
Machine Learning, 13, 35-70 (1993)
© 1993 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Explanation-Based Learning for Diagnosis

YOUSRI EL FATTAH FATTAH@ICS.UCI.EDU
Department of Information and Computer Science, University of California, Irvine, CA 92717-3425

PAUL O'RORKE ORORKE@ICS.UCI.EDU
Department of Information and Computer Science, University of California, Irvine, CA 92717-3425

Abstract. We present explanation-based learning (EBL) methods aimed at improving the performance of diagnosis
systems integrating associational and model-based components. We consider multiple-fault model-based diagnosis
(MBD) systems and describe two learning architectures. One, EBLIA, is a method for "learning in advance."
The other, EBL(p), is a method for "learning while doing." EBLIA precompiles models into associations and
relies only on the associations during diagnosis. EBL(p) performs compilation during diagnosis whenever reliance
on previously learned associational rules results in unsatisfactory performance—as defined by a given perfor-
mance threshold p. We present results of empirical studies comparing MBD without learning versus EBLIA and
EBL(p). The main conclusions are as follows. EBLIA is superior when it is feasible, but it is not feasible for
large devices. EBL(p) can speed-up MBD and scale-up to larger devices in situations where perfect accuracy
is not required.

Keywords, explanation-based learning, model-based reasoning, rule-based expert systems, diagnosis

1. Introduction

Diagnostic expert systems constructed using traditional knowledge-engineering techniques
identify malfunctioning components using rules that associate symptoms with diagnoses
(Feigenbaum, 1979). Model-based diagnosis (MBD) systems use models of devices to find
faults given observations of abnormal behavior (Davis & Hamscher, 1988). These approaches
to diagnosis are complementary. The associational approach takes advantage of human
experts' empirical knowledge of the behavior of faulty devices in practice. MBD takes advan-
tage of models of devices that can be generated during design, circumventing the knowledge
engineering process and eliminating the need for a human who is an expert at diagnosing
the device. MBD systems can cope with novel and multiple-faults but at a computational
price. MBD is combinatorially explosive (de Kleer, 1991), while associational systems are
relatively efficient. In this article, we consider hybrid diagnosis systems that include both
associational and model-based components.

A principal shortcoming of existing diagnosis systems is that they learn nothing from
any given task. Upon facing the same task a second time, they will incur the same com-
putational expenses as were incurred the first time. We describe several architectures that
integrate learning with associational and model-based diagnosis. The architectures take
advantage of the strengths of both diagnosis methods while attempting to avoid the
weaknesses. In these architectures, diagnostic associations are preferred because they tend
to be more efficient, but model-based reasoning is available for multiple and novel faults.

36 Y. EL FATTAH AND P. O'RORKE

We use explanation-based learning (EBL) (DeJong & Mooney, 1986; Mitchell, Keller, &
Kedar-Cabelli, 1986) to transform knowledge contained in device models into associational
rules.

The structure of this article is as follows. Section 2 states the MBD task and describes
the performance element. Section 3 describes how EBL can be integrated with MBD and
presents two learning architectures, EBLIA and EBL(p). Section 4 provides a detailed
description of the results of computational experiments evaluating the learning methods.
Section 5 provides discussions of the results. Section 6 points out related works. Section
7 gives general conclusions.

2. Model-based diagnosis

Following Reiter (1987) and de Kleer, Mackworth, and Reiter (1992), we define model-
based diagnosis in terms of a 3-tuple (SD, COMPS, OBS) where

1. SD, the system description, is a set of first-order sentences;
2. COMPS, the system components, is a finite set of constants;
3. OBS, the observation, is a finite set of first-order sentences.

The system description, SD, consists of the structural and functional description of the
device. The structure consists of the connections between the various components and the
mappings between various variables. The function is described by a set of constraints for
the various components. A constraint is represented as a set of value inference rules, defined
as follows.

Definition 2.1. A value inference rule r(c, X -> Y) for a component c € COMPS is an
implication, x -» y, whose condition is a value assignment tuple, x = (xi, x2, • •., xn)
for a subset of the component variables {Xj, X2, ..., Xn} C vars(C), and its conclusion
is a value assignment y for a variable Y 6 vars(C), Y t X. A value assignment for a condi-
tion variable Xt can either be a specific value in the domain of Xi, or a logical variable
that matches any value in that domain. The value assignment for the conclusion variable
Y is either a specific value in the domain of Y, or a function of the logical variables appearing
in the assignment of X.

Example 2.1. A component of type multiplier whose input is X, Y and whose output is
Z can be described by the following value inference rules:

LEARNING FOR DIAGNOSIS 37

Example 2.2. Consider a component whose function is to output the logical and of its
inputs. Let the inputs be X, Y and the output Z. The component can be described by the
following rules:

Implicit in the system description is the assumption that the system is behaving "nor-
mally." Abnormal behavior assumes no constraint on the system variables; anything can
be happening. To make the normality/abnormality assumptions explicit in our inferences,
we associate each constant c € COMPS with abnormal literals ab(c) or ->ab(c), where
ab(c) means "c is abnormal" while -*ab(c) means "c is ok." We will make use of the
following definitions.

Definition 2.2. For any subset C c COMPS, the predicate normal(C) is defined as the
conjunction

corresponding to the condition that every component in C is not abnormal.

Definition 2.3. For any subset C S COMPS, the predicate faulty(C) is defined as the
conjunction

corresponding to the condition that every component in C is abnormal.

Intuitively, a diagnosis is a smallest set of components such that the assumption that each
of these components is faulty (abnormal), together with the assumption that all other com-
ponents are behaving correctly (not abnormal), is consistent with the system description
and the observations. This is formalized by the following definition.

Definition 2A. A diagnosis for (SD, COMPS, OBS) is a minimal set A c COMPS such that

is consistent.

38 Y. EL FATTAH AND P. O'RORKE

The MBD system discussed in this article is based on the theory of diagnosis given by
Reiter (1987) and emulates the GDE system of de Kleer and Williams (1987). The method
for determining all diagnoses for (SD, COMPS, OBS) is based on the concept of a conflict
set, originally due to de Kleer (1976).

Definition 2.5. A conflict set for (SD, COMPS, OBS) is a set CONF c COMPS such that

is inconsistent. A conflict set for (SD, COMPS, OBS) is minimal iff no proper subset of
it is a conflict set for (SD, COMPS, OBS). A conflict set CONF corresponds to a clause,

called a conflict. That clause is entailed by SD U OBS.

A result by Reiter (1987) (theorem 4.4) shows that A c COMPS is a diagnosis for (SD,
COMPS, OBS) iff A is a minimal set cover (hitting set) for the collection of (minimal)
conflict sets for (SD, COMPS, OBS). A cover can be defined: given a set of subsets F,
a set C is a cover of F iff any set in F contains an element in C.

The task of computing all diagnoses for (SD, COMPS, OBS) can be represented as a
three-step process, as shown in figure 1, and is described as follows:

Prediction by propagating observations through all constraints;
Conflict recognition by determining all (minimal) assumptions responsible for discrepan-
cies between predictions and observations;
Candidate generation by finding all minimal set covers of the collection of conflicts.

Figure 1, Model-based diagnosis.

LEARNING FOR DIAGNOSIS 39

This diagnostic task is only one phase in the diagnosis cycle, which is followed by the task
of selecting a test or a probe for discrimination between diagnostic candidates. The task
of test/probe selection is not addressed in this article, although most of the results here
serve as a basis for the computations underlying that task.

2.1. Prediction

Prediction is the key to model-based diagnosis. Given the model and the observations, predic-
tion consists in determining for each (variable, value) pair all the assumptions that entail
it. Intuitively, the prediction task involves making inferences about the overall behavior
of the device based on the assumption that the various components are behaving normally.
These inferences are defeasible.

Prediction is performed as a value inference constraint propagation process, triggered
by the values of observed variables (called premises). An example of a premise is a value
assignment for the input and output variables of a device. In diagnosis, the input assign-
ment corresponds to some test vector, and the output assignment corresponds to observed
outputs. The prediction process uses an ATMS (de Kleer, 1986) as an intelligent cache
for the value inferences. Value inferences are stored with associated labels, where an ATMS
label describes the set of minimal environments (sets of assumptions) in which the associated
value inference is verified. The prediction process integrates a value-inference engine with
an ATMS cache and is described in table 1. The system description is specified by a set

Table 1. The prediction algorithm Propagate.

Input: (SD, COMPS, OBS)

Output: Value inferences for system variables and associated minimal sets of (normality) assumptions in which
each inference is valid.

Initialize: For each observation in OBS assert the observed value for the corresponding variable as a premise
and assign to it an empty assumption label and an empty dependency label.

Description:

1 . Change *- false
2. For each component c € COMPS

For each rule r(c, X -> Y) € SD do:
(a) For each set of values for X that satisfy the rule condition and whose dependencies do not include Y do:

i. Determine value inference for ¥
ii. Set the dependency label for Y to be the union of X and the dependency labels for X; Set the assump-

tion label for Y to be the union of {c} and the assumption labels for X.
iii. If the inference for Y is not subsumed by a previous inference then do:

A. Assert the current inference
B. Retract existing inferences for Y subsumed by the current inference
C. Change «- true

3. If Change then go to 2.

40 Y. EL FATTAH AND P. O'RORKE

of production rules whose conditions include assumptions and value assignments for vari-
ables, whose conclusions are value inferences for variables. Prediction is a forward-chaining
value inference process triggered by the observation. When a value inference is made, an
assumption and a dependency label are also determined. Only new value inferences with
minimal assumptions are recorded. This is done by checking whether the value inference
is subsumed by a previous one (step 2(a)iii). If not, then we assert it and retract all previous
inferences subsumed by the current inference (step 2(a)iiiB). To see the need for this step,
consider the case where the first time the value inference is made the label is non-minimal.

