
Journal of Dynamics and Deferential Equations, Vol. 10, No. 1, I99H

Stability and Instability of Fourth-Order
Solitary Waves

Steven Levandosky1

Received August 15, 1995

We study ground-state traveling wave solutions of a fourth-order wave equa-
tion. We find conditions on the speed of the waves which imply stability and
instability of the solitary waves. The analysis depends on the variational charac-
terization of the ground states rather than information about the linearized
operator.

where f(u} = \ u \ p - l u. We always assume p>1 . If n > 5 , then we also
assume p <(n + 4 ) / ( n — 4 ) and we define 2* = 2n/(n — 4). We show that
there exist solitary wave solutions of (1.1) and prove criteria for their
stability and instability. Our results parallel those for the analogous
second-order Klein-Gordon equations (see [6], [17], [19]). We show
that the solitary wave of speed c is stable when the action function d1(c),
defined by (3.14), is convex and is unstable when d 1 { (c) is concave.

The interesting feature of the problem is that the solitary wave satisfies
a fourth-order elliptic equation. The stability of solitary waves of second-
order equations has been studied in many papers, including [16-18] for
the Klein-Gordon equations and [3], [22], and [23] for the Schrodinger
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1. INTRODUCTION

This paper is an analysis of the stability of traveling wave solutions of the
equation



may be treated as well. In particular, the nonlinearities f(u) = ±\u\p and
— 3u2 + (ux)

2 — 2(uux)x are of this form. The latter arises in the study
of fifth-order KdV equations [4] and will be the subject of another
paper [8].

In Section 3 we show that the evolution equation admits solutions in
the space X = H 2 ( R n ) xL 2 (R n ) which exist locally in time for given initial
data in X, provided p < 2*/2.

equation. Also, higher-order equations such as the KdV equation [2, 20]
and generalized Boussinesq equations [11, 15] have been examined. In
each case, however, the solitary wave satisfies a second-order ODE. Using
a nodal analysis of the ground state, it is possible in some cases to obtain
information about the spectrum of the linearized operator. However, the
solitary waves of (1.1) satisfy a genuine fourth-order PDE (2.1), for which
there is no maximum principle available. Thus the ground states may not
necessarily be positive and, in fact, may be oscillatory. So we cannot easily
obtain this spectral information, and therefore some of the standard techni-
ques for analyzing stability are no longer applicable. Instead we rely
entirely on the variational characterization of the solitary wave.

In one dimension an equation similar to (1.1), with a different non-
linear term, has been studied as a model for the suspension bridge [12].
Numerical evidence in the case of an exponential nonlinearity suggests that
traveling waves are unstable for small c and exhibit soliton-like behavior
for c near the critical value 2 [13].

In Section 2 we prove the existence of a solitary wave. Solutions are
obtained by using the method of concentrated compactness developed by
Lions [9] to solve a constrained minimization problem. We use the scaling
property of the pure power nonlinearity to verify the subadditivity condi-
tions (2.5) and to scale away the Lagrange multiplier. In second-order and
pure fourth-order problems we can verify these conditions and eliminate
any multipliers by dilating in the independent variable [1], The presence
of both fourth- and second-order terms in (2.1), however, prohibits such an
approach, and therefore we restrict our attention to homogeneous non-
linearities. We also note that the scale invariance allows us to solve the
minimization without any restrictions on the dimension n.

The results in this section apply to a more general class of
homogeneous nonlinear terms. For instance, take F e C l ( R n + l) such that
V F ( y , z ) . ( y , z ) = ( p + 1 ) F(y,z) for all ( y , z ) e R n + l. If F(u, V u ) e L 1 ( R n )
for every ueH2(Rn) and there exists some u e H 2 ( R n ) such that
}Rn F(u, Vu )dx> 0, then nonlinearities of the form
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and define

For |c |2<2 we can obtain solutions of (2.1) by considering the following
constrained minimization problem. Let

2. EXISTENCE OF MINIMIZERS

In this section we prove the existence of traveling wave solutions. In
the process, an essential result concerning the compactness of minimizing
sequences is established. Let u(x, t) = <p(x — ct) for ce Rn be a solution of
(1.1). Then p must solve

We discuss in Section 4 the properties of d 1 ( c ) we shall need for the
stability analysis. Once again, we use the scaling property of our non-
linearity to write d 1 ( c ) in terms of the minimum values of the functionals
used to obtain the solitary wave. We also establish bounds on dl which
imply concavity for small c and convexity for c near 2.

In Section 5 we show (Theorem 5.4) that the set of ground states is
stable whenever d 1 ( c ) is strictly convex. The proof consists of a compact-
ness argument based on the ideas of Shatah [17] and Cazenave and
Lions [3]. We use the variational properties of the ground states, along
with a convexity lemma of Shatah (Lemma 5.1), to establish the key
inequality (5.4).

