+ v
e

M(c) <
Finally (4.2) implies

(11(0) <2 _CZ)(p+3l/(2(p* 1))

which proves the lemma. ]

If p<1+4/n then y>1 and hence (2 — ¢?)” vanishes to first order at
c= ﬁ The positivity and monotonicity of d, then imply the existence of
intervals of convexity arbitrarily close to ﬂ We next establish a lower
bound on 4, under the assumption that d, is differentiable.

Lemma 4.6. Suppose that d\(¢) is differentiable on ( —\/Z ﬁ ). Then

(4.8)

di{c)=d\(0) (1 -3

62>(p+1)/(p—1)

Proof. First, by Lemma 4.3 we have
die)=—c| g, 2 dx
Rﬂ

for any ground state ¢ with speed ¢. By (3.14) and (2.7),

p—1
2Ap+1)

_ p—l __C_2>< 2 2 >
‘z{p“)(‘ Moo+ e[ o

(. < _op-
‘<1*2><d“” 2(p+1>“"(”>

-1 c?
dl(c)= Ic((/’) > 4 (l _E> H(/)”%JZ(R"]

2Ap+ 1)
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Thus

and the lemma follows. O

Hence there are intervals of concavity of &, arbitrarily close to
¢=0. Further, if there is a C' map ¢+ @, (as in Section 6), we have the
following:

e,
d'll(c)= _[R" I((pc)x||2dx—2c jRn((pc)xl de dx
< —(1 |c|)f (@), |2 dx+ | |f Ia((ﬁc)xl zdx 49
< — - c)x X C X ,
R” 4 ! R” dc )

So d(c) <0 in some interval about zero. We need the following lemmas in
order to relate the properties of d{(c) and d,(c).

Lemma 4.7. Let [: R"—> R be C? and radial, with f(x) = g(|x|). Then
for x+#0, D*f(x) is singular if and only if g"(|x])=0 or g'(]x|)=0.
(D?(0) = g"(0) I).

Proof. Since

O

Yy

_ (&g tx) g'lxD) g'(x])
fxlxj'_< |X|2 - |X|3 >xixj+ | x|

we have
D*f(x) = M(|x|x® x) + N(|x|)
where
M(r)=<g (zr)_g’(:)> Ny =&
r r r

Now D?f(x) is singular if and only if —N(|x|)/M(|x|) is an eigenvalue of
x® x. Since the eigenvalues of x® x are zero and |x|% we have either
N(|x|)=0, which implies g'(|x])=0, or —N(|x|)=|x|*> M(|x|}, which
implies g”(|x]) =0.
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Lemma 4.8. Let f:R"—>R be C? with f(x)=g(|x|) and suppose
g"(1x]) <0 and g'(|x]) <0. Then for x #0, D*f(x) is negative-semidefinite.
Further, for x #0, D*f(x) is negative-definite if and only if g"(|x|) <0 and
g'(|x]) <0.

Proof. Since D?*f(x) is symmetric, it suffices to show that it has only
nonpositive (negative) eigenvalues. If A is an eigenvalue of D?f, then

A=N(lx])  or A=N(|x])+ |x|*> M(|x])

In the first case A = g'(|x|)/|x], and in the second case A= g”(|x|) and the
lemma is proved. O

So if d, is differentiable and d}{c) <0 we have by (3.16), Lemma 4.3
and Lemma 4.8 that D? d(¢) is negative definite for every & with [¢] =c.

5. STABILITY

Here we show that the set of ground states S, is stable whenever d is
strictly convex in a neighborhood of ¢. The variational nature of the
ground states is used to show that sequences of later time data are mini-
mizing sequences, provided the initial data are chosen close enough to S,.
First we state without proof a lemma due to Shatah [17] concerning
strictly convex functions.