The following two examples show the predictions derived by the procedure Propagate
for the outputs of two simple circuits. The predictions are represented as Horn clauses
whose conditions consist of the minimal set of normality assumptions for which the predic-
tion is valid.

Example 2.3. Consider the polybox circuit depicted in figure 2 with the input-output (I/O)
observations (premises)

In this circuit, Ml, M2, and M3 are multipliers, while A\, and A2 are adders. Propagating
the premises A = 3 and C = 2 through the multiplier Ml produces the prediction X =
6 with the label normal ([Ml]), and propagating B = 2, D = 3 through M2 produces Y
= 6 with the label normal ([M2]). Propagating the inferences X = 6, Y = 6 through the
adder A\ produces the prediction F = 12. The assumption label for that prediction is nor-
mal([Ml, Ml, Al]), obtained by propagating the assumptions for X and Y. This amounts
to the assertion that under the assumption that none of the components Ml, M2, Al is
abnormal, the output F is predicted to be 12. This can be expressed as the logical formula

Similarly, we can conclude that the output G should be 12 under the assumption that the
components M2, M3, and A2 are not behaving abnormally, i.e.,

Figure 2. The polybox circuit.

LEARNING FOR DIAGNOSIS 41

Propagating the output G = 12 and the prediction Z = 6 (whose label is [M3]) through
the adder A2 produces the prediction 7 = 6 and the label normal([A2, M3]). Propagating
that prediction for Y along with the prediction X = 6 (whose label is normal ([M1]) through
the adder A\ produces the prediction that F should be 12 with the label normal([Ml, M3,
A1, A2]). This corresponds to the formula

Similary, we can conclude that under the assumption that A\, A2, Ml, M3 are working
correctly, G should be 10, i.e.,

Note that the I/O premises do not appear in the conditions of the prediction formulas (10)-
(13); the predictions are all made in the context of those premises.

Example 2A. Consider the one-bit adder circuit in figure 3, with the input-output

Propagating the input bits XI, Y\ through the exclusive-or gate Xorl produces the predic-
tion Oxl - 0 with the label normal ([Xorl]). Propagating that prediction along with the
input carry CO = 0 through the exclusive-or gate Xor2 produces the prediction that the
sum bit 51 should be 0 under the assumption that Xorl and Xor2 are functioning correctly.
That is,

Also, propagating either one of the input bits XI, Yl through the and-gate Andl produces
the prediction that Oal should be 0 provided that Andl is not abnormal. Propagating the
input carry CO = 0 through the and gate And2 produces the prediction that Oal = 0 pro-
vided that And2 is not abnormal. Then propagating those predictions for Oal, Oa2 through
the or gate Orl produces the prediction Cl = 0 provided that components And1, And2,
and Or1 are all functioning correctly. That is,

Figure 3. A full adder.

42 Y. EL FATTAH AND P. O'RORKE

2.2. Conflict recognition

Conflict recognition consists in identifying sets of default normality assumptions that lead
to predictions that are inconsistent with the observations. Conflict recognition is performed
by comparing predictions with premise assignments recording observed values. If there
is a discrepancy, then the support set of the prediction inference is declared as a conflict set.

Example 2.5. The polybox circuit with inputs and outputs as given in example 2.3 results
in two conflicts. One conflict results from the prediction F = 12, equation (10), and the
observation, F = 10. Using the ATMS terminology, the label of the prediction F = 12
becomes a nogood set, meaning that the assumptions that Al, Ml, Ml are all working
correctly cannot be part of any consistent environment; thus the conflict

The other conflict results from either the prediction that F = 12, equation (12), and the
observation, F = 10, or the prediction G = 10, equation (13), and the observation,
G = 12. That conflict says that the components Ml, M3, Al, A2 cannot be all working
correctly; one of them must be faulty, i.e.,

Example 2.6, The one-bit adder with inputs and outputs as given in example 2.4 results
in one conflict, namely, between the prediction of the sum bit S1 =0 and the observation
51 = 1. The conflict set consists of the components X or I and X or 2; at least one of
these components must be faulty, i.e.,

2.3. Candidate generation

Candidate generation consists in determining minimal sets of abnormality assumptions whose
conjunction covers (accounts for) all known conflicts. This amounts to saying that if ab(Cl)
A ab(C2) is a candidate, then the suspension of the normal constraint for components Cl
and C2 removes all conflicts (i.e., restores consistency). A candidate set is minimal if it
does not include a subset that is also a candidate.

For the candidate generation step, we implemented an HS-Tree algorithm, based on Reiter
(1987). Each node in the HS-tree is labeled with a conflict set, and each edge to its children
is labeled with an element from that set (corresponding to a system component). Define
the path label H(n) of a node n to be the set of edge labels from the root of the HS-tree
to the node. The HS-tree is built up breadth-first such that each node n's label is disjoint
with its path label, H(n). If no such label exists for a node, then that node is labeled by
»^'. The path label to any node labeled by ^ is a hitting set. Reiter assumes the existence
of a theorem prover to be called by the HS-tree algorithm to find conflict sets for the node

LEARNING FOR DIAGNOSIS 43

labels. In order to 1) keep the HS-tree as small as possible, 2) calculate only minimal hit-
ting sets, and 3) minimize the number of calls to the theorem prover, Reiter (1987) pro-
vides the following heuristics for generating a pruned HS-tree:

1. Reusing node labels: If node n has already been labeled by a set S and if n' is a new
node such that the path label to that node is disjoint with S, then label n' by 5.

2. Tree pruning
(a) Closing rule-1. If node n is labeled by ̂ and node n' is such that H(n) c H(n'),

then close the node n'. A label is not computed for n', nor are any successor nodes
generated.

(b) Closing rule-2. If node « has been generated and node n' is such that H(n') =
H(n), then close n'.

(c) Remove redundant edges. If node n and n' have been labeled by sets S and 5',
respectively, and if S' is a proper subset of S, then for each a € 5 - S' mark as
redundant the edge from node n labeled by a. A redundant edge, together with the
subtree beneath it, may be removed from the HS-tree.

In our implementation, we do not consider two of Reiter's heuristics: 1) the "Reusing node
labels" heuristic, and 2) the "Remove redundant edges" tree-pruning heuristic.1 In our case
the reuse heuristic is not needed, since we determine the entire collection of conflict sets
prior to determining the hitting sets. The reason for not pruning is that the implementation
is simpler without it. Our algorithm may generate a larger tree than necessary, but we are
guaranteed not to miss any minimal hitting set.

Example 2.7. The polybox circuit with the two conflicts of example 2.5 results in four
minimal candidates:

Example 2.8. The one-bit adder with the conflict of example 2.6 results in two minimal
candidates:

44 Y. EL FATTAH AND P. O'RORKE

3. Explanation-based learning

Explanation-based learning (EBL) is one proposal to speed up MBD, by accumulating
problem-solving experience and using past experience on new problems. Experience is
represented using rules of the form Situation -» Conclusion; whenever faced with Situa-
tion, then jump directly to Conclusion. We now consider in detail how EBL can impact
on the various phases of the diagnosis task.

3.1. Prediction

Traditional MBD must make predictions anew for every problem, even if a similar prob-
lem has been seen before. Prediction entails search in the assumption lattice to find the
minimal support environments for all possible value inferences. Our proposal is to exploit
the results of the search made on current problems in the prediction phase for use on future
problems. The main intuition for applying EBL to the prediction phase is as follows. While
making value inferences, the inference rules themselves are also propagated and unified
to form what we call p-rules (prediction rules).

Definition 3.1. Let vars(SD) be the system variables and vars(OBS) be the observation
(premise) variables. A p-rule p(C, X -* Y) is an implication:

The condition of a p-rule is a conjunction of the normality predicate normal(C), C C
COMPS and a value assignment tuple, x = (x\, x2, ..., xn) for a subset of observation
variables; {Xlf X2, . . . , Xn} C vars(OBS). The conclusion of a p-rule is value assign-
ment y for a system variable Y € vars(SD). A value assignment for a condition variable
Xj can either be a specific value in the domain of Xi, or a logical variable that matches
any value in that domain. The value assignment for the conclusion variable Y is either
a specific value in the domain of Y, or a function of the logical variables appearing in
the assignment of X.

P-rules may replace the propagation procedure performed by Propagate. This has the
following benefits:

1. The problem of finding predictions becomes backtrack-free:
(a) The p-rules specify explicitly the minimal environment in which an inference is

valid. Without p-rules, value inferences are retracted when they are subsumed by
other environments.

(b) The p-rules eliminate the need to search for inference chains, since they associate
directly the observed (premise) variables with the system variables.