In Section 6 we use a Lyapunov functional construction due to
Grillakis et al. [6] to show (Theorem 6.2) that a given ground state is
orbitally unstable when d"1(c) <0. We need to make the additional assump-
tion that there is a C1 map c - > p c , where (pc is a ground state with speed c,
in order to apply the implicit function theorem.

Finally, in Section 7 we consider standing wave solutions of (1 .1 ) . The
results of Sections 5 and 6 extend quite easily to this case, and the scaling
properties of the solitary wave equation (7.3) make it possible to determine
explicitly the intervals of stability and instability.
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for 0<r<=1. We say a sequence {w k}kLi=1 in H 2 ( R n ) is a minimizing
sequence if

Our main result in this section is the following.

Theorem 2.1. Let { w k } k L i = 1 be a minimizing sequence. Then there
exists a subsequence {wk}, yj}eRn and w e H 2 ( R n ) such that wk.(- — yj) -> w
in H 2 ( R n ) . The function w is a minimizer of Ic subject to the constraint
K(w)=1 and is therefore a weak solution of the Euler-Lagrange equation,

Hence (p = u l / ( p - 1 ) w is the desired solution of (2.1). Solutions obtained
in this manner are referred to as ground states.

We establish Theorem 2.1 by applying the method of concentrated
compactness. By scaling it is easily seen that

and therefore the strict subadditivity condition

holds. Let {wk} kLi=1 be a minimizing sequence and define a sequence of
measures on R n b y

Since

for any w e H 2 ( U n ) , Ic is coercive for |c|2<2, and therefore {wk} kLi=1 is
bounded in H 2 (R n ) . So, upon passing to a subsequence if necessary, we
may assume that



for all k and any y e R n , since p+l<2* and {wk} kLi=1, is bounded in
H 2 ( R n ) . By (2.9) we can choose k ( e ) so that k > k ( e ) implies

Lemma 2.2. The sequence {pk} kLi=1 is tight modulo the sequence of
translations { y k } k L i = 1 in Rn.

Proof. The proof follows from arguments given in [9] and [10]
which we present here.

First, suppose vanishing occurs. For R0 fixed we have
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and after normalizing appropriately we may suppose

for all k. By the concentration-compactness lemma of Lions [9], there is
a subsequence (renamed pk) satisfying one of the following three condi-
tions.

1. Tightness. There exist yk e Rn such that for any e > 0, there exists
R(e) so that for all k

2. Vanishing. For every R > 0,

3. Dichotomy. There exists <ae (0 , L) such that for any e>0 there
exist R, Rk ->oo, yk e Rn, and k0 so that
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so that by (2.11), we then have
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for K>K(E) and any yeRn . Now we cover Rn with balls or radius R0 in
such a way that for some integer m each point of R" is contained in at most
m balls. Then we sum (2.12) over these balls to get

This implies that lim k - > o o K ( w k ) =0 and therefore the constraint is lost.
Hence vanishing cannot occur.

Next suppose dichotomy occurs and choose £ 1 , £ 2 e C°°(R) that
O<=£1,£2<=1, and

Then define

and

It is then easy to verify that

for k>=k0. By passing to a further subsequence we can define

We clearly have r 1 ( s ) , I 2 ( e ) e [0, 1] and | r 1 ( e ) + A 2 (e ) - 1 = O(e) and we
can therefore choose a sequence ej, ->0 such that A1 =limj_>oo r1(ej) exists.



Hence dichotomy does not occur and the lemma is proved. D

Proof of Theorem 2.1. By Lemma 2.2 there exist yk e Rn such that
Pk( . + yk) is tight. Since K ( w k ) - > 1, this implies that |wk( • + y k ) ] p + 1 is also

We let j -> oo to get the contradiction

and sending k to infinity gives

Thus, using (2.13) and (2.4) again,

If A 1 = 0 (and similarly if A1 = l), we have, since wk ,1 is supported in
B(yk,,R),

Letting j-» oo, we arrive at the contradiction

Since { w k } klim=1 is a minimizing sequence, we may send k to infinity and use
(2.14) to obtain
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Then A2 = limj->oo A2(e j) = 1 — A1, and there are two possibilities.
If A1 e(0, I) it follows from (2.13) and (2.4) that
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Since {wk} is bounded in L 2 * ( R n ) and p+ 1 <2*, it follows by interpola-
tion that wkj( • +y j) -» w in Lloc

p+1(Rn). We now claim that wk( • + yj) -> w
strongly in Lp + l ( R n ) . Indeed, let e>0 and choose R0 such that

By (2.8) there exists R(K) > R0 and jI(e) so that y>=(e) implies

and the claim is proved. Hence K(w) = 1. Since the weak convergence in
H 2 ( R n ) implies I ( w ) < = I l we therefore have I(w)=Il. The lemma then
follows since ||rwkj||L