Lemma 5.1. Let h be any function which is strictly convex in an inter-
val I about c¢. Then given £>0, there exists N(e)>0 so that for c,el,
e, —¢| = & we have

[1) ¢y <c<cy,|co—cl<ef2,cqel=

h(cl)‘h(co)<h(c)—h(fo)_ 1
Cl - CO = Cc— co N(E)

(2) co<c<ey,|cg—c|<ef2,cpel=

h(cl)—h(co)>h(c)—h(c0) 1
ci~¢cy  c—cq N(e)

Lemma 5.2. Suppose that d, is strictly convex in an interval I around c.
Then for every ¢ >0, there exists N(€) >0 so that for ¢, €I with |c, —c| =&,
have

dy(c)) = d(c)—cPlc)ey—c) + (c—cy) (5.1)

Nie)
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Jor ¢y <c and
d\(e)Zdy(c) = cale)e, —¢) + s (e =€) (5.2)

for e, >c.

Proof. This follows by taking limits in (1) and (2) of Lemma 4.1 as
co — ¢ and using the inequalities in (4.5). a

The next lemma uses the variational characterization of ground states
to establish the key inequality in the proof of stability. First we use the fact
that d is continuous and strictly monotone on [0, \/5 ) to define, for u near
@ (¢ in S,),

_ g P
cu)=d, <2(p+l)K(u)> (5.3)

Lemma 5.3. Suppose that d| is strictly convex in an interval 1 about c.
Then there exists ¢ >0 so that for all we U, , and any Y € S,,

|
E(u) — E(Y.) — c(u)(Q(u) — Qi(¥,)) Z50 [c(u) — ] (54)
(&)

Proof. Since c¢(u) is a continuous function of u, we may choose &
small enough that ¢(U,_,) is within the interval 1. Then by Lemma 5.2,

1 1
E(w) —c(u) @\(u) =7 1, (u) il

P T K

1
+—j lo—c(w)u, |2dx by (3.13)
2 Ja !

| 1
25 1 uy(u) Y] K(u)

2
1 1
2'2' c(u)(l//c(u))_m]{(‘/jc(u)):dl(c(u)) by (3.15)

|
Zd(c)— QY. )c(u)—c) +m le(u) — ¢

=E(,)—c(n) Q,(y,) +

NG) |e(u) — ¢ by (3.14)
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The second inequality follows since (2(p+ 1))/(p—1)d,(c(u}) =K(u)=
K(Y vy) and ¥, minimizes /., subject to this constraint.

Theorem 5.4. Suppose that Assumption 3.1 holds and thar | <p<
2% — 1. If d, is strictly convex in an interval around c, then the set of ground
states S, is stable.

Proof. Assume that S, is unstable and choose initial data u,0)e
U, 1. Then since u,(7) is continuous in ¢, we can find #; such that

inf Jut,) —yly=0 (5.5)
Y esS,

Since U, ;4 is bounded for each & and since E and @, are invariants of the
equation, we can find ., € S, and a constant C such that

C
[E(u (1)) — E(Y)| <%

| Q1)) — Q1Y) <+

Now choose ¢ small enough so that Lemma 5.3 applies. Then

|
E(ui (1)) — E(Yi) — c(up (2N Qr(upl 1)) — Q1(¥r1)) >T [e(ug(t,)) —cl

So letting k — oo, it follows that c(u.(t,)) — c¢. By (5.3) and the continuity
of d,, we then have

lim K(ug(ry)) = 22+ D

k— o p—l

dy(c) (5.6)

Since by (3.13),

1 1
Elc(uk(tk))=E(uk(tk))_CQI(uk(tk))+_+fK(uk(tk))
1 2
-3 levk(tk)——c(uk(zk))xll dx (5.7)
we also have
lim sup Ic(uk(tk))<2a’1(c)+—4—a’l(c)zz(p+ l)dl(c)
k= p—1 p—1
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By (5.6) we therefore have

2p+1)
p—1

dy(c)

klim L (up(1,)) =

So M(c)" =P y,(t,) is a minimizing sequence, and by Theorem 2.1 there
exist ¢, € S, such that

klim lurlti) — Drll ipgmry =0 (5.8)
Finally, by (5.7),

lim [ Jog() = clugl 1), de =0

k — o0

and by (5.8),

len:O (el 1)), = (D), I 2Ry =0

Thus [|vi(t) — c($i)x, | 2mmy — 0 and, together with (5.8), this implies

klinio lue(te) = il x=0
which contradicts (5.5). O

Remark 5.5. Together with the bound in Lemma 4.5, Theorem 54
implies the existence of stable traveling waves for some speeds near \/5
when p <1+ (4/n). This differs from the second-order wave equation (in
one dimension) for which all traveling waves are unstable [6].