2. Inferences are no longer made for internal variables.

LEARNING FOR DIAGNOSIS 45

Learning p-rules is a way of allowing the "reuse" of search efforts on previous diagnosis
problems.2 The predictions made on previous problems may not have been useful for those
problems in terms of discovering conflict sets. But the cached p-rules may be useful for
new problems (see example 3.2 below).

The application of EBL to the prediction phase is performed by the procedure EBL-
Propagate (see table 2). The following are examples of applying that procedure.

Example 3.1. Consider the polybox example 2.3. The procedure EBL-Propagate compiles
the following p-rules for the output variable F:

Similar rules are compiled for G.

Example 3.2. Consider the adder example 2.4. The procedure EBL-Propagate compiles
the following p-rules for the output variables,

For the given premise instance, either of the p-rules (30) or (31) is all that is needed for
prediction. They both have the same assumption label, and that label subsumes that of
rule (29). If we substitute for the premises, rules (29) and (30) will degenerate to predic-
tion (16) of example 2.4. Although redundant for the given premises, rules (29) and (30)
may be irredundant for other instances. For example, if the premise is {XI = 0, Y1 =
1, CO = 0}, then rules (29) and (31) are not applicable, but rule (30) is.

When EBL-Propagate is made to cover not only the given example of value assignments
to the premise variables, but also all other possible assignments, the procedure becomes
what we call EBLIA-Propagate. In EBL-Propagate we require that the learnt p-rules be
consistent with the given premise instance (table 2, step 2c). EBLIA-Propagate is the same
as EBL-Propagate, except that step 2c is replaced by general satisfiability, instead of satis-
fiability for a given premise instance. The rules compiled by EBLIA are to apply to all

46 Y. EL FATTAH AND P. O'RORKE

Table 2. EBL-Propagate, a "learning while doing" prediction algorithm.

Input: (SD, COMPS, OBS)

Output: All p-rules applicable to generalization of the observations in OBS.

Initialization: For each observed variable F assert a p-rule normal([]) A (V = v) -> V = v, where v is a logical
variable that matches any value in the domain of V. Set the p-rules' dependencies to nil.

Description:

1 . Change «- false
2. For each component c € COMPS

For each inference rule r(c, X -> Y) € SD
For each collection S of p-rules p(Cj, Z, -> X,) | X, € X) whose dependencies do not include Y do:
(a) Unify the conclusions of the p-rules with the conditions of the inference rule,
(b) Set Z to be the union of Z, for all p-rules in S.
(c) Verify that the condition set on Z is satisflable by OBS.
(d) Form a new p-rule p(C, Z -» Y). C is the union of {c} and C, for all p-rules in S. Set the dependency

label for that rule to be the union of X and the dependencies for all p-rules in S.
(e) If the new p-rule is not subsumed by a prior rule then do:

i. Assert the current rule
ii. Retract existing rules subsumed by the current one

iii. Change <- true
3. If Change then go to 2.

Table 3. EBLIA-Propagate, a "learning in advance" prediction algorithm.

Input: Premise variables.

Output: All p-rules covering every possible instantiation of premise variables from their domain.

Description: Follow every step in EBL-Propagate except for step 2c. Instead of that step do: Verify that the con-
dition set on Z is satisfiable for some instantiation of premise variables from their domain.

possible instantiations of the premise set, rather than to only a generalization of a given
instance as in EBL-Propagate (see table 3).

Example 3.3. For the polybox circuit, applying EBLIA-Progagate produces the same p-
rules as in example 3.1.

Example 3A For the one-bit adder circuit, EBLIA-Propagate compiles the following p-
rules in addition to those compiled by EBL-Propagate (example 3.2):

LEARNING FOR DIAGNOSIS 47

The reason the above rules are not compiled by EBL-Propagate is that their conditions
are incompatible with the given input-output values. In general, the p-rules learnt by the
EBL-Propagate depend on the particular observation instance. In general, EBL-Propagate
requires multiple examples to learn all the p-rules that are learnt by EBLIA-Propagate. For
the polybox circuit, one example is sufficent for EBLIA to learn all prediction rules. This
is so because the constraints are independent of special instantiations of the premise set.
For logic circuits, multiple examples are still required.

3.2. Conflict recognition

The EBL impact on this task is through the p-rules, which state explicitly all the minimal
assumptions for various predictions. Conflict recognition becomes a simple matching of
the p-rule conditions and comparing the p-rule prediction against the observation.

The procedure to determine the conflict sets is shown in table 4. As shown in example
3.2, the p-rules may include pairs of rules that are applicable in a given premise instance
but one rule's assumption is subsumed by the other. For conflict recognition we are only
interested in minimal conflicts. We discard non-minimal conflicts. Step 3 in GET-
CONFLICT (table 4) eliminates p-rules that could lead to non-minimal conflicts.

Table 4. A conflict set generation algorithm: GET-CONFLICTS.

Input: Set of p-rules and a premise.

Output: Collection of all minimal conflicts.

Description:

1 . Sort the p-rules in increasing order of their assumption set cardinality.
2. Begin with the first p-rule.
3. If the rule's condition holds and the rule's prediction conflicts with a premise then declare the rule's assump-

tion as a conflict set and remove all remaining rules whose supports are subsumed by the current rule.
4. If there is a next rule then go to 3 else return all conflict sets.

48 Y. EL FATTAH AND P. O'RORKE

3.3. Candidate generation

For the candidate generation phase of the diagnostic process, the learning component caches
associational rules between collections of conflict sets and collections of minimal set covers
(hit sets). We call those associations d-rules, formally defined as follows:

Definition 3.2. A d-rule is a prepositional rule,

associating a collection C of all minimal conflict sets for (SD, COMPS, OBS),

with the corresponding collection 2> of all diagnoses for (SD, COMPS, OBS),

where each Dj € 2) is a minimal hit set (set cover) for C.

Example 3.5. For the polybox example, the d-rule that can be learned is as follows:

The d-rules are indexed by the collection of minimal conflicts, so that finding all diagnoses
using a d-rule takes constant time. After learning, there is no search involved. However,
the number of d-rules may grow exponentially with the size of the device, and they can
occupy exponential space.

The indexing of the d-rules can be achieved as follows. Each time a new conflict set
appears, a counter is incremented and the value of that counter is assigned as an index
for that conflict. A collection of conflict sets will be indexed as the ordered set of its con-
flict set indexes. The procedure, ALL-DIAG, to determine all diagnoses is given in table 5.

Table 5. A candiate generation algorithm: ALL-DIAG.

Input: Collection of minimal conflict sets.

Output: All minimal hit sets.

Description:

1 . If the present collection of conflict sets has been seen and a d-rule already exists then return the associated
collection of hit sets,

2. else, do:
(a) apply HS-Tree to the collection of conflict sets,
(b) record and index new conflict sets,
(c) assert a d-rule associating conflict indices with hit sets, and
(d) return the hit sets.

LEARNING FOR DIAGNOSIS 49

3.4. Summary and discussion

Diagnosis is determined by a minimal set of components with the following property: the
assumption that each of these components is abnormal, together with the assumption that
all other components are not abnormal, is consistent with the system description and the
observation. Computing diagnoses involves three subtasks: prediction, conflict recogni-
tion, and candidate generation. Prediction is done by making value inferences for various
variables and recording the corresponding minimal consistent sets of assumptions, called
labels. Recognizing conflicts amounts to comparing observations with predictions and iden-
tifying their labels as nogoods or conflict sets in the event of inconsistencies. Generating
candidates involves finding all minimal set covers, or hit sets, of the collection of conflicts.
The worst-case complexity for the task of computing the collection F of all minimal con-
flicts (nogoods) is exponential in the number of components | COMPS \. Given a collection
F of subsets of COMPS, and a positive integer K < \COMPS\, the task of determining
whether there is a hit set of cardinality less than or equal to K is also known to be NP-
complete, even if each set in Fhas at most two elements (Garey & Johnson, 1979). Conse-
quently, the overall complexity of a model-based diagnosis algorithm based on Reiter (1987)
or the GDE system of de Kleer and Williams (1987) is likely to be (if P * NP) exponen-
tial in the number of components.

We propose the use of EBL to acquire two categories of production rules, called p-rules
and d-rules. The p-rules associate observations and assumptions with value inferences
(predictions) for various variables. Those rules can replace the search for value inferences
in the assumption lattice, reducing conflict recognition to the task of matching the condi-
tion of a p-rule with the observations and declaring the rule's assumption as a conflict when
the value inference in the rule's conclusion differs from the observation. The d-rules associate
collections of conflicts with a collection of minimal covers, or all diagnoses. The p-rules
may include first-order predicates, while the d-rules are strictly propositional. The d-rules
allow the candidate generation to be a deterministic table look-up, involving no search,
as the rules are indexed by the collection of conflicts.

3.5. Learning architectures

We consider two learning architectures: EBLIA and EBL(p). They both integrate EBL with
MBD and associative diagnosis. EBLIA compiles in advance all p-rules, while EBL(p) com-
piles those rules while performing the diagnostic task. The candidate generation procedure
in both systems is identical. Rules called d-rules are compiled by both systems at diagnosis
time, associating conflict sets with minimal candidates. The following sections describe
the two architectures in detail.

