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Resonant Hopf-Hopf Interactions in Delay
Differential Equations
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A second-order delay differential equation (DDE) which models certain
mechanical and neuromechanical regulatory systems is analyzed. We show that
there are points in parameter space for which 1:2 resonant Hopf-Hopf inter-
action occurs at a steady state of the system. Using a singularity theoretic
classification scheme [as presented by LeBlanc (1995) and LeBlanc and
Langford (1996)], we then give the bifurcation diagrams for periodic solutions
in two cases: variation of the delay and variation of the feedback gain near the
resonance point. In both cases, period-doubling bifurcations of periodic solu-
tions occur, and it is argued that two tori can bifurcate from these periodic
solutions near the period doubling point. These results are then compared to
numerical simulations of the DDE.

1. INTRODUCTION

Many biological and physical systems use regulatory feedback mechanisms.
Often the communication times in these systems are such that time delays
must be incorporated in the feedback loops, leading to models comprising
delay differential equations (DDEs). In this paper we consider the second-
order DDE
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where T>0, B > 0, f: IR i-> IR is smooth and there exists u* such that
Bu* = /(u*). This equation arises as a paradigm for a number of mechani-
cal or neuromechanical systems in which inertia plays an important role
[1, 3, 7] (see also Ref. 5 and references therein).

Milton et al. [5, 6, 15, 16] have studied this equation in the context
of the pupil light reflex. In this work they showed the existence of points
of double Hopf bifurcation and used a center manifold/normal form
analysis to predict the behavior of the full equations near such points. They
considered only the case when the double Hopf was nonresonant, as little
is known about the normal forms for such bifurcations when they are reso-
nant. However, in Ref. 4 it has been shown that double Hopf bifurcations
with all resonances of the form w1 :w2 = (2k + 1):2/ for all k, l e z, 1=O can
occur in (1.1). Further, in Ref. 13 the normal forms for the case w1:w2 =
1:2 and all perturbations of this case have been obtained, and the corre-
sponding bifurcation diagrams have been classified. There, it was shown
that in a neighborhood .of a 1:2 resonant double Hopf point, one can get
period-doubling bifurcation of periodic orbits, hysteresis on branches of
periodic orbits, and the existence of "noncritical" branches of periodic solu-
tions, i.e., solutions which are local but do not bifurcate from the origin.
None of these properties can be captured in a nonresonant Hopf-Hopf
analysis. Thus we consider here the case of 1:2 resonant double Hopf bifur-
cation in (1.1), using the techniques of Refs. 13 and 14.

The outline of the paper is as follows. In Section 2 we establish a set
of parameter values for which 1:2 resonant Hopf bifurcation of the equi-
librium solution of (1.1) occurs. In Section 3 we perform a center manifold
projection and normal form reduction of (1.1), obtaining a set of ordinary
differential equations approximating the flow of the full equation near a
1:2 resonant double Hopf bifurcation point. In Section 4 we consider as an
example a specific point in parameter space and calculate the expected
unfoldings near that point. In Section 5 we consider the linearized stability
of the equilibrium solution for parameter values in the neighborhood of the
point of Section 4. In Section 6 we show numerical simulations of the full
delay differential equation for parameter values in the neighborhood of the
point of Section 4 and compare the results with the predictions of the
normal form analysis. Finally, in Section 7 we discuss our results.

2. 1:2 RESONANT DOUBLE HOPF POINTS

In this section, we study the stability of the equilibrium solution
u(t) = u* to (1.1). In particular, we establish the existence of parameter
values for which the equilibrium solution undergoes two simultaneous
Hopf bifurcations with frequencies at a l-to-2 ratio.
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We first eliminate one of the parameters in (1.1). Note that since
B>0 in (1.1), we can rescale time and relabel u, a, T, and f so that (1.1)
becomes

The reason for the choice of the constant 5/2 for B soon becomes apparent.
The linearization of (2.1) near the equilibrium solution is (x = u — u*),

where A=f'(u*) is assumed to be nonzero. We substitute the ansatz
x(t) = evl into (2.2), where v is a complex parameter, to obtain the charac-
teristic equation

For given values of a, T, and A, a necessary condition for Hopf bifurcation
to occur at the equilibrium solution of (2.1) is that there exists an w=0
such that v = iw is a solution to (2.3). This leads to a pair of real equations

Note that (2.4a) and (2.4b) are invariant under the reflection w-> w.
Therefore, we assume without loss of generality that wo> 0.