6. INSTABILITY

We show in this section that, under more strict hypotheses, the con-
cavity of d implies that the ground state is orbitally unstable. Using the
concavity of d we show that there is an “unstable direction” which allows
us to construct a Lyapunov functional. The main assumption is the
following.

Assumption 6.1. There exists a C' map

oo =0, (0)] (6.1)

such that @, is a ground state with speed c.
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This implies by (3.15) that 4, is differentiable, and for ¢ >0 we have
by Lemma 4.3,

dife)==Qi(p) = —c | 1(go),[2dr<0 (62)

We also need to extend the map in (6.1) to a neighborhood of ¢, in R".
For any ¢eR" we can choose 4,e€O(n) such that 4.2, =¢/|¢|. Then
Y(x) =@ 4(A;x) is a ground state with velocity ¢ In a neighborhood of cé;
we can choose A4 ; continuously in ¢ We denote by ¢, the ground state with
velocity ¢, while we still write ¢, for the ground state with speed ¢ in the
direction &;. It can be shown, as in Lemma 4.3, that

Vd(e)=—-0Q(¢,) (6.3)

As in Section 3, let {-,.)> denote the pairing of X* with X and let
{7(t}): e R"} be the group of translations acting on X by

T(t)u(x)=u(x+1) (6.4)
Define the orbit of ¢, under T by
S.={T(x)p.:1eR"}
and let

Vee={ueX: inf Ju—T(7) ¢ .lly<e}
7eR"

be the tubular neighborhood of radius & about S.. We prove the following.
Theorem 6.2. Suppose that Assumption 3.1 and Assumption 6.1 hold
and that 1 <p<2¥—1.If di(c) <0, then S, is unstable.

The proof of our first lemma is trivial.
Lemma 6.3. For any we X, if T(z,)u—uin X then 7, - 0.
Lemma 6.4. There exists ¢>0 and a C* map ¢:V,,— R" such that

for any ueV,, and 1eR",

(1) |Te(w)u—g ldx<IT(t)u—@.lx
(2) {Tla(w)u, (¢.);> =0 for i=1,.,n, and
(3) o(T(tr)u)=0o(u)—r1,

where we denote u, =[u,,v,].
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Proof. Define p: X xR" - R by
p(u, )= [T(e)u—o %= 1T(0) ul %+ e )5 —2u T(—0a) ¢.)

Since ¢ € H3(R"), we may compute

and

%p
do, 00,

(w0)=-2T(0)u, (@.)xx) 0L j=l..n

Since V,p(¢.,0)=0 and since D;p(¢.,0)=2(((9 )y (Pc)y))i =1 I
positive definite, the implicit function theorem implies the existence of a
neighborhood U of ¢, in X, a ball B(0,¢'), and a C*> map g: U— B(0,¢')
such that V_p(u, o(u)) =0 and Df, a(u, a(u)} is positive definite for all ue U.
Thus o(u) is the unique minimizer of p(u, -) in B(0, ¢') for each ue U. By
Lemma 6.3, there exists 0>0 such that |7(7)¢,— @ .llx<J implies
e B(0, ¢’). Choose ¢<d/4 so that V,={u: u—¢,.[y<e} = U Then (1)