3.5.1. EBLIA

A block diagram of EBLIA is shown in figure 4. All possible predictions are compiled
in advance by the procedure EBLIA-Propagate, in terms of the device model and the variables

50 Y. EL FATTAH AND P. O'RORKE

Figure 4. The EBLIA learning architecture for diagnosis.

designated as observable (premise variables). EBLIA-Propagate creates a cache of p-rules
that is to be used for the conflict recognition performed by GET-CONFLICTS. Note the
dashed lines indicating that the compilation is done in advance—prior to the diagnostic
task. Note also that the device model is not subsequently used by EBLIA.

The function of GET-CONFLICTS is to take as input the observations and produce as
output the collection of all minimal conflict sets. The collection of conflicts found by GET-
CONFLICTS is then input to ALL-DIAG, whose function is to output the corresponding
minimal covers (hit sets). If a d-rule exists for the collection of conflicts, then the associated
collection of minimal candidates will be produced as the output. Otherwise, the collection
of conflicts has not been seen before, and the HS-tree algorithm is used by ALL-DIAG
to compute and output all the minimal covers. Then a d-rule is cached for possible use
on future problems. Unlike the pre-compilation of p-rules, the compilation of d-rules by
ALL-DIAG is performed at diagnosis time. Note that as more d-rules are compiled, EBLIA
will operate entirely as an associative system.

EBLIA differs from EBL in that all p-rules are compiled in advance, thus covering the
entire observation space, while EBL will cover only the part of that space corresponding
to actual examples. The advantage of EBLIA over EBL is that the collection of minimal
conflicts found by EBLIA are guaranteed to be the same as those that are model-based,
while EBL may miss some minimal conflicts or produce some non-minimal ones. The
advantage of EBL over EBLIA is that the space required by the p-rules may be more
economical, since rules that do not correspond to some occurring problems will not
be learned.

3.5.2. EBL(p)

As pointed out earlier, the p-rules learned by EBL may be incomplete. The conflict sets
found based only on the p-rules may fail to detect other existing conflicts. However, for
the sake of efficiency, we adopt the closed-world assumption and use negation by failure
when recognizing conflicts. If predictions made by the p-rules do not conflict with obser-
vations, then no conflict exists. The question that naturally follows is what consequence
this assumption has on diagnostic performance. The answer is this: if only a partial set

LEARNING FOR DIAGNOSIS 51

of conflicts is found but other conflicts are undetected, then the resulting diagnosis will
be overgeneral. An overgeneral diagnosis is formally defined as follows.

Definition 3.3. A set A g COMPS is an overgeneral diagnosis for (SD, COMPS, OBS)
if there exists a set A' c COMPS such that A' is a diagnosis and A C A'.

Note that an overgeneral diagnosis is not a (minimal) diagnosis, according to definition
2.4. Unless the empty set is a diagnosis, the empty set is always an overgeneral diagnosis.
An overgeneral diagnosis lacks specificity as to what components must be incriminated
in order to provide a hypothesis that is consistent with the model and the observations.
This is explained further in example 3.6 below.

Overgeneral diagnoses may not lead to performance errors. This is the case under the
following circumstances:

1. If the repair action based on an overgeneral diagnosis "covers" the actual fault.
2. If another generated candidate is a correct diagnosis that subsumes the actual fault (see

example 3.6).

In general, however, an overgeneral diagnosis may increase the troubleshooting costs due
to the following:

1. Effective probes for discriminating between diagnoses cannot be determined.
2. Troubleshooting may take longer due to inefficient repair decisions.

The following example illustrates the relationships between overgenerality and perform-
ance errors.

Example 3.6. Consider the polybox circuit with the input-output observation as shown
in figure 2. Assume that existing p-rules lack equation (27). The EBL system based on
the closed-world assumption will then conclude that only one conflict set [Al, Ml, M2]
exists, and it will miss the other conflict set [Ml, A/3, Al, Al}. Based on that erroneous
conclusion, three single fault diagnoses namely, [Ml], [v41],[M2], will be conjectured. The
correct diagnoses based on the two conflicts are [Ml], [Al], [M2, A2], [M2, A3]. Therefore
the consequence of missing the second conflict, [M1, M3, A I, A 2], is that one of the pro-
posed diagnoses, [M2], is overgeneral. The other two diagnoses, [Ml], [Al], are correct.
[M2] is overgeneral because suspending the constraint for component M2 alone while
assuming that all remaining components are behaving correctly will lead to inconsistency
with the model and the observation. To see this, we suspend the M2 constraint and deter-
mine whether the observation and the remaining constraints can derive a contradiction.
Propagating the inputs through the multiplier constraints Ml and M3 yields X = 6 and
Z = 6, respectively. Propagating Z = 6 and G = 12 through the adder constraint of

52 Y. EL FATTAH AND P. O'RORKE

A2 yields 7=6 . But then X = 6, Y = 6, and F = 10 is inconsistent with the Al adder
constraint. A contradiction exists, and [M2] cannot be a diagnosis. [M2] is a subset of
the (more specific) diagnoses: [M2,A2], [M2,M3], If the actual fault is one of the single-
fault hypotheses A\ or Ml, then the overgenerality is of no consequence. On the other
hand, if the actual fault is subsumed by one of the double faults [M2, A2] or [M2, M3],
then the overgenerality may be harmful. If we repair A/2 based on the overgeneral diagnosis,
the fault will not disappear and the troubleshooting process will need to continue. The
correct, more specific diagnoses [M2, A2] and [M2, M3] are more likely to lead to a shorter
troubleshooting sequence. For instance, we may measure X and then measure Z, and if
both values are as predicted, then we may replace both components M2 and A2.

One on hand, producing some overgeneral diagnoses on some problems may result in
an overall performance that is inferior to MBD. On the other hand, the use of a limited
number of p-rules to directly find conflicts is likely to produce more efficient computa-
tion, in comparison with MBD. Trading accuracy for efficiency may prove useful in prac-
tical applications. To that end, we propose the use of a threshold p as a parameter that
determines a lower bound on the performance level of an EBL system that we call EBL(p).

A block diagram of EBL(p) is shown in figure 5. Like EBLIA, the function of EBL(p)
is to generate diagnostic hypotheses consistent with the input observations. Unlike EBLIA,
EBL(p) compiles the p-rules at diagnosis time. In EBL(p), the p-rules compilation is done
by the procedure EBL-Propagate, using the device model and the observations.

EBL-Propagate is turned on and off by a performance evaluation unit, EVAL-PERF, as
shown in figure 5. EVAL-PERF does its evaluation task by averaging satisfaction indices
received on previous problem-solving. The satisfaction index may be a binary variable:
0 if hypotheses are satisfactory and 1 otherwise. Satisfaction is input by an external unit
that could be the human trouble-shooter, or a model-based reasoning system that runs in
parallel as a training system.

EVAL-PERF outputs a binary signal to activate or deactivate EBL-Propagate. That signal
is determined by comparing the average satisfaction with a threshold, p. EBL-Propagate
remains inactive as long as the average satisfaction is greater than the threshold; otherwise
it is active.

Figure 5. The EBL(p) learning architecture for diagnosis.

LEARNING FOR DIAGNOSIS 53

Table 6. Procedural description of EBL(p).

Input: Observations.

Output: Hypotheses.

Initialization: {Sat is the average satisfaction}
Problem <- 0, Sat «- 0.

Description:

1 . If Sat > p then Activate «- No else Activate <- Yes
2. If Activate = Yes then apply EBL-Propagate
3. Apply GET-CONFLICTS
4. Apply ALL-DIAG
5. Problem = Problem + 1
6. {Index is the satisfaction index for output hypotheses}

Sat = Sat + (Index - Sat)/Problem

If the activation signal is off, EBL(p) carries out its diagnostic task as if it were EBLIA.
That is, EBL(p) assumes that its p-rules are sufficient to generate all minimal conflicts.
If EBL-Propagate is not activated on a sufficient number of examples, the generated
hypotheses may be unsatisfactory. If unsatisfactory hypotheses persist, then the activation
of EBL-Propagate will occur and continue until average satisfaction again reaches the
threshold. When EBL-Propagate is activated, the generated hypotheses are identical to those
of MBD. The difference is that caching of p-rules takes place so that prediction can be
performed associatively on future problems. Table 6 gives a procedural description of
EBL(p).

3.5.3. Evaluation of hypotheses

In standard EBL one learns a sufficient characterization of a concept by generalizing an
example instance using a given theory. A problem arises in applying standard EBL to MBD
as formulated by Reiter (1987). MBD requires the knowledge of all conflict sets. If we
miss some minimal conflict sets, then the minimal diagnoses may be overgeneral, as discuss-
ed in example 3.6. Overgenerality may adversely affect the troubleshooting performance:
effective probes may be overlooked or fruitless repairs may be undertaken.

This raises the need to evaluate generated hypotheses, and how such evaluation is done
becomes an important issue. A simple approach to evaluation is to determine (either through
an external teacher or at the end of troubleshooting) whether the actual fault is or was
one of the generated hypotheses. However, a minimal diagnosis may only be a subset of
the actual faulty components. If single faults are dominant, this evaluation seems reasonable,
but it will err on multiple faults.