Definition 1, The point (a, T, A) in parameter space is a 1:2 resonant
double Hopf point if the following two conditions hold:

(a) there exists one and only one w > 0 such that (2.4a), (2.4b),
and

are satisfied, and

(b) if (a, T, A) and w are as in (a), then there are no w=w, 2w such
that v = iw satisfies (2.3).
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Proposition 1. The 1:2 resonant double Hopf points are precisely
those in the set

The associated value of (a for these points is I.4

Proof. If a = 0, then (2.4b) and (2.4d) imply that wt = nn, where n is
an integer. Squaring both (2.4a) and (2.4b) and then adding yields

while doing the same with (2.4c) and (2.4d) yields

Comparing (2.5) and (2.6) gives

which in turn implies that t = nn. Substituting (2.7) into (2.4a) and (2.4c)
leads to A = -3/2 and n = 2k + 1, k = 0, 1,2,....

If a = 0, it can be shown that one arrives at the contradiction
w2 = — (a2/9). Now suppose that there exists an w= 1, 2 such that

i.e., v - iw satisfies (2.3). This leads to

which implies that

which is a contradiction.
Thus, the 1:2 resonant double Hopf points are precisely those given

byR 1 : 2 . D
4 This is the reason for rescaling B to 5/2.
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3. CENTER MANIFOLD AND NORMAL FORMS

To study the behavior of Eq. (2.1) near the resonant double Hopf
point, we need to understand the effects of the nonlinear terms in the equa-
tion. To do this we must first reformulate the equation. Rewriting (2.1) as
a system of two first-order equations and expanding this around the equi-
librium solution (x1 = u — u*, x2 = u) gives

Here A=f'(u*), A2 = 1/2 f" (u*) , and we assume that x1 is small (we are
near the equilibrium solution) so that the Taylor expansion of f is valid.
Neglecting the higher-order terms, this becomes, in vector form,

where x = [xl, x2]T and B, D, D2 are matrices. Let us define the function
space E =def C([—r, 0], R2) and the function x t ( 0 ) = x(t + 0), -t<0<0.
Assuming that x t E#, (3.2) induces an equation on e6:

where £ and N represent operators on E corresponding to the linear and
nonlinear parts of (3.2), respectively. The theory of such functional equa-
tions can be found in e.g., Refs. 9 and 11; we review briefly the results
needed for our analysis. The linear part of (3.3)

has the same spectrum as the linearization of the original Eq. (2.2). There-
fore when the parameters lie in the set Rl:2 of Proposition 1, (3.4) has two
pairs of pure imaginary eigenvalues, +- i, + 2i, and no other eigenvalues on
the imaginary axis. We assume (see Section 5) that the noncritical eigen-
values have negative real parts. In this situation there exists a splitting
of the phase space E = P+2., where P is a four-dimensional subspace
spanned by the solutions of (3.4) corresponding to the pure imaginary
eigenvalues, 2. is infinite dimensional and both P and SL are invariant



332 Campbell and LeBlanc

under the flow associated with (3.4). For the nonlinear equation, some of
this structure is retained: <& now contains a four-dimensional invariant
(center) manifold, the flow on which is a good approximation for the long-
term behavior of solutions to the full nonlinear equation. This flow is deter-
mined by the basis for & and a four-dimensional vector z(t) = [z,(0, z2(t),
z3(t), z4(t)]T which satisfies the following set of four first-order ordinary
differential equations:

Here the /*. are functions of the original model parameters T, A, A2, for
example,

See, e.g., Refs. 5 and 18 for more details on how this calculation is per-
formed. We have thus reduced our second-order delay differential equation
to a system of four ordinary differential equations. The linearization of this
system at the origin has two pairs of pure imaginary eigenvalues in 1:2
resonance and thus a nonlinear change of coordinates puts the system into
the following normal form [13]:

The dependence of the coefficients bj, dj on the original parameters of our
model can be computed, for example,

Note that, in contrast to standard Hopf bifurcation, we need only to con-
sider terms up to and including quadratic order in Eqs. (3.7a)-(3.7d). This
follows from the general classification theory presented by LeBlanc [13]
and LeBlanc and Langford [14].



The problem of local bifurcation of periodic solutions of the dynamical
system (3.7a)-(3.7d) was studied by LeBlanc [13] and LeBlanc and
Langford [14], using techniques from singularity theory. There, all perfect
and imperfect bifurcation diagrams were classified, under some generic con-
ditions. As mentioned above, the classification of bifurcation diagrams
depends not only on the quadratic coefficients shown above, but also on
the linear coefficients and their dependence on the parameters of the
original model. In all, there are more than 35 possible unfoldings. We
therefore concentrate on one particular double Hopf point and make the
specific calculations necessary to compute the unfoldings of the normal
form (3.7a)-(3.7d) near this point. This is the subject of the next section.

4. BIFURCATION DIAGRAMS FOR (0, n, -|)e.R1:2

For a physical system which is modeled by (2.1), one is usually inter-
ested in the effects of variation of either the delay, T, or the gain,
A =/'(«*), on the system. This is precisely the framework in which the 1:2
resonance is studied in Refs. 13 and 14, where it is assumed that one of the
auxiliary parameters of the differential equations is distinguished. That is,
they considered bifurcation diagrams only with respect to variation of this
one parameter, while keeping all other parameters fixed. In this section, we
give the bifurcation diagrams for periodic solutions associated with both
the following cases: either T or A is distinguished. Our analysis is performed
near the point (a = 0, i = n, A= - f)e R1:2. For both cases, we assume
that a is held fixed at 0 and A2 [see (3.1)] is fixed at 9/10 for definiteness.5

In the first case, we then assume that A is fixed at A* near — \ and that
T varies near n. In the second case, we assume that r is fixed at T* near n
and that A varies near — f. The numerical experiments which are discussed
in Section 6 follow the same approach, i.e., vary T or A while keeping other
parameters fixed.

In order to compute the normal forms associated with each of these
cases, we need to determine the leading order dependence of the two solu-
tions v, i2(a, x, A] of (2.3) near (0, n, — |). Since, for our purposes, we are
keeping <x fixed, we can write

5 Note that this is not a severe restriction. Indeed, the perturbed bifurcation diagrams that we
will obtain must persist under contact equivalence diffeomorphism when (a, A2) is in some
neighborhood of (0,9/10), since all singularities in these diagrams are codimension 0 (see
Refs. 10 and 13).
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and

where the real quantities m,y and n(i are obtained from implicit differentia-
tion of (2.3) and are equal to

and

Also needed for the classification of the normal forms are the nonlinear
coefficients 6,, b2, dlt and d2 of the resonant vector field (3.7a)-(3.7d). The
exact values are given by complicated expressions similar to (3.8). we give
here only the first few significant digits of the decimal expansions of these
coefficients:

4.1. Distinguished Parameter: T

In this case, we supposed that A=A* near — |, and let ! = T — n be
the distinguished bifurcation parameter and e = A * + § be an unfolding
parameter. This then leads to the following unfolding of (3.7a)-(3.7d):
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where the mu and ntj are as in (4.3) and (4.4), and £,, b2, d^ and d2 are
near the values given in (4.5a) and (4.5b) when 1 and e are small.