and (2) hold for ue V,. To show that (3) holds, compute
[T(o(w)—7) T(t)u—@ lx< | T(a(T(z) u) + T(zr)u)u—¢@. | x
=|T(ao(T(z)u)) T(r)u—@.lx
< T(o(u) —7) T(t)u—@.l x
Thus (3) follows if we can show that o(u)—7e(—¢,¢) when u,
T(t)ue V,. Since
(T(a{w)—1)p —@ N x< 1 T(a(u))(@,— W)l x+ | T(e(n)) u— e,
+HIIT()u—o. ) x+ 1 T(t)u—@. )| x<de <o

it follows from our choice of ¢ that a(u)—7e B(0, ¢’). Now extend ¢ to
ueV,, by first choosing t such that 7(zr)ueV,. Then let o(u)=
a(T(t)u) — 1. Since {3) holds in V,, o(u) is independent of the choice of t
and properties (1)—(3) follow for ue vV, ,. O

The next theorem proves the existence of an “unstable direction” and
depends on the fact that there is an element of X for which the linearized
operator

Hc:E”((pc)_CQll,((pc) (6'5)
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has negative expectation. In fact, evaluating H, on ¢, yields

(H.p,., (Pc>:“(l7_l)||(Pc“1111’++1‘(w)<0 (6.6)
We need to modify ¢, in order to get a vector orthogonal to Q'(¢,).
Theorem 6.5. If di(c) <0, then there exists ye Y= H*R")x H(R")
such that

(1) <(H.y,y)<0, and
(2) (Q(g.).y)=0.
Proof. Define §: B(0, ﬂ) xR — R" by

Then

so that
Vig(cé,0)=—D*d(cg,) by (6.3)

By (6.2) and the assumption that d"(c¢) <0, Lemma 4.6 implies that
D? d(cé)) is negative definite, and therefore the implicit function theorem
implies that there exist £ >0 and a C? function 4: ( —¢, ¢) = B(0, \/5) such
that

Xoz(s)+s9.)=0(¢,) (6.7)

for se(—e, ¢). Now compute the Taylor expansions of £ and § about
@i{s) to get

E(pp(s)+s50.)=El@;(s)+s<CE(@is)), ¢
+LS2CE (@(5) @y 0. + 0(s7)

e
S

T
[\t

(pp(s)+s50p,)
(@i(5))+5C0(@5(5)), 9> + 550" (95(5)) 0 0> + 0(57)

I
[l )
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Thus, using (3.5) and (3.6) we have
E(oits) +s59c) = hs) - Qlo,) =3 CLE" (95(9)) = h(s) - @"(05(sN] e 90
+d(h(s)) + o(s?) (6.8)
and by the concavity of d,
d(h(s)) < d(c@)) + (h(s) — &) -V d(cE))
=E(p.)—h(s)- (o) by(63) (6.9)
Combining (6.8) and (6.9) gives

E(p;(s)+59,)
SIS LE"(@p(s) = h(s) - 0" (@i(sN] @er > + E(@,) +0(s?)  (6.10)

Since at s=0 the pairing on the right-hand side of (6.10) is precisely
{H,p,, ¢,>, the continuity of E”, 0", h and ¢, implies that

E(@z(s) +59.) <E(9.)+ 35°(Hep,, 9. +0(s7) (6.11)

for s sufficiently small. Now define

d .
i=a—s(<p;(S)+s¢c) =h'(0)-V,p,| =cé;+o, (6.12)
§=0 é
so that by (6.7),
- ple)
(00,5 =Z (051 +39| =0
&) s=0

and thus (2) holds for §. Using (6.7) again, it follows that

2
F((ﬂﬁ(sﬂ's%) ={H.¥,9>

5=0

Finally, since (d/ds) E(@;(s)+sp.) =0 at s=0, the strict inequality in
(6.11) implies that

2

1
W((Pﬂ(s)“‘“ﬂc) <_<Hc(pc9 (pc><0

5s=0 2

and hence

(H,$,§><0 (6.13)
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Since H*(R")x H*R") is dense in X, we can perturb ¥ slightly to obtain
a vector in Y satisfying (1) and (2). Without loss of generality, assume that
the Q;(¢p.) are linearly independent. We define by induction w,...,w,in Y
with the property that