Another possible evaluation method is to test whether diagnoses found by EBL are
overgeneral. An overgeneral diagnosis may provide poor guidance to troubleshooting, for
example, by suggesting inefficient probes or inadequate repairs (see example 3.6). One way

54 Y. EL FATTAH AND P. O'RORKE

to test for overgenerality is by constraint-suspension (Davis & Hamscher, 1988), which
amounts to verifying whether it is consistent that all components other than the suspects
appear to be working correctly. This method is elegant and has the advantage that it can
be integrated with explanation-based learning so that learning occurs when constraint suspen-
sion uncovers new conflicts. However, constraint suspension can be expensive when the
number of suspects is large and when multiple faults are possible.

In a supervised learning mode, MBD can be used by a teacher to provide feedback on
whether proposed diagnoses are overgeneral, and the actual faults can be used to test whether
proposed diagnoses are sufficiently specific for all practical purposes. We adapt this approach
in our experiments, since our aim is to evaluate the accuracy of the generated candidates
with regard to how diagnoses will be used in guiding the overall troubleshooting process.

4. Empirical results

We have carried out an empirical study to compare the performance of EBLIA, EBL(p),
and MBD. We studied their performance on the polybox (figure 2) and the N-bit parallel
adder (figure 6).

Diagnostic problems are generated using a fault simulator module. The number of faults
for each problem ranges between 1 and 3, with higher probability assigned for single faults.
The locations of faults cover the various components at random. For the N-bit adder, a
faulty component is simulated by complementing its normal output. For the polybox, a
fault for a multiplier is simulated by subtracting 1 from its normal output, and for an adder
by adding 1 to its normal output. The input values are independently and randomly generated
from their allowed value set. The value set for the N-bit adder is [0, 1], while for the polybox
we chose [2, 3]. The fault simulator produces the output corresponding to the assigned
faults and inputs. A diagnostic problem consists of a set of input and output values (called
premises) and a set of actual faults. For each device, an experiment consists of feeding
10 series of 100 problems simultaneously to both systems with and without learning. We
monitor the values of interesting parameters (such as the cumulative cpu-time) versus the
number of problems in each series. We then compute the average value and the standard
deviation of those parameters versus the number of problems.

Figure 6. N-bit adder.

LEARNING FOR DIAGNOSIS 55

4.1. EBLIA

EBLIA learns p-rules from the device description once per experiment, before the diagnosis
problems are solved. During actual diagnosis the model is never used. See section 3.5.1
for a more complete description of EBLIA.

Here, we study the cumulative number of d-rules and the cumulative time. The cumulative
time for EBLIA includes the initial compilation time. The minimal candidates produced
by the implementations of EBLIA and MBD are verified to be the same for every problem
to help avoid coding errors in the implementations.

4.1.1. D-Rules

The curves in figure 7 show the number of d-rules learned by EBLIA on the polybox and
n-bit adder for n = 1, 2, and 3. The curves are averages over ten problem sets. The values
for each curve vary from the average by at most 10%.

There are four d-rules that can be learned in the case of the polybox. EBLIA learns most
of them in the first ten problems. After approximately 50 problems, all four d-rules are
learnt. On the n-bit adder, the number of d-rules increases monotonically with the number
of problems. The increase is more appreciable for the initial problems than for the remain-
ing problems. However, the rate of the increase drops more slowly as the size of the device
grows.

4.1.2. Computation time

Figure 8 shows cumulative time curves for EBLIA and MBD on the two-bit adder. The
curves are averages over ten problem sets. The values for each curve vary by at most 10%.

In general, the cumulative tune curves for EBLIA and MBD rise almost linearly with
the number of problems. Table 7 shows key statistics that characterize the curves. The time
per problem column contains the slopes of lines fitted to the cumulative cpu-time curves.
This is a measure of the computation time spent on problems in a diagnostic series. The
y-intercepts of the cpu-time lines are given in the preprocessing column. The y-intercepts

Figure 7. Cumulative number of d-rules for EBLIA.

56 Y. EL FATTAH AND P. O'RORKE

Figure 8. Cumulative time for EBLIA versus MBD on the two-bit adder.

Table 7. Computation time for EBLIA versus MBD.

Problem

polybox
1-bit adder
2-bit adder
3-bit adder

Time per problem
MBD

3.16
2.16
5.14

12.1

EBLIA

.0749

.104

.441
4.96

Preprocessing
EBLIA

2.96
3.28

35.9
2126

Crossover

1.01
1.69
8.14

299

of the cpu-time lines for EBLIA indicate how much time it spends preprocessing a given
device prior to diagnosis. The crossover column shows the intersections of the MBD and
EBLIA time lines. This is a measure of the number of problems that must be solved before
EBLIA's overall computation time becomes smaller than MBD's.

On the polybox, the cumulative time curves are within 2% of the average. This indicates
that the average is a good representative of the diagnosis problem sets that contributed to
it. A linear curve fit on the average times for EBLIA yields the line seconds - .0749 x
problems + 2.96. A linear curve fit on MBD yields the line seconds = 3.16 X problems
- .155. The entries in the polybox lines of table 7 were derived by rounding computed
slopes and intercepts to three places. The entry in the crossover column was computed
by finding a simultaneous solution of computed linear equations and then rounding.

A comparison of the slopes of the lines on the polybox indicates that the cpu-time per
problem for EBLIA is approximately 2 % (.0749/3.16) of the time for MBD (see table 7).
This indicates that the additional cost of matching against learned rules and the cost of
any additional search they engender is negligible compared to the time it takes to search
the model for all value inferences and to compute the hit sets. EBLIA's preprocessing time
for this device is small, and it improves upon MBD's performance immediately after the
first problem.

On the one-bit adder, the slope for EBLIA is approximately 6% of the slope for MBD.
The preprocessing time is small, and EBLIA's cumulative time curve crosses over MBD's
immediately after the first problem.

LEARNING FOR DIAGNOSIS 57

On the two-bit adder, the slope for EBLIA is about 9% of the slope for MBD. The initial
compilation time produces a relatively significant impact in comparison with the one-bit
adder. However, EBLIA produces a net speed-up in comparison with MBD after diagnos-
ing less than ten problems.

On the three-bit adder, the slope of EBLIA is now a significant 41 % of the slope of MBD.
The preprocessing time required to compile the p-rules for EBLIA is substantial (over 2000
cpu seconds). EBLIA does not produce a performance speed-up in comparison with MBD
over the range of 100 problems. The crossover point to obtain the speed-up on this device
appears to be about 300 problems.

4.2. EBL(p)

EBL(p) learns d-rules continually, just as in EBLIA. P-rule learning is on in EBL(p) if
and only if accuracy is below the threshold percentage p. When learning is off, conflict
set recognition is based solely on previously acquired rules. See section 3.5.2 for a descrip-
tion of the EBL(p) architecture.

In this experiment, the threshold parameter p is set to 0.9. A set of candidate diagnoses
produced by EBL(p) on a given problem is considered to be satisfactory if it is exactly
the same as the output of MBD or if the set of faults used to generate the problem is a
member of the set of candidates. See section 3.5.3 on hypothesis evaluation for alternative
definitions of satisfactory and section 3.5.2 for a discussion of the role of hypothesis evalua-
tion in EBL(p). Note that either one of the disjuncts in the requirement used here may
be satisifed without satisfying the other (neither implies the other). This satisfaction require-
ment is strictly weaker than the requirement that EBL(p) and MBD produce identical results.
We argue that it is a reasonable way to weaken this requirement. Consider a set of symp-
toms that produces the conflict sets [a, b] and [a, c]. MBD produces the following set
of diagnoses in this case: {[a], [b, c]}. If EBL(p) is unaware of the conflict set [a, c],
it will produce the set of candidate diagnoses: {[a], [b]}. This output would be unsatisfac-
tory according to a strict test requiring EBL(p)'s output to be identical to the output of
MBD. But on a problem where a is actually faulted, rather than b and c, this set of can-
didates is perfectly satisfactory for all practical purposes. For a more realistic case, see
example 3.6. An advantage of the definition of satisfactory candidate used here is that it
takes into account whether the candidate will successfully guide troubleshooting for the
problem at hand, and does not require the candidate to be correct for all possible problems
that might have produced similar symptoms.

The measures studied include the cumulative number of d-rules, p-rules, and the
cumulative time. In addition, the current accuracy score (the radio of correctly diagnosed
problems to the number of problems tried) is recorded after each problem is solved.

4.2.1. D-rules

The number of do-rules learned by EBL(.9) is nearly the same as for EBLIA (see figure 7).

58 Y. EL FATTAH AND P. O'RORKE

Figure 9. Cumulative number of p-rules for EBL(.9).

42.2. P-rules

In the poly box, there is a limited number of p-rules to be learned (20 of them). All of
these p-rules are learnt from the first example. So EBL(p) never turns learning on follow-
ing the first example. In the one-bit adder, the entire set of p-rules that can be learned
is 26, so this number serves as an upper bound for the one-bit adder curve in figure 9.
This curve shows the cumulative number of p-rules learned averaged over ten runs. The
individual curves differ from the average by at most 3 %. Nearly all of these p-rules are
learned on the first ten examples. Note that the graph in figure 9 uses a logarithmic ver-
tical axis.

Almost all the p-rules learned for the two-bit adder are learnt from the first 10 to 20
problems. The number of p-rules then remains constant around 120 rules. (There are 137
rules that can be learnt.)