2(Rn) ->||rw||L2(Rn) and Awkj -> Aw in L2(Rn). D
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tight. Now, since { w k } k L i m = 1 is bounded in //2(Rn), there is a subsequence
{wkj}jLim=1 and w e H 2 ( R n ) such that
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By the convergence in L loc
p+1(Rn) we can find j2(e) >j1(e}, so that for

j>j2(s) we have

Ihus

Lemma 2.3. Suppose 1 < p < 2 * — 1 and let ( p e H 2 ( R n ) be a weak
solution of (2.1). Then ( p e H 5 ( R n ) .

Proof. We use the following bootstrap procedure. Suppose that
( p e H 2 ( R n ) . We can assume k<n/2, since otherwise peL c o(R n) and there-
fore |p|p-1 p e H 1 ( R n ) , which implies ^eH5(Rn) . So we have peLs(Rn),
where s = 2n/(n~2k) and px ieL r(Rn) , where r = 2n/(n-2k + 2). It then
follows that |p|p-1 p

xi
 eLq(Rn) for



u= [u,v], and f (u ) = [0, |u|p-1 u]. We consider B as an operator on the
space X = H 2 ( R n ) x L 2 ( R n ) with domain D(B) = H 4 (R n ) x H 2 ( R n ) . The

which may be written in the form

where
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If q>2 then |p|p-1 p x . € L 2 ( R n ) and we conclude as before that
( p e H 5 ( R n ) . Otherwise, | p | \ p - 1 < p X t £ H ' ( R n ) where

Thus ( p e H k ' ( R n ) for

So we have after j iterations that q > € H k j ( R n ) , where kj = h ( i ) (2) and h(x) =
px + 4-(n/2)(p- 1). The only fixed point of h is x0 = (n/2) - [4/(p- 1)],
and since p< 2* — 1, x0 < 2. Since p > 1, it then follows that h ( J ) ( 2 ) -» oo.
Thus 9 > e H 5 ( R n ) . D

Remark 2.4. The restriction on p for n > 5 permits the variational
characterization of solutions of (2.1). It also allows us to solve the solitary
wave equation for small c, If p>2* — 1, then, by a Pohozaev-type identity,
the solitary wave equation cannot have solutions in H 2 (R n ) for all c in
some interval around zero.

3. LOCAL EXISTENCE

We can write the evolution equation (1.1) as a system of two equations,



following functionals are formal invariants of the evolution equation and
are essential to the stability analysis. Let

and define Q: X->Rn by Q ( u ) = (Q1(u), . . . , Qn(u)). The evolution equation
may be written in terms of E as

where J: X* -> X has domain D(J) = L 2 ( R n ) x H 2 ( R n ) and is given by
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By a solution of (1 .1) on the interval [0, t0) we mean a function
u e C Y r O , t 0 ) ; X ) such that

holds in the sense of distributions on [0, t0) for all ve D(J), where < •, • >
denotes the pairing of X* with X. We assume the following throughout.

Assumption 3.1. Given initial data v e X, there exists t0 > 0 which
depends only on ||v|| x and a unique solution u of (1.1) such that u(0)=v,
E ( u ( t ) = E(v), and Q ( u ( t ) ) = Q ( v ) for all t e [ Q , t 0 ) .

The following result shows that the assumption holds in dimension
« < 5 with no restrictions on p and in dimension n>=5 if p< 2*/2.

Theorem 3.2. Suppose 1<p<2*/2 . Then for every u 0 e X , there
exists t0>0 such that Eq.(3.2) has a unique integral solution
u(t) e c[0, t0); X) with u(0) = u0, and if t0< oo,
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and therefore/is locally Lipschitz. D

Next let (p be a ground state with velocity c and denote p =
[p, c- Vp]. Then p satisfies

Since p<2*/2 this shows that

and therefore B is skew adjoint. The lemma is thus a direct consequence of
Stone's theorem. D

Lemma 3.4. The map f: X->X given by f(u) = [0, |u|p-1 u] is
locally Lipschitz.

Proof. Let u1, u2 e X and compute

Then for ueD(B),
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The theorem follows from a theorem of Segal [16] once we show that
B is the infinitesimal generator of a C0-semigroup of bounded linear
operators on X and that / is locally Lipschitz on X [14]. This is the
content of the following lemmas.

Lemma 3.3. The operator B is the infinitesimal generator of a
Cq-semigroup of unitary operators on X.