(O W) =0, (6.14)
First, let w be any element of Y for which {(Q\(¢.), w) #0 and let

w

IRCATEED

Next, assume that we have constructed w,,..,w, satisfying (6.14) and
choose any w in Y such that

W,

k
Okl W) — 3 Qe ), wH{ Qi (@), w>#0  (6.15)

i=1
This can be done by the assumption of independence. So define
k
Wi 1 =W— Z <Q;((pc)’ W> w;
=1

Then by the induction hypothesis, { Qi(¢,), We, 1> =0 for i=1,.., k, and
by (6.15), { Qs 1(@.), Wi, > #0. If we now subtract

<Q;<+l(q95)s wi>
CQkarl@) Wi yyy ©F!

from w, for each i=1,..., kK we obtain, upon normalizing w, , , a collection
W,,.., W, satisfying (6.14). Finally, having chosen w,,.., w, we let ¢ >0 be
given and choose x, € Y with such that ||x,— ¥|| <& Define

y=X.— z < Q'I((p(‘)’ x£> Ww;

i=1

Then ye Y and, by (6.14), {Qi(¢.),y> =0 for i=1,.,n If ¢ is chosen
small enough, it follows from (6.13) that (H_.y,y)> <0. Thus (1) and (2)
hold for y. Later we will need that

Iye =Pl rergn < 3 o N o (mm (6.16)

which again follows by choosing & small enough. |

865/10/1-12
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We now define the Lyapunov functional 4: V. , — R by
A(u) = =<7y, T(a(u)) u)

Lemma 6.6. The functional A is C' on V, , and

(1) A(T(t)u)=A(u) for any 1 R",

(2) JA'(p;)=—y, and

(3) (Q'(u),J4'(u))=0.

Proof. Part (1) follows from Lemma 6.4(3). For ueV,,nY and
we X, compute

(A'(u), wy = —{J 7y, T(a(n)) wy — (I ty, T(a(u))Vu) - {a'(u), w)

where Vu is used to denote ([ uy,, vy, ],.r [y, vy, ]) € X". By Theorem 6.5,
ye X", and therefore A’ extends to all of V,,. So 4 is C' and

(A (@), wy = —=<JI 7y, w) —<JI 7y, Vo ) - (d'(@,), w)
= _<j#ly’ W> + <Q,(¢c)’ y> * <G"((ﬂc), W>
= (7w

by Theorem 6.5(2). Differentiating (1) with respect to 7 at 7 = 0 proves (3).
O

We now wish to construct a curve in X through ¢, in the unstable
direction y, on which the functional Q, is constant and such that E is maxi-
mized at ¢,. First let r(4, v) denote the solution of

d
2= AW

with initial data r(0)=ve V_, and let the components of r be given by
ri(4, v), ry(4, v). By Lemma 6.6 (3),

00, _
(KA, v) =0

and thus Q, is constant in 4 on r. Also,

or

5}(’19 (pc) g:():y (617)
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by Lemma 6.6 (2). By Lemma 6.4 (3)
T(t)r(A, v)=r(4, T(t)v) (6.18)

The next lemma shows that there is a point along the curve r(A, v) at which
the functional K attains the value K(¢.). This allows us once again to
exploit the variational characterization of ¢,.

Lemma 6.7. If dj(c) <0, then there exists ¢>0 and a C' functional
A V..—Rso that forveV, ,

2Ap+ 1)
p—1

Ktr(Atv), v))=K(op,) = d\(c) (6.19)

Proof. Since ry(0, 9.} = ¢,, the lemma follows from the implicit func-
tion theorem and {6.18} once it is shown that

oK

7 #0

A=0

(ri(4, @)

By (6.17) we have

oK

‘é}(rl(ls (p('))