4.2.3. Accuracy

Accuracy curves are shown in figure 10. For the polybox, the accuracy remains constant
at 1.0. For the n-bit adders, the accuracy curves show a sharp dip at the beginning, where
accuracy fells below the 0.9 threshold; then they rise steadily due to learning. Accuracy

Figure 10, Accuracy of EBL(.9).

LEARNING FOR DIAGNOSIS 59

reaches the threshold value on its way up after about 10 problems. Except for some rip-
pling around the threshold for the range up to about 20 problems, the accuracy remains
above the threshold and no further learning is needed. The top (most accurate) curve in
the figure is the polybox, then the one-bit adder, the two-bit adder; the curve that represents
the lowest accuracy is for the three-bit adder. In general, the larger the circuit, the lower
the accuracy. Note, however, that all three curves end up significantly above the required
90% accuracy mark.

4.2.4. Computation time

In the polybox, the cumulative time of MBD and EBL(.9) grows linearly with the number
of problems, but the slope of EBL(.9) is only about 3 % of that of MBD. This is nearly
the same as the result obtained by EBLIA.

On the n-bit adders, the cumulative time rises almost linearly for MBD, but displays
a "knee effect" for EBL(.9) (see figures 11 to 13). The figures show average cumulative
tune curves. The knee position is located at the point where learning ends and associative
diagnosis takes over.

Figure 11. Cumulative time for EBL(,9) versus MBD on the one-bit adder.

Figure 12. Cumulative time for EBL(.9) versus MBD on the two-bit adder.

60 Y. EL FATTAH AND P. O'RORKE

Figure 13. Cumulative time for MBD and EBL(.9) and EBL(.6) on the three-bit adder.

4.2.5. On the effects of varying the required accuracy

In order to explore potential tradeoffs between accuracy and efficiency, we experimented
with EBL(p) using two thresholds, p = 0.6 and 0.9. The higher the threshold the more
p- and d-rules will be acquired. EBL(p) will learn only enough rules to meet the require-
ment that the average accuracy remains above the threshold. See figures 15 and 16.

Figure 14 compares the accuracy of EBL(.6) against the accuracy of EBL(.9). For
EBL(.9), the accuracy curve shows a sharp dip at the beginning, where accuracy falls below
the 0.9 threshold; then it rises steadily due to the effect of learning. On average, the accu-
racy of EBL(.6) remains above the threshold and learning after the first problem is rarely
reinvoked.

Figure 14. Accuracy for EBL(.9) versus EBL(.6) on the three-bit adder.

Figure 15. Cumulative number of p-rules for EBL(.9) and EBL(.6) on the three-bit adder.

LEARNING FOR DIAGNOSIS 61

Figure 16. Cumulative number of d-rules for EBL(.9) and EBL(.6) on the three-bit adder.

Figure 15 shows the number of p-rules learnt by EBL(p) on the three-bit adder. EBL(.9)
learns approximately half of the 918 p-rules learned by EBLIA and approximately 64%
of the 735 p-rules learned by EBL(l). As the threshold drops from 0.9 to 0.6, the number
of rules drops again by almost 50%.

For EBL(.9), the cumulative time rises relatively quickly for the first 20 problems. This
is the range where learning is most frequent. For later problems the average time taken
by the associative mode varies rather widely. Due to the large number of rules, p-rule
matching costs are significant. However, after learning, the rate of time increase is much
flatter than for MBD. For EBL(.6), speedup effects are evident compared to MBD within
10 to 20 problems (see figure 13).

4.3. Summary

Here we pause to briefly summarize the empirical results prior to a full discussion. The
most important results of the empirical studies of EBLIA are as follows:

• For a fixed device, EBLIA and MBD both compute diagnoses in time linear in the number
of diagnosis problems. They each spend a constant time per problem. EBLIA is signifi-
cantly faster than MBD on each problem.

• For the devices studied, there is often a crossover point. EBLIA takes more time to solve
initial problems prior to the crossover point, but after a certain number of problems EBLIA
achieves speedup over MBD.

• The time spent by EBLIA preprocessing the device model is not significant on small
devices, but it grows rapidly with the size of the device.

• The number of p-rules computed by EBLIA prior to diagnostic problem-solving and the
number of d-rules computed during diagnosis grow rapidly with the size of the device.

The most important results of the empirical studies of EBL(p) are as follows:

• The cumulative cpu-time curves for EBL(p) are nonlinear. They exhibit a "knee effect;"
initially they rise with a slope higher than the slope of MBD and then they level off.

62 Y. EL FATTAH AND P. O'RORKE

• EBL(p) cpu-time curves tend to crossover MBD at a point that depends on the accuracy
parameter and the size of the device. Speedup over MBD is obtained sooner for lower
accuracies and smaller devices.

• The accuracy drops rapidly on initial problems then rises when learning is activated until
it crosses over the required accuracy. It rarely drops below the threshold on subsequent
problems. The final accuracy scores are significantly higher than the required accuracy.
On the devices studied with random faults, for a given accuracy requirement, EBL(p)
was slightly less accurate as the size of the device increased.

• Significantly fewer d-rules and substantially fewer p-rules were learned by EBL(p) given
lower accuracy requirements.

5. Discussion

5.1. EBLIA

Here, we discuss the empirical results of section 4.1 in an effort to draw some general
conclusions. The first general conclusion that can be drawn is that EBLIA achieves net
speedup over MBD—even when precomputation is included—given a sufficiently large
number of diagnosis problems. But the question is how much precomputation is required
and how many problems must be solved before the costs of the precompilation are repaid.

For the purpose of analysis, let us introduce the following notations. Let CMBD be the
average cost per problem for MBD. Let CAss be the average cost per problem for the
associational problem solver of EBLIA. This is the cost due to matching and HS-Tree. The
preprocessing cost incurred by EBLIA for compiling the p-rules is denoted by CIA. Based
on the empirical results, we can fairly represent the cumulative (average) cost versus the
number of problems for EBLIA and MBD by linear relations, as depicted in figure 17.

Figure 17. The crossover point for EBLIA versus MBD.

LEARNING FOR DIAGNOSIS 63

The cost of solving N problems by MBD is CMBD x N. The cost of solving N problems
by EBLiA is CIA + CAss x N. The crossover point N* is the number of problems for
which the cumulative time of EBLIA and MBD is the same. That is,

We know that CMBD increases exponentially with the size of the device. As the number
of components increases,

1. CIA increases exponentially, and
2. CAss increases as a result (also exponentially).

Table 7 in section 4.1 provides numerical values for those parameters for the N-bit adder
for increasing N. The results lead us to the following conclusion. EBLIA is feasible and
will achieve net speedup over MBD for small devices. As the number of components
increases, EBLIA can become infeasible. Even if it is feasible, EBLIA may be worse than
MBD over a fixed number of problems. The main reason for this is that the number of
p-rules that must be precompiled grows exponentially with the size of the device. As a
consequence, conflict set recognition using the p-rules becomes more costly. This is in
part due to the non-minimality problem pointed out in section 3.2. In addition, the space
used to store the rules grows exponentially.

One further observation with respect to the empirical results of section 4.1 is the follow-
ing. The rate of increase of d-rules with the number of problems tends to increase as the
number of components increases (see figure 7). This is due to the random nature of the
fault generator and the size of the device. It is more likely to see new collections of con-
flicts on new problems when diagnosing larger devices. As a consequence, on the three-bit
adder the learning of d-rules does not pay off as much as it did on smaller devices over
the range of 100 problems since almost 60 rules are learnt in that range.

5.2. EBL(p)

Initially, EBL(p) is in learning mode, and the cpu-time per problem is comparable to MBD.
As soon as the learning phase ends, the slope of the cpu-time curve changes and the curve
gets flatter due to the speedup provided by the associative operating mode. This is why
EBLIA exhibits a "knee effect" (e.g., see figure 12). For EBL(.6) on the three-bit adder,
learning is rarely invoked after the first few problems, so the number of rules acquired
is much less than that of EBL(.9). This reduces the matching effort and space requirement
so that EBL(.6) quickly achieves a net speedup compared to MBD.

Learning provides speedup only if the learned rules have high likelihood of being applic-
able and irredundant. The results of sections 4.2 and 4.2.5 indicate a utility problem in
learning for MBD. If the problems have faults that are randomly distributed and uncor-
related, then the likelihood that a d-rule is going to be useful for the next problem decreases
as the number of components increases. This is so because the number of conflict sets

64 Y. EL FATTAH AND P. O'RORKE

(and hence their possible combinations) increases exponentially with the number of com-
ponents. If the faults that occur in practice cover all possible minimal candidates, and we
are required to be complete (i.e., no erroneous diagnoses can be tolerated), then the best
we can do is to learn all possible p-rules (and d-rules). This will degenerate to EBLIA,
and no overall speedup will be obtained except on small devices.

EBL(p) relaxes the requirement for perfect accuracy. It is biased to learning p-rules that
are necessary to meet bounds on performance. The threshold p reduces the number of
p-rules that need to be learnt. As p decreases, the number of p-rules decreases, and as
a result also the number of d-rules.

Table 8 summarizes relevant data from section 4.2.5. The table shows that the reduction
in rules required for decreasing accuracy is more substantial for p-rules than for d-rules.