In order to be consistent with the notation of Refs. 13 and 14, we let
A = I + ( « n / w u ) £ . Performing a Liapunov-Schmidt reduction (see, e.g.,
Chapter VII of Ref. 10) and using the singularity theory developed in
Refs. 13 and 14, one can show that bifurcating periodic solutions of
(4.6a)-(4.6d) with fundamental period near 2n are in one-to-one corre-
spondence with the zeros of the following system of algebraic equations:

where

and ^/f/2+ V2 + W2 is approximately the amplitude of the corresponding
periodic solution.

When £ = 0, varying /. through 0 causes the critical eigenvalues of
(4.6a)-(4.6d) to cross the imaginary axis simultaneously (at A = 0) at an
exact 1:2 ratio. This is a so-called perfect bifurcation. To determine what
the associated perfect bifurcation diagram resembles, we again resort to
Refs. 13 and 14, where it is necessary to compute the signs of the following
quantities:
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Fig. 1. Perfect bifurcation diagram for variation of r.

We conclude that the perfect bifurcation is of type Ha according to the
classification scheme of Refs. 13 and 14, and the associated perfect bifurca-
tion diagram is given in Fig. 1. Notice that there are no periodic orbits
corresponding to the / mode (fundamental period =2n) in this bifurcation
diagram. This is in contrast to the nonresonant Hopf-Hopf interaction
whose perfect bifurcation diagram has two branches of periodic solutions
(one for each mode). An example of this is shown in Fig. 2 (see Ref. 12).

When £ is small but nonzero, the critical eigenvalues of (4.6a)-(4.6d)
will cross the imaginary axis at distinct values of A, and the ratio of the

Fig. 2. Perfect bifurcation diagram for (a}:to2 nonresonant Hopf-Hopf interaction.
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Fig. 3. Perturbation of Fig. 1, E > 0.

crossing points will be near but not equal to 1:2. We say that the reso-
nance has been split and detuned, with splitting and detuning being given,
respectively, by /j, and r\ as in (4.10). The bifurcation diagram will be a
perturbation of the one given in Fig. 1. In Refs. 13 and 14, it is shown that
there are nine such possible perturbations, up to some equivalence relation.
To determine which apply in this case, we observe that

The perturbed bifurcation diagram will thus be diffeomorphic to that in
Fig. 3 if £ > 0 and that in Fig. 4 if £ < 0.

Here we see the appearance of a branch of periodic solutions with
fundamental period near 2n which bifurcates from the origin and then dis-
appears in a period-doubling bifurcation on the Tt-periodic branch. This
period-doubling bifurcation is a direct consequence of the proximity to the
1:2 resonance, and one would not be able to predict it using an analysis

Fig. 4. Perturbation of Fig. 1, £ < 0.
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Fig. 5. Perfect bifurcation diagram for variation of A.

such as in Refs. 5 and 6. The asymptotic stability of these periodic solution
branches was not determined in Refs. 13 or 14. However, it was shown in
Ref. 13 that this particular period-doubling bifurcation is related to the
problem of loss of stability of self-sustained oscillations studied by Arnold
[2] and Takens [17] and leads to possible secondary bifurcation of two-
frequency tori from both the n branch and the 2n branch near the point of
period-doubling. We discuss stability in Section 5 and the tori in Section 6.

We also remark that for 1 and e small enough, the classification condi-
tions (4.11a), (4.11b), and (4.1 Ic) will remain valid when bt, b2, d\, and
d2 are replaced by b}, b2, d\, and d2 [see (4.6a)-(4.6d)].

4.2. Distinguished Parameter: A

We now reverse the roles of T and A, i.e., we set r = r* near n, and let
1 = A + 2 and e = T* — n. The effect of this is that r1, a2, u, and n are
defined by the same formulas as (4.8) and (4.10), but with the my and the
riy interchanged. Thus, E [as defined by (4.1 la)] is now K, 17.3978 > 0, and

Fig. 6. Perturbation of Fig. 5, e > 0.
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Fig. 7. Perturbation of Fig. 5, e < 0.