=(p+ 0| 1o.17" oy, dx
A=0 L4
=(p+ 1| 1ol gy - o) dx
®R?
40| o7 9,5, dx (620)
R'l

By (6.16) we can bound the first integral in (6.20) by

< ”(Fcuf}wl(n") ||y1 - }71 ”U”‘([R"j

UR" 9?7 oy — 1) dx
<5 le ) 85 mm (6.21)
Using (6.12) we can rewrite the second term as
(P+ 1) | 10e?™ o pide=(p+ D EO)-[ 19,177 9Vepelems) dx
r”? n

+(p+ 1) o 55 (6.22)
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But since d(¢)=[(p—1)/2(p+1)] K(¢,), (6.2) implies

|

=00 =V de@) ="T= [ 1017 0UVeplemc)dx (623)

and therefore

(p+1>/¥'(0>-jwl<pcv‘ (Va@aloms) dr =

Using Theorem 6.5 we compute

0=C0(9), > =<0 (@), h'(0)Vo@also s +0.>  by(6.12)
=l:i )VE(Q(¢C))+<Q, (pcs(pc>
= —}(0)-D*d{cé,)+20(p.)  by(6.1) (6.25)

Thus by (6.25) and the negative definiteness of D* d(cé,),

2(p+l) (p+1)

R0)- Olg,)=— - h(0).-D*d(cé,) - h'(0)=0 (6.26)

In view of (6.22), (6.24), and (6.26), we therefore have

P+ [ 197" ooty dx>(p+1) o) 2

which, together with (6.21), implies that

K
_aj (rl()"a gpc))

(P+1 Hﬁﬂcnuﬂ(w)>0 qup)

Lemma 6.8. Suppose d(c)<0. Then there exists ¢ >0 and a C' func-
tional 2.V, ,n{Qo.)} - R such that

E(r(A(v), v)) = E(p,) (6.27)
Proof. Let veV,_ ., with Q,(v)=0 (¢, and let A(v) be given by

Lemma 6.7. Then since ¢, minimizes I, subject to the constraint
K(u) = K(¢,), we have, using (3.8),
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1 1
E(r(Av), v)) =5 LI (r(Av), v)) + cQi(r(Alv), v)) ol K(ri(A(v}, v))

1
+3 | 2= etr) )2, v d

1 1
25 Ir(Av), ) + Q1 (r(Av), v)) Thil K(ry(A(v), v))

1

1

—

1
—-1 (pc +CQ ((pc ;TK(¢C):E(¢C)

N

which proves the lemma. a

Lemma 6.9. Let veV,, with Q\(v)=0Q\(¢,) and v¢S.={T(7) ¢_|
1eR"}. If d(c) <0, then

E(@.) < E(v)+ A(v) P(v) (6.28)

where P(v)={E'(v), ~JA'(v)).

Proof. The lemma follows by computing the second-order Taylor
expansion of E(r(4,v)) at 1=0.

BE 0
S| =<E’(v),a—;u,v)|l=o>=P<v> (6.29)
and
0*E %
SR (B0 vy + (E0d. 5 0.00) (630
A=0

Since Q,(r(4, v))= 0@

%(ri ®.))

=0 (6.31)

so that

az
0= <Q"(<ﬂc)y,y>+<Q Pe)s 512(0 ¢C)> (6.32)
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Subtracting (6.32) from (6.30) and using (3.6) yields

2

0°E
—éz—z'(r()"a (pc)) N =<(E"_CQ,1,)(¢C) Y, y> <0 (633)

=0
Thus, for A near zero, A#0 and & small enough, it follows that if
veV, ,n(X—-S,), then
E(r(A, v)) < E(v)+ AP(v)
So if v also satisfies Q,(v= Q,(¢.), we have by Lemma 6.8
E(¢.) < E(r(A(v), v)) < E(v) + A(v) P(v)

and this completes the proof. a

Lemma 6.10. There exists >0 and a C* curve §:(—=6,8)->V,,
such that (0)=p,, W'(0)=y, 0,()(s)) = 0s(0.), P(¥(s)) changes sign at
s=0 and E(Y(s)) has a strict local maximum at s =0.