With respect to d-rules, the EBLIA results (shown in figure 7) carry over to EBL(.9)
with little change. When the accuracy threshold drops from .9 to .6, the number of d-rules
(see figure 16) acquired on the three-bit adder is roughly 70% of the number required
for/? = .9. In rough terms, EBL(.9) learns three d-rules every five problems, while EBL(.6)
learns two d-rules every five problems. This means that EBL(.6)'s abstraction of the
diagnostic space is less detailed than that of EBL(.9). In other words, classification of the
diagnosis space for EBL(.6) is at a coarser level than that for EBL(.9).

With respect to p-rules, EBL(.9) learns 64% of the total number of p-rules which would
have been learned by EBL(l). This means that approximately 64% of the p-rules contributes
to 94% of perfect performance. As the accuracy threshold drops from .9 to .6, the number
of rules drops again by almost 50%. In general, even though the problems are randomly
distributed, a relatively small set of p-rules covers the majority of the problems and con-
tributes the majority of the accuracy.

The results shown in table 8 provide a good indication of "transfer." They measure how
often rules learned by both forms of learning in EBL(p) are useful in subsequent situa-
tions. For a given accuracy, smaller numbers of learned rules indicate more transfer. One
reason there is more transfer for p-rules than for d-rules is that they encode different kinds
of knowledge. Another possible reason is that the p-rules are first-order predicate calculus
rules, and p-rule learning benefits from explanation-based generalization. In contrast, d-rules
are prepositional, and d-rule learning is a form of rote-learning.

Table 8. Rules learned versus accuracy on the three-bit
adder.

Method

EBL(l)
EBL(.9)
EBL(.6)

P-rules

735
470
250

D-rules

60
58
41

Accuracy

1.0
.94
.76

LEARNING FOR DIAGNOSIS 65

6. Related work

Preliminary versions of the results reported here appeared in abridged form in two con-
ference papers (see El Fattah & O'Rorke, 1991a, 1992). In El Fattah and O'Rorke (1991a),
the diagnosis system used constraint suspension testing to double-check diagnoses. The
system learned immediately from new constraint violations that occurred during the check-
ing. But as the size of the device increased, the cost of constraint suspension testing quickly
overcame the benefits of EBL.

Discussions with Oren Etzioni of his work on an alternative to EBL "learning while
doing" for planning (Etzioni, 1990) led us to consider the merits of "learning in advance"
for diagnosis. When the associational rules were all learned in advance and the system
operated in associational mode at run time, substantial speedup occurred on the small cir-
cuits we initially studied. Unfortunately, more recent studies of parameterized devices
(reported in this article) indicate that learning in advance is infeasible for MBD of large
devices.

In El Fattah and O'Rorke (1992), we allowed the EBL system to make errors as long
as the percentage remained below a pre-assigned threshold. Instead of testing proposed
diagnoses against the model, this diagnosis system tests against reality (or an external
"teacher"). Results of the present article include averages, over ten experimental runs, of
important measurements of this method's performance.

Other works have explored the use of EBL for MBD (see Resnick, 1989; Zercher, 1988,
Koseki, 1989), but these works are limited to single-fault diagnosis. Interest in the pro-
posal of embedding compilation in problem-solving environments is evident in recent works
by de Kleer (1990), El Fattah and O'Rorke (1991c, 1991b), and Friedrich, Gottlob, and
Nejdl (1990).

6.1. Knowledge compilation

A controversy surrounding knowledge compilation is relevant to the present work. It is
our view that the controversy is an indication that many issues are not yet understood (see
Goel, 1991).

Davis (1989) has argued strongly against efforts to compile causal models into associa-
tional rules. According to him, turning a model into a set of rules is

.. .misguided, if rule is taken to mean conditional statement, because form alone is
not the source of speed.

We agree with Davis that form alone is not the source of speed. EBL has been demonstrated
to provide speedup in numerous problem-solving situations (for example, see O'Rorke,
1989). But there are factors that diminish the improvement offered by EBL—for example,
the utility problem (Minton, 1988). If too many useless rules are learned, EBL may degrade
problem-solving performance instead of improving it.

We consider the question of whether to transform knowledge associated with models
using EBL to be an empirical question. Our results indicate that, for sufficiently small

66 Y. EL FATTAH AND P. O'RORKE

devices, it makes sense to convert the entire model into rules. See the results in section
4.1 on EBLIA. As the number of components increases, this approach becomes less feasi-
ble, but it still makes sense if we are willing to invest substantial computation up front,
prior to fault diagnosis, and if quick response at diagnosis time is important and a large
memory is available at diagnosis time. In addition, in situations where diagnostic tools
are mass produced, the initial computations can be amortized over problems encountered
by each tool. In this case, one can divide the preprocessing cost CIA in figure 17 by the
number of diagnostic systems produced.

According to Davis (1989), turning a model into a set of rules is

.. .impossible, if rule is taken to mean empirical association and the causal model is
strictly deterministic, because empirical information is (by definition) available only
from observing nature.

We believe it is possible to use knowledge from first principles and from observing actual
occurrences of faults to compile empirical associations. This seems to be what humans
do to become experts. We claim that EBL(p) automates the acquisition of some empirical
associations, since it is driven by observations of actual faults.

In a reply to Davis in defence of compilation, Keller (1989) has argued that empirical
studies are needed to form useful theories about the utility of knowledge transformations.
Keller (1991) reports on the results of an initial feasibility study in the context of NASA's
Hubble Space Telescope. We agree with Keller's position that the tradeoffs inherent in
knowledge compilation for model-based reasoning merit empiricial study. We also agree
with his view that it is worthwhile to consider how to best integrate model-based reasoning
and techniques such as EBL. We offer the present study as a contribution to work on methods
for integrating model-based diagnosis and knowledge compilation.

6.2. Clause management systems

In Reiter and de Kleer (1987), a problem-solving environment consists of a domain-
dependent reasoner and a domain-independent Clause Management System (CMS). The
reasoner can query the CMS about the set of minimal support clauses for a given preposi-
tional clause. The set of minimal supports for a query can be computed trivially from the
set of prime implicates of the CMS database. Two approaches are proposed: the inter-
preted versus the compiled. This is somewhat similar to MBD versus EBLIA. The issue
of interpreted versus compiled in the reasoner-CMS architecture is discussed by Kean and
Tsiknis (1990), who claim that the compiled approach is "more suitable for CMS in both
question-answering and explanation-based problem solving environments."

6.3. Focusing diagnosis

A "focused" MBD system was introduced by de Kleer (1991), based on the idea of focus-
ing the reasoning on "what will ultimately be the most probably diagnosis." The distinction

LEARNING FOR DIAGNOSIS 67

between us and de Kleer is that while he recomputes for each problem predictions that
focus on the most probable candidates, we cache all p-rules. Like de Kleer's,
our approach is also a means of limiting the predictions that need to be made. But our
approach could benefit from probabilistic focusing, and we view this as an important topic
for future work.

6.4. Quality of learning

Van de Velde (1988) discusses three criteria to evaluate the quality of learning problem-
solving associations: correctness, effectiveness, and level of abstraction. In general, the
higher the correctness, the lower the effectiveness and the level of abstraction. These criteria
determine the bias of the learning system. According to Van de Velde, the bias will be
dictated by three characteristics of the learning situation: criticality, diversity, and background
knowledge:

(1) learning in non-diverse environments may be biased towards effective associations,
(2) learning in critical enviornments must be biased toward correct associations,
(3) with background knowledge, learning may be biased towards abstract associations.

Our EBL(p) system for MBD is formulated to strike a balance between the first two biases.
The third bias is an integral part of our EBL/MBD framework.

7. Conclusions

We described two general approaches integrating EBL with model-based and associative
diagnosis. The first approach is a form of "learning in advance." Learning occurs in a
training phase prior to diagnosis of examples of faults. The second approach is a form of
"learning while doing." Learning takes place as faults are diagnosed. In both approaches,
rules called p-rules associate observations and assumptions with predictions, and d-rules
associate conflict-sets with minimal diagnoses. In the first approach, implemented in a
system called EBLIA, all p-rules are compiled in advance. In the second approach, imple-
mented in a system called EBL(p), the p-rules are compiled at diagnosis time. D-rules
are compiled at diagnosis time in both approaches.

EBLIA avoids a problem with the straightforward application of EBL to diagnosis. The
obvious approach to integrating EBL and diagnostic hybrids is to transform the results of
model-based diagnosis into associations between observations, constraint violations, and
diagnoses. But if EBL is used to learn p-rules and d-rules while doing MBD, the resulting
rules can suggest incorrect diagnoses. If too few examples have been observed, the system
may not have encountered relevant constraint violations. As a result, the rules may suggest
diagnoses that are too general, missing faulty components. This problem can be solved
by doing constraint suspension testing of the diagnoses suggested by the rules and by learn-
ing when diis leads to unforseen constraint violations. Unfortunately, this form of
"doublechecking" is prohibitively expensive. Its cost overwhelms the speedup provided
by EBL on large devices.

68 Y. EL FATTAH AND P. O'RORKE

EBLIA solves this problem by eliminating the need to double-check proposed diagnoses.
It also eliminates the need for diagnostic examples altogether, since it considers all possi-
ble constraint violations in advance. EBLIA analyzes the model and compiles it into abstract
constraints between inputs and outputs.