Proof. Define an inner product on X by



so that, as above, we have

Let

we may then write (3.8) as

If we define

If (p is a solution of (3.10) obtained as in Section 1, we say p is a ground
state with speed c. Then for p = [p, c q X 1 ] we have

for any ground state <p.
Since Eq. (1.1) is invariant under orthogonal transformations, we may

choose c = (c, 0,..., 0) = ce1 for ce( — ,/2, V2), so that (2.1) becomes

Note that this shows that d(c) is well defined and that, in fact,
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We define, for |c|2<2,

The stability or instability of the ground state p will be determined by
whether or not d is convex in c. The relation between E, Q and the func-
tionals used to find the traveling wave is given by



Define the set of all ground states with speed c as

It is clear that this infimum is attained at any ground state, so that by
(3.15) we have

Otherwise we say S is unstable.

4. PROPERTIES OF d ( c )

In this section we examine the dependence of d on the parameter c. We
prove the following.

Lemma 4.1. The function d 1 (c ) is continuous, decreasing in c , and
differentiable at all but countably many points of ( — /2, v/2).

First define

the solution u(t) of (1 .1 ) with data u(0) = v can be extended to a solution
in C([0, oo); X) and
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By the invariance of the laplacian under orthogonal transformations, it is
easily shown that

and therefore d is radial.
By stability we mean the following. A set S < X is stable with respect

to (1 .1 ) if, given £ > 0, there exists 6 > 0 so that for any v e X with



Lemma 4.3, M is differentiable at C1 if and only if a(c1) = B ( C 1 ) .

Proof. From (4.3) we see that, for c1 <c2,

and thus M is locally Lipschitz on c2 < 2. D

Motivated by the bounds obtained in Lemma 4.2 we set

So
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and define the tubular neighborhood about Sc by

where we denote v= [i/^, cix1] for jeSc. We now prove Lemma 4.1 by
investigating the behavior of M(c).

Lemma 4.2. M(c) is continuous and strictly decreasing in \c\ on
(-^2,^2).

Proof. Suppose 0<c1<c2<ff2.It is clear that M(c1) >M(c2) >0.
Let M be a minimizer with speed c2 and compute



Thus the left and right derivatives of M exist everywhere and are equal
whenever < x ( C ) = B ( c 1 ) . D

Lemma 4.4. a ( c 1 ) = B(c 1 )<=>a is right continuous at cl <=>B is left
continuous at cl.

Proof. By the inequalities in (4.5),

which proves the claim. Applying the claim to (4.5) shows that

Similary we see that

and thus

Thus { u k } k L i m = 1 is a minimizing sequence for Ic and, by Theorem 2.1, has a
strongly convergent subsequence vkj. (modulo translations) to some v e S c j .
Hence
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We now claim that

Let { c k } be any sequence so that ck -> c1, and let vk e SCk. Then by the con-
tinuity of M,

and



and the lemma is proved. D

To prove Lemma 4.1, note first that (4.2) and Lemma 4.2 imply that
di(c) is continuous and strictly decreasing in \c\ on ( — ,/2, ./2). Next, the
monotonicity of ot./M2/(p~l) and fi/M2/{p~l\ together with the continuity of
M, shows that <x(c) and /?(c) are continuous at all but countably many
points of ( — N/2,1/2). Hence by Lemma 4.2 and Lemma 4.3, it follows that
di(c) is differentiable at all but countably many points of (— N/2, v/2). D

We now wish to obtain bounds on dv(c) in order to determine regions
of convexity and concavity. We first find an upper bound on d^c) for c
near ,/2.

Lemma 4.5. Suppose 1 < /><2* — 1. Then

where y = (In-(n-2}(p + l ) ) / ( 2 ( p - 1)).

Proof. We consider the case n = 1 only, as the result for n > 1 follows
similarly. First let £, =(,/2-c2)/2, C2 = (v

/2 + c2)/2. Then C = C i + C 2 <
solves C4 + c2C2 + 1=0 and therefore e±fx, e^x are solutions of the linear
equation q>xxxx + c2(pxx + <p — 0. Define gc e H 2 ( U ) by

Integrating by parts we see that

and

for cl<c2. Thus a(c)/(M(c))2/(p~1) and y9(c)/(M(c))2/( />~" are increasing
functions of c. Applying Theorem 2.1 once shows that a(c) is lower semi-
continuous and P(c) is upper semicontinuous. Hence oc(c) is left continuous
and /?(c) is right continuous. By (4.6) it follows that
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for any ground state p with speed c. By (3.14) and (2.7),

Proof. First, by Lemma 4.3 we have

which proves the lemma. D

If p< 1 + 4/n then y> 1 and hence (2 — c2)y vanishes to first order at
c = ^/2. The positivity and monotonicity of dl then imply the existence of
intervals of convexity arbitrarily close to ^/2. We next establish a lower
bound on d1 under the assumption that dl is differentiable.