Proof. Since {Q)(¢.),y> =0, y is tangent to the manifold N=
{veX: Q,(v)=0Q,(¢p)}, and thus there is a curve Y(s) in N with y(0)=¢,
and ¥'(0) =y. To show that E(y(s)) is maximized at s =0, we differentiate
in s to obtain

dE

d
7 W| = (BW(s) = cQi(¥(s))

§=0 d. s=0
={(E'(p.)—cQi(p.),y>=0  by(3.11)

Also

dzE " " ! !
—7 W(9) = CLE"(W(9)) = QiU (sDT ¥/ (s), ¥ ()

+ CE'(Y(s)) = cQy((s)), " (s)>
and therefore

d*E

F(l//(s)) ={(H,y,y><0 by Theorem 6.4(1)
0

5=

Thus E(y(s)) is locally maximized at s =0, and we have by (6.28),
0 < E(g.) — E(Y(s)) < A(¥(s)) P(Y(s))
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It remains only to show that A(y(s)) changes sign at s =0. Recall that A is
defined by (6.19) and satisfies

K(po) = K(n(GAW), W) = | Ir(Ais), bl d

Differentiating at s =0 gives

IR AT
04 0Os dv, 0s Ov, Os

dx (6.34)

s=0

0=(p+1)fw|<pci"“(m<

Since r(0, v)=v={(v;, v} = (r(0, v}, r5(0, v)),

o
Ov,

o

(0,v)=1Id and
v,

{0,v)=0

Thus, since (0, /0s)|;_o=1(0rJOANA, @ Mic0=y1, (6.34) becomes

0A
O=(p+1)<%p—)

F1)[ 107 gy

s=0

The integral is exactly

0K
Ej’_(rl(j" (pc)) ,1=0>0
as shown in Lemma 6.7. Thus
M| __,
ds s=0

and since 1(¢.) =0, we have shown that A(y/(s)) changes sign at s =0.
O

Proof of Theorem 6.2. Fix ¢>0 small enough so that Lemma 6.9
applies. Choose s near zero so that A(y(s)) >0 and let uy=s(s). Then by
Lemma 6.10, Q,(uy)=Q,(¢.), E(uy) < E(¢,.), and we may assume that
P(uy) > 0. From Section 3, there is an interval [0, ¢,) on which a solution
u(t) exists and satisfies u(0)=u,, Q,(u(?)) = Q,{uy), and E(u(t)) = E(uy).
We may suppose that 7, = oo, because otherwise S, is unstable by defini-
tion. Now, by Lemma 6.9,

0 < E(p.) — E(uo) = E(p.) — E(u(7)) < A(u(?)) Plu(r))
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for all ¢ > 0. Thus by the continuity of P, P(u(r))> 0 for all 7 >0. We may
assume that A(u(z)) <1 so that

P(u(t)) > E(p,.) — E(ug) =6,>0
Now let W=D(J) with the graph norm ||v|3 = |v|%.+ [|Jv]%. Then

J: W— X and J*: X* > W* are continuous, and by definition (3.5) we
have

% v u(t))y = CE'(u(1)), =Jv) = —J*E'(u(1)), v)

where the last pairing is between W* and W. Hence
ue C([0, t5); X) N CH[0, 10); W*)
and

du
— = _J*E
7 (u)

So (by Ref. 5, Lemma 4.6) we may compute

dA d
)= (G A ) = (—TE ), A0y by (34)

=<E"(u(f)), —JA(u(1))) = P(u(1)) > &

where (-, ) denotes the pairing of W* with . But 4 is bounded on V,
and hence u(f) must leave V, , in finite time, and therefore S, is unstable.
O

Remark 6.10. By (4.9) we see that d"(¢) <0 in some interval around
zero. Thus at speeds traveling waves are unstable.

7. STANDING WAVES

In this section we extend our results to include the (easier) case of
standing wave solutions of (1.1).