EBL(p) allows for relaxation of the requirement that the diagnostic system perform with
perfect accuracy. It assumes that existing associational rules are applicable to new situa-
tions, analyzing and learning only when this assumption leads to unacceptable errors. When
too many errors have been made, EBL is activated and new rules are acquired until the
diagnostic accuracy rises above the given threshold percentage p. Constraint suspension
testing is not performed. Instead an external agent is charged with the task of verifying
that the proposed diagnoses are correct. If not, then an error is counted against the diagnosis
system, lowering its running accuracy score.

We presented results of computational experiments on the polybox and on digital logic
devices with increasing number of components. The experiments were carried out for inde-
pendent randomly distributed faults spanning all components. We allowed multiple faults
of up to three components.

The experimental results show that EBLIA is subject to the exponential growth associated
with MBD. As the size of the device grows, EBLIA incurs a large time cost in advance
of diagnosis and a large space cost at diagnosis time. The results show that if costs are
measured purely in terms of cpu-time (without regard for such variables as the utility of
correct diagnoses) the number of problems that must be diagnosed before the crossover
point where EBLIA intersects MBD soon becomes large. With more powerful computers
and more massive memories becoming available, this approach may be warranted for impor-
tant diagnosis problems. When feasible, EBLIA is the preferred alternative at diagnosis
time, since it is essentially an extremely fast lookup operation.

EBL(p) provides speedup over MBD if we are willing to tolerate some errors. EBL(p)
alternates between a relatively high cost per problem (incurred when MBD and learning
are turned on) and a low cost per problem (incurred by associational rules). If relatively
few rules cover many examples with high accuracy, the lower cost dominates the higher
cost, so that EBL(p) outperforms MBD after a number of examples. The lower the required
accuracy, the sooner this crossover point occurs. In our tests, even though faults were
distributed randomly, subsets of the possible diagnostic rules provided high degrees of accu-
racy. In realistic situations, observed faults will tend to form clusters in the space of possi-
ble faults. Novel faults will occur less frequently than previously learned faults. The EBL(p)
architecture takes advantage of this fact to improve efficiency while making acceptable
sacrifices in accuracy.

Acknowledgments

We thank Pat Langley, Deepak Kulkarni, and other researchers at NASA's Ames Research
Center for encouraging us to look at tradeoffs reducing costs by sacrificing performance.
Discussions with them about the need for resource-limited computing at NASA helped
motivate our work on learning approximate diagnoses. Thanks also to Oren Etzioni for
discussions of "learning in advance" in the context of planning. Brian Williams provided

LEARNING FOR DIAGNOSIS 69

helpful comments in the early stages of this work. Steven Minton and three anonymous
reviewers provided encouraging feedback and many excellent suggestions for improving
this article. We also thank the AI graduate students and faculty at UCI for serving as helpful
critics. This research was supported in part by National Science Foundation grant number
IRI-8813048 and by grant number 90-117 from Douglas Aircraft Company and the Univer-
sity of California Microelectronics and Computer Research Opportunities Program.

Notes

1. An unintentional interaction between the tree-pruning heuristics was responsible for a flaw in Reiter's algorithm,
subsequently corrected by Greiner, Smith, and Wilkerson (1989).

2. The search effort is exponential in the number of components in the worst case. This is due to the fact that
predictions must be made for all possible environments (sets of assumptions).

References

Davis, R. (1989). Form and content in a model-based reasoning. In E. Searl (Ed.), Proceedings of the Workshop
on Model Based Reasoning (pp. 11-27). Detroit, MI: Boeing Computer Services.

Davis, R., & Hamscher, W. (1988). Model-based reasoning: Troubleshooting. In H.E. Shrobe (Ed.), Exploring
Artificial Intelligence, chapter 8 (pp. 297-346). San Mateo, CA: Morgan Kaufmann.

de Kleer, J. (1976). Local methods for localizing faults in electronic circuits (AI Memo 394). Cambridge, MA:
MIT Artificial Intelligence Laboratory.

de Kleer, J. (1986). Problem solving with the ATMS. Artificial Intelligence, 28, 197-224.
de Kleer, J. (1990). Exploiting locality in a IMS. In Proceedings of the Eighth National Conference on Artificial

Intelligence (pp. 264-271). Boston, MA: AAAI Press/The MIT Press.
de Kleer, J. (1991). Focusing on probable diagnoses. In Proceedings of the Ninth National Conference on Arti-

ficial Intelligence (pp. 842-848). Anaheim, CA: AAAI Press/The MIT Press.
de Kleer, J., Mackworth, A., & Reiter, R. (1992). Characterizing diagnoses and systems. Artificial Intelligence,

56, 197-222.
de Kleer, J., & Williams, B.C. (1987). Diagnosing multiple feults. Artificial Intelligence, 32, 97-130.
de Velde, W.V. (1988). Quality of learning. In Proceedings of the Eighth European Conference on Artificial Intell-

igence (pp. 408-413). London: Pitman.
DeJong, G.F., & Mooney, R. (1986). Explanation-based learning: An alternative view. Machine Learning, 1(2),

145-176.
El Fattah, Y., & O'Rorke, P. (1991a). Learning multiple fault diagnosis. In Proceedings of the Seventh IEEE

Conference on Artificial Intelligence Applications (pp. 235-239). Los Alamitos, CA: IEEE Computer Society
Press.

El Fattah, Y., & O'Rorke, P. (1991b). On Instability and learning in model based diagnosis. In Proceedings
of the Workshop on Model Based Reasoning. Anaheim, CA: AAAI.

El Fattah, Y., & O'Rorke, P. (1991c). The role of compilation in constraint based reasoning. In Working Notes
of the AAAI Spring Symposium on Constraint Based Reasoning (pp. 225-241). Stanford, CA: AAAI.

El Fattah, Y, & O'Rorke, P. (1992). Learning approximate diagnosis. In Proceedings of the Eighth IEEE Con-
ference on Artificial Intelligence Applications (pp. 150-156). Los Alamitos, CA: IEEE Computer Society Press.

Etzioni, O. (1990). Why PRODIGV/EBL works. In Proceedings of the Eighth National Conference on Artificial
Intelligence (pp. 916-922). Menlo Park, CA: AAAI Press/The MIT Press.

Feigenbaum, E. A. (1979). Themes and case studies of knowledge engineering. In D. Michie (Ed.), Expert systems
in the micro electronic age (pp. 3-25), Edinburgh: Edinburgh University Press.

Friedrich, G., Gottlob, G., & Nejdl, W. (1990). Generating efficient diagnostic procedures from model-based
knowledge using logic programming techniques. Computers Mathematical Applications, 20(9/10), 57-72.

70 Y. EL FATTAH AND P. O'RORKE

Garey, M., & Johnson, D. (1979). Computers and Tractability. New York: W.H. Freeman and Company.
Goel, A.K. (1991). Knowledge compilation: A symposium. IEEE Expert, 6(2), 71-93.
Greiner, R., Smith, B.A., & Wilkerson, R. (1989). A correction to the algorithm in Reiter's theory of diagnosis.

Artificial Intelligence, 41, 79-88.
Kean, A., & Tsiknis, G. (1990). An incremental method for generating prime implicants/implicates. Journal

of Symbolic Computation, 9, 185-206.
Keller, R.M. (1990). In defense of compilation: A response to Davis' "Form and content in model-based reason-

ing." In E. Scarl, (Ed.), Proceedings of the Workshop on Model Based Reasoning (pp. 22-31). Boston, MA:
Boeing Computer Services.

Keller, R.M. (1991). Applying knowledge compilation techniques to model-based reasoning. IEEE Expert, 6(2),
82-87.

Koseki, Y. (1989). Experience learning in model-based diagnosis. In Proceedings of the Eleventh International
Joint Conference on Artificial Intelligence (pp. 1356-1362). Detroit, MI: Morgan Kaufmann.

Minton, S. (1988). Quantitative results concerning the utility of explanation-based learning. In Proceedings of
the Seventh National Conference on Artificial Intelligence (pp. 564-569). St. Paul, MN: Morgan Kaufmann.

Mitchell, T.M., Keller, R.M., & Kedar-Cabelli, S.T. (1986). Explanation-based generalization: A unifying view.
Machine Learning, 1(1), 47-80.

O'Rorke, P. (1989). LT revisited: Explanation-based learning and the logic of Principia Mathematica. Machine
Learning, 4(2), 117-159.

Reiter, R. (1987). A theory of diagnosis from first principles. Artificial Intelligence, 32, 57-95.
Reiter, R., & de Kleer, J. (1987). Foundations of assumption-based truth maintenance systems. In Proceedings

of the Sixth National Conference on Artificial Intelligence (pp. 183-188). Seattle, W\: Morgan Kaufmann.
Resnick, P. (1989). Generalizing on multiple grounds: Performance learning in model-based troubleshooting

(Technical Report AI—TR 1052). Cambridge, MA: MIT Artificial Intelligence Laboratory.
Zercher, K. (1988). Model-based learning of rules for error diagnosis. In W. Hoeppner (Ed.), Proceedings of

the German Workshop on Artificial Intelligence (pp. 196-205). Berlin: Springer Verlag.

Received February 20, 1992
Accepted October 8, 1992
Final Manuscript October 28, 1992