Lemma 4.6. Suppose that d 1 ( c ) is differentiable on ( — ,72, v/2). Then

Finally (4.2) implies
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Also, for c near Jl we have for some constant C that
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and therefore
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Thus
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and the lemma follows. D

Hence there are intervals of concavity of d1 arbitrarily close to
c = 0. Further, if there is a C1 map c\-^><pc (as in Section 6), we have the
following:

So d" ( (c ) < 0 in some interval about zero. We need the following lemmas in
order to relate the properties of d(c) and d 1 ( c ) .

Lemma 4,7. Let f: Rn -> R be C2 and radial, with f ( x ) = g( \x ). Then
for x/0, D2f(x) is singular if and only if g " ( \ x \ ) = 0 or g ' ( \ x ) = 0.
(D2f(0) = g"(0) I ) .

Proof. Since

we have

where

Now D2f(x) is singular if and only if — N ( | x | ) / M ( \ x \ ) is an eigenvalue of
x®x. Since the eigenvalues of x®x are zero and |x|2, we have either
N ( | x | ) = 0, which implies g ' ( \ x \ ) = 0, or -N(\x\) = \x\2 M(\x ), which
implies g " ( \ x \ ) = 0.



Lemma 5.2. Suppose that d1 is strictly convex in an interval I around c.
Then for every £ > 0, there exists N( £) > 0 so that for c1 e I with | c1 — c | ^ e,
have

In the first case A = g ' ( |x | ) / | x | , and in the second case A = g"(|x|) and the
lemma is proved. D

So if d1 is differentiable and d " ( c ) <0 we have by (3.16), Lemma 4.3
and Lemma 4.8 that D2 d(c) is negative definite for every c with |c| =c.

5. STABILITY

Here we show that the set of ground states Sc is stable whenever d is
strictly convex in a neighborhood of c. The variational nature of the
ground states is used to show that sequences of later time data are mini-
mizing sequences, provided the initial data are chosen close enough to Sc.
First we state without proof a lemma due to Shatah [17] concerning
strictly convex functions.

Lemma 5.1. Let h be any function which is strictly convex in an inter-
val I about c. Then given e>0, there exists N ( e ) > 0 so that for c1 e I,
\c1 — c\ >e we have

Lemma 4.8. Let f : R n - » R be C2 with f ( x ) = g ( \ x \ ) and suppose
g"(|x|) < 0 and g'(\x\)^0. Then for x^O, D2f(x) is negative-semidefmite.
Further, for .x/0, D2f(x) is negative-definite if and only if g " ( | x | ) < 0 and
g ' ( | x | ) < 0 .

Proof. Since D2f(x) is symmetric, it suffices to show that it has only
nonpositive (negative) eigenvalues. If A is an eigenvalue of D 2 f , then

169Fourth-Order Solitary Waves
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for c 1 <c and

for c1 > c.

Proof. This follows by taking limits in (1) and (2) of Lemma 4.1 as
c0 -> c and using the inequalities in (4.5). D

The next lemma uses the variational characterization of ground states
to establish the key inequality in the proof of stability. First we use the fact
that d is continuous and strictly monotone on [0, y/2) to define, for u near
(p ((p in Sc),

Lemma 5.3. Suppose that d1 is strictly convex in an interval I about c.
Then there exists e > 0 so that for all u e Uc,e and any \jjc e Sc,

Proof. Since c(u) is a continuous function of u, we may choose e
small enough that c( Vc,e) is within the interval /. Then by Lemma 5.2,
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The second inequality follows since ( 2 ( p + 1 ) ) / ( p — 1 ) d 1 ( c ( u ) ) = K(u) =
K ( \ I > C ( u ) ) and \l/c(u) minimizes Ic (u ) subject to this constraint.

Theorem 5.4. Suppose that Assumption 3.1 holds and that 1 < p <
2* — 1. If d1 is strictly convex in an interval around c, then the set of ground
states Sc is stable.

Proof. Assume that Sc is unstable and choose initial data uk( 0) e
UC, 1 / k . Then since u k ( t ) is continuous in t, we can find tk such that

Since Uc, 1/k is bounded for each k and since E and Ql are invariants of the
equation, we can find \l>k e Sc and a constant C such that

Now choose 6 small enough so that Lemma 5.3 applies. Then

So letting k-* oo, it follows that c ( U k ( t k ) ) -> c. By (5.3) and the continuity
of d1, we then have

Since by (3.13),

we also have



which contradicts (5.5). D

Remark 5.5. Together with the bound in Lemma 4.5, Theorem 5.4
implies the existence of stable traveling waves for some speeds near ^/2
when p< 1 +(4/n). This differs from the second-order wave equation (in
one dimension) for which all traveling waves are unstable [6].

6. INSTABILITY

We show in this section that, under more strict hypotheses, the con-
cavity of d implies that the ground state is orbitally unstable. Using the
concavity of d we show that there is an "unstable direction" which allows
us to construct a Lyapunov functional. The main assumption is the
following.