By a standing wave we mean a solution of (1.1} of the form
iyt

u(x, 1) =e""p(x) (7.1)
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where the space X = H*(R") x L% R") now consists of complex valued func-
tions and has an inner product given by

Luy, v0)s [, 0215 ZRE’LV Auy Auy+ 1y Uy + 0, 05 dx (7.2)

Substituting (7.1) into (1.1) shows that ¢ must satisfy
Alop+(1-w?)p=|p|? ¢ (7.3)

We solve (7.3) for w? < 1 using the method of Section 1 to show that mini-
mizing sequences for the pair

I(u) =Jm [Au|? + (1 — w?) |u|? dx
(7.4)
K(u) ='[ [u]#+! dx
R”

are relatively compact in H%(R") up to translation. The absence of second-
order terms in (7.3) allows us to use the scaling property of the non-
linearity to make a choice of the ground state which is smooth in w. If ¢,
is a ground-state solution of (7.3} with w =0 [ie., ¢, is a stationary state
of {1.10)], then

Pux)=(1—*)"= Do ((1 —w?)x) (7.5)

is a ground state with frequency w. Next we consider the invariants of (1.1)
relevant to standing waves

1 2 1 2 l 2 p+1 .
E(u)—fwildul +§|v| +§|u| — lu| dx

p+1

Q(u) =ImJ uv dx

»R

If ¢ is any ground state with frequency w, we define ¢ =[ o, iwep], and it
follows that

E'(p)—wQ'(p)=0 (1.7)
We define the action function d{w) as before by

d(w) = E(p)—wQ(p) (7.8)
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By the relation
E(u)—wQ{u)=%1w(u) LK(uHZj lo—iwu|2dx  (1.9)

we see that d(w) is well defined and

P—

dw)=———1, —K( 7.10
() (+1)() (p+1) ®) (7.10)
which, by (7.5), yields the explicit formula
_r—L IV A
do) =505 Kpoll —o?P,  7=t70-2

If we define the set of ground states with frequency w to be

2 1
Sw={iﬂ€H2(R")|1w(‘ll =K(y) = (p+1) (w)} (7.12)

then we have the following stability result.

Theorem 7.1. Suppose that Assumption 3.1 holds and that 1 <p<
2¥ — 1. If d"(w) >0, then S, is stable.

Proof. We define

(P K(u) 1/7>1/2
wlu)=4 <2(p+1)K( ’) < <K((Po)> (7.13)

for u near S,. Under the assumption 4"(w)>0, we can improve the
inequality (5.4) to

E(u) — E(y) — (u)Q(n) — Q(¥)) = 3d"(0) jo(u) —w]*  (7.14)

for any ¥ eS,, and u near S,. The rest of the proof is identical to the
proof of Theorem 5.4. O

Solutions of (1.1) are invariant under the group action T: Rx X - X
given by

T(s) u = e™*u = [ *u, e {7.15)
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Given a ground state ¢ with frequency w, we define its orbit under 7 by
So={T(s) p|se R}
With these definitions we have the following,.
Theorem 7.2. Suppose that Assumption 3.1 holds and 1 <p <2*—1.
If d"(w) <0, then S, is unstable.

Proof. First, Lemma 6.3 and Lemma 64 are true for T as given
above, g, 1€ R, modulo 2zn. Also, Theorem 6.5 follows more easily in this
case since we no longer insist that the unstable direction y have any
regularity properties. Thus we may define the Lyapunov functional by

A(u)y=—<J 'y, T(a(u)) u)

The rest of the proof follows exactly as in Section 5 with Q in place of Q,.
O

Using expression (7.11) for d(w), we may now explicitly determine the
intervals in which ground states are stable and unstable. We compute

d"(w) =291 =)~ (wX2j—1)—1) (7.16)

Thus if < 1/2, then d"(w) <0 for all w? < 1. That is, when

=1
P +n—2

all ground states are unstable. On the other hand, if
<l+ L
p n—2

then ground states are stable in the interval w? > 1/(25 — 1) and unstable in
the interval w?<1/(2j—1). Ground states at the critical value
w?=1/(25 — 1) are also unstable since, by the smooth choice of ground
states, there are unstable states arbitrarily nearby.
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