Assumption 6.1. There exists a C1 map

such that tpc is a ground state with speed c.

Finally, by (5.7),

and by (5.8),

Thus \\vk(tk) — c ( ( j > k ) X 1 \\L
2

(Rn) ->0 and, together with (5.8), this implies
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By (5.6) we therefore have

So M ( c ) 1 / ( 1 - p) uk(tk) is a minimizing sequence, and by Theorem 2.1 there
exist <j>k e Sc such that



Theorem 6.2. Suppose that Assumption 3.1 and Assumption 6.1 hold
and that 1 <p<2*- 1. If d"(c)<0, then Sc is unstable.

The proof of our first lemma is trivial.

Lemma 6.3. For any u e X, if T(rn) u -> u in X then rn -> 0.

Lemma 6.4. There exists e>0 and a C2 map a\ VC,e-* Rn such that
for any u e Vc,e and t e Rn,

where we denote uxi= [uxi, v x i].

be the tubular neighborhood of radius e about Sc. We prove the following.

and let

Define the orbit of <pc under T by

As in Section 3, let < •, • > denote the pairing of X* with X and let
{ T(r): T e Rn} be the group of translations acting on X by

We also need to extend the map in (6.1) to a neighborhood of ce1 in Rn.
For any c e Rn we can choose A:&0(n) such that Aeel = c/\c\. Then
\l/(x) = q>\sl(A'fx) is a ground state with velocity c. In a neighborhood of ce1

we can choose A c continuously in c. We denote by (pe the ground state with
velocity c, while we still write (pc for the ground state with speed c in the
direction e1. It can be shown, as in Lemma 4.3, that

Fourth-Order Solitary Waves 173

This implies by (3.15) that d1 is differentiate, and for c^O we have
by Lemma 4.3,



it follows from our choice of S that er(u) — re B(0, e'). Now extend a to
u e V C , e by first choosing T such that T ( r ) u e V e . Then let er(u) =
CT(T(T) u) — T. Since (3) holds in Ve, cr(u) is independent of the choice of r
and properties (l)-(3) follow for U e Vc, e. D

The next theorem proves the existence of an "unstable direction" and
depends on the fact that there is an element of X for which the linearized
operator

Thus (3) follows if we can show that er(u) — re( — e', e') when u,
T ( T ) u e VP. Since

Since V f f p ( c p c , 0 ) = 0 and since D 2
f p ( p c , 0) = 2(((«pe)*,. (g>c)x.))lJ=l is

positive definite, the implicit function theorem implies the existence of a
neighborhood U of <pc in X, a ball B(0, e'), and a C2 map a: U-> B(0, e')
such that VC Tp(u, er(u)) = 0 and D2

pa(u, < r (u) ) is positive definite for all u e U.
Thus <T(U) is the unique minimizer of p(u, •) in B(0, e') for each ue U. By
Lemma 6.3, there exists <5>0 such that ||r(T) q>c — cpc\\x<^ implies
Te B(0, e'). Choose £<<5/4 so that V £ ={u : ||u-9>J|Jl.<e} <= U. Then (1)
and (2) hold for u e Ve. To show that (3) holds, compute

Since p e H 5 ( R n ) , we may compute

and

Levandosky174

Proof. Define p: X x Rn -> R by



and

for s e ( — £ , £ ) . Now compute the Taylor expansions of E and Q about
cpg(s) to get

so that

By (6.2) and the assumption that d"(c)<0, Lemma 4.6 implies that
D 2 d ( c e 1 ) is negative definite, and therefore the implicit function theorem
implies that there exist e>0 and a C2 function h: ( — E, e) -> B(0 , ̂ /2) such
that

Then

Proof. Define q: B(0 , ,/2) x R -> Rn by
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has negative expectation. In fact, evaluating Hc on qc yields

We need to modify tpc in order to get a vector orthogonal to Q'((pc).

Theorem 6.5. If d"{( c )< 0, then there exists y e Y = H4( Rn) x H2( Rn)
such that



and hence

Finally, since (d/ds) E((p^(s) + s(pe) = 0 at s = 0, the strict inequality in
(6.11) implies that

and thus (2) holds for y. Using (6.7) again, it follows that

so that by (6.7),

for s sufficiently small. Now define

Combining (6.8) and (6.9) gives

Since at s = 0 the pairing on the right-hand side of (6.10) is precisely
< H c p c , qc>, the continuity of £"', Q", h and pc implies that
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Thus, using (3.5) and (3.6) we have

and by the concavity of d,



Then ye Y and, by (6.14), < Q i > ( Q c ) , y> =0 for i = 1,...,n. If e is chosen
small enough, it follows from (6.13) that < H c y , y> <0. Thus (1) and (2)
hold for y. Later we will need that

which again follows by choosing e small enough. D

865/10/1-12

from wi for each i = 1,..., k we obtain, upon normalizing wk+ 1, a collection
w1,..., wk + 1 satisfying (6.14). Finally, having chosen w1,..., wn we let £>0 be
given and choose xe e Y with such that \\xe — y|| <£. Define

Next, assume that we have constructed W1,..., wk satisfying (6.14) and
choose any w in Y such that

This can be done by the assumption of independence. So define

Then by the induction hypothesis, <Qi(Qc), wk+1> =0 for i=1,..., k, and
by (6.15), < Q'k + 1 ( Q c ) , wk + 1 > = 0. If we now subtract
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First, let w be any element of Y for which ( Q 1 ( ( p c ) , w> =0 and let

Since H 4(R n) x H 2 (R n ) is dense in X, we can perturb y slightly to obtain
a vector in Y satisfying (1) and (2) . Without loss of generality, assume that
the Q ' i ( Q c ) are linearly independent. We define by induction w1,..., Wn in Y
with the property that

177



and thus Q1 is constant in A on r. Also,

with initial data r (0)= v e Kc,£ and let the components of r be given by
r1(A, v), r2(A, v). By Lemma 6.6 (3),

by Theorem 6.5(2). Differentiating (1) with respect to T at T = 0 proves (3).
D

We now wish to construct a curve in X through Qc in the unstable
direction y, on which the functional Q1 is constant and such that E is maxi-
mized at Qc. First let r(A, v) denote the solution of

where Vu is used to denote ([uxi, vxi],..., [ u X n , v X n ] ) e X n . By Theorem 6.5,
ye Xn, and therefore A' extends to all of V c , e . So A is C1 and

Proof. Part (1) follows from Lemma 6.4(3). For u e VC,e U Y and
w e X, compute
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We now define the Lyapunov functional A: Vc,e -> IR by

Lemma 6.6. The functional A is C1 on Vc ,e and



By (6.16) we can bound the first integral in (6.20) by

Using (6.12) we can rewrite the second term as

By (6.17) we have

Proof. Since r1(0, Qc} = Qc, the lemma follows from the implicit func-
tion theorem and (6.18) once it is shown that

The next lemma shows that there is a point along the curve r( A, v) at which
the functional K attains the value K ( Q c ) . This allows us once again to
exploit the variational characterization of Qc.

Lemma 6.7. If d"(c) <0, then there exists e>0 and a C1 functional
A: Vc , e-»R so that for v e Vc,e .

by Lemma 6.6 (2). By Lemma 6.4 (3)
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Lemma 6.8. Suppose d"((c) < 0. Then there exists e > 0 and a C1 func-
tional A: Vc,e n { Q 1 ( Q c ) } -» R such that

Proof. Let v e VC,e with Q 1 ( v ) = Q 1 ( Q c ) and let A(v) be given by
Lemma 6.7. Then since Qc minimizes Ic subject to the constraint
K(u) = K(Q c ) , we have, using (3.8),

which, together with (6.21), implies that

In view of (6.22), (6.24), and (6.26), we therefore have

Thus by (6.25) and the negative definiteness of D2 d(c<?i),

Using Theorem 6.5 we compute
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But since d(c) = [ ( p - 1 ) / 2 ( p + 1 ) ] K ( Q c ) , (6.2) implies

and therefore



so that

Since Q 1 ( r ( A , V ) ) = Q 1 ( Q c ) ,

and
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which proves the lemma. D

Lemma 6.9. Let v e VC,£ with Q 1 ( v ) = Q 1 ( Q c ) and v e Sc= { T ( T ) Qc\
T e R n } . I f d " ( c ) < 0 , t h e n

Proof. The lemma follows by computing the second-order Taylor
expansion of £(r(A, v)) at A = 0.

where



and therefore

Thus E((b(s)) is locally maximized at s = 0. and we have bv (6.28)

Also

and this completes the proof. D

Lemma 6.10. There exists <5>0 and a C2 curve \j/: ( — S, S) —> Vc ,e

such that ij/(0) = Qc, ^'(0) = y, Q1(\J>(s)) = Q1((pc), P(\li(s)) changes sign at
s = 0 and E(\/s(s)) has a strict local maximum at s = 0.

Proof. Since <Q'1(Qc), y> =0, y is tangent to the manifold N =
{v e X: Q 1 (v) = Q 1 ( Q ) } , and thus there is a curve ij/(s) in N with 1/^(0) = Qc

and iA'(0) = y. To show that E(\j/(s)) is maximized at s = 0, we differentiate
in s to obtain

So if v also satisfies Q1(V = Q 1 ( Q c ) , we have by Lemma 6.8
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Subtracting (6.32) from (6.30) and using (3.6) yields

Thus, for 1 near zero, A = 0 and E small enough, it follows that if
VeV c , e n ( X - S c ) , then



and since A(Qc)=0, we have shown that A.(il/(s)) changes sign at s = 0.
a

Proof of Theorem 6.2. Fix e>0 small enough so that Lemma 6.9
applies. Choose s near zero so that A ( \ j / ( s ) ) > 0 and let u0 = ^(s). Then by
Lemma 6.10, Q 1 ( u 0 ) = Q l ( Q c ) , E ( u 0 ) < E ( Q c ) , and we may assume that
P(u0)>0. From Section 3, there is an interval [0, t0) on which a solution
u(t) exists and satisfies u(0) = u0, Q 1 ( u ( t ) ) = Q1(UO), and E(u(t)) = E(u0).
We may suppose that t0 = oo, because otherwise §c is unstable by defini-
tion. Now, by Lemma 6.9,

The integral is exactly

as shown in Lemma 6.7. Thus

Since

Differentiating at s = 0 gives
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It remains only to show that A( \l/(s)) changes sign at s = 0. Recall that A is
defined by (6.19) and satisfies

Thus, since becomes

and



where < •, • > denotes the pairing of W* with W. But A is bounded on Vc, e

and hence u(t) must leave Vc, e in finite time, and therefore Sc is unstable.
D

Remark 6.10. By (4.9) we see that d"(c) <0 in some interval around
zero. Thus at speeds traveling waves are unstable.

7. STANDING WAVES

In this section we extend our results to include the (easier) case of
standing wave solutions of (1.1).

By a standing wave we mean a solution of (1.1) of the form

So (by Ref. 5, Lemma 4.6) we may compute

and

where the last pairing is between W* and W. Hence
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for all t > 0. Thus by the continuity of P, P(u(t)) > 0 for all t > 0. We may
assume that l (u( t ) )< 1 so that

Now let W = D ( J ) with the graph norm ||v||2w= ||v||2x. + ||Jv||2
X. Then

J: W-+X and J*: X*-> W* are continuous, and by definition (3.5) we
have



If Q is any ground state with frequency w, we define Q= [Q, iuxp], and it
follows that

We define the action function d ( w ) as before by

are relatively compact in H 2 ( R n ) up to translation. The absence of second-
order terms in (7.3) allows us to use the scaling property of the non-
linearity to make a choice of the ground state which is smooth in w. If Q0

is a ground-state solution of (7.3) with w = 0 [i.e., q0 is a stationary state
of (1.10)], then

is a ground state with frequency w. Next we consider the invariants of ( 1 . 1 )
relevant to standing waves

We solve (7.3) for w2 < 1 using the method of Section 1 to show that mini-
mizing sequences for the pair

Substituting (7 .1) into (1 .1 ) shows that q must satisfy
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where the space X= H 2 ( R n ) x L 2 (R n ) now consists of complex valued func-
tions and has an inner product given by
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By the relation

we see that d ( w ) is well defined and

which, by (7.5), yields the explicit formula

If we define the set of ground states with frequency w to be

then we have the following stability result.

Theorem 7.1. Suppose that Assumption 3.1 holds and that 1 < p<
2* - 1. If d " ( w ) > 0, then Sw is stable.

Proof. We define

for u near Sw. Under the assumption d"(w)>0, we can improve the
inequality (5.4) to

for any \l/eSw, and u near Sw. The rest of the proof is identical to the
proof of Theorem 5.4. D

Solutions of (1.1) are invariant under the group action T: R x X-* X
given by



then ground states are stable in the interval w2 > 1 / ( 2 y — 1) and unstable in
the interval w2 < 1 / ( 2 y — 1). Ground states at the critical value
w2 = l/(2y — 1) are also unstable since, by the smooth choice of ground
states, there are unstable states arbitrarily nearby.
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Theorem 7.2. Suppose that Assumption 3.1 holds and 1 <p<2* — 1.
If d" ( w ) < 0, then Sw is unstable.

Proof. First, Lemma 6.3 and Lemma 6.4 are true for T as given
above, a, T e R, modulo In. Also, Theorem 6.5 follows more easily in this
case since we no longer insist that the unstable direction y have any
regularity properties. Thus we may define the Lyapunov functional by

The rest of the proof follows exactly as in Section 5 with Q in place of Ql.
D

Using expression (7.11) for d ( w ) , we may now explicitly determine the
intervals in which ground states are stable and unstable. We compute

Thus if y< 1/2, then d " ( w ) < 0 for all w2<1. That is, when

all ground states are unstable. On the other hand, if

187Fourth-Order Solitary Waves

Given a ground state q with frequency w, we define its orbit under T by

With these definitions we have the following.
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