CT, w 0.3430 >0. It follows that the perfect bifurcation diagram for variation
of A is of type lib, according to the classification scheme of Refs. 13 and
14, and is shown in Fig. 5. Note the difference between Fig. 5 and Fig. 2.

There are 11 possible unfoldings in this case. For r\ and fj. as given
here, a straightforward computation shows that the unfoldings which apply
are as in Fig. 6 if e > 0 and Fig. 7 if e < 0.

The relationships between these various figures is clarified by consider-
ing the (A, r)-plane, as shown in Fig. 8. Each of the diagrams in Figs. 1 and
3-7 may be seen as a path in the (A, r)-plane in a neighborhood of the
point (— f, n). Paths 1 and 5 pass exactly through this point of 1:2 reso-
nance (perfect bifurcations), whereas the other paths generate unfoldings
(perturbations) of these perfect bifurcation diagrams. Apart from the
period-doubling bifurcations, one of the striking features of the 1:2
resonance is that the direction of bifurcation of the primary In branch
changes along the In bifurcation curve from one side to the other of the
primary n bifurcation curve. This is not the case in nonresonant Hopf-
Hopf interaction. The reason for this is that the leading order nonlinearities
in the resonant problem are quadratic, whereas they are cubic in the non-
resonant interaction.

5. STABILITY ANALYSIS

In order to compare our analysis of Section 4 to numerical simulations
of the full delay differential equation, it is useful to consider the linearized
stability of the equilibrium solution to Eq. (1.1). This will allow us to con-
jecture which of the limit cycles predicted by the analysis of Section 4 will
be stable and hence observable by numerical simulations.
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Fig. 8. Figures 1 and 3-7 as paths in the (A, i)-plane.

In the case of no damping (a = 0), the linearization (2.2) of the non-
linear delay differential equation about the equilibrium solution becomes

The corresponding characteristic equation is
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When A = 0, i.e., along the T axis, we have v = + / v/5/2. This is just the
usual result of neutral stability for the simple harmonic oscillator with no
forcing. Now, putting <x = 0 in Eqs. (2.4b) and (2.4d) we have coi = n, and
the two priory Hopf bifurcation curves are given by

This leads to the following result.

Theorem 1. The equilibrium solution is linearly stable in the region
with A<Q enclosed by the two Hopf bifurcation curves (5.3a)-(5.3b) and
the i axis.

Proof. We begin by noting that the only way a root of Eq. (5.2) can
acquire positive real part is by passing through the imaginary axis, i.e., no
root can "come in from positive infinity" (see, e.g., Ref. 8). From (5.2), we
have

thus along the r axis

Now the Hopf curves intersect the i axis at T = ^/2/S n, 2 A/2/5 n, respec-
tively, so it is easy to see from (5.5) that

between these two points. Thus as A decreases, the real parts of all eigen-
values, Re[v], will also decrease. Since Re[v] =0 along A = 0, we conclude
that Re[v] <0 for A <0, but close to zero. Since no eigenvalue crosses the
imaginary axis between A=0 and the curves described by Eqs. (5.3 a)-
(5.3b), all eigenvalues must have negative real parts in this region. D

This region of stability of the equilibrium solution corresponds to
region B in Fig. 8. This is consistent with the analysis of Section 4, which
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tells us that the real parts of a pair of complex conjugate eigenvalues are
decreasing as T increases across the 2n bifurcation curve ( w n < 0 ) and
those of another pair are increasing as T increases across the n bifurcation
curve (m2 1>0). This, together with the criticality of the bifurcations as
shown in Figs. 3, 4, 6, and 7, allows us to conjecture that the only stable
periodic solutions in Fig. 8 are the rc-periodic solutions in region C (at least
for some small interval around the primary bifurcation point). We note
that Theorem 1 confirms that at the double Hopf bifurcation point, all
other eigenvalues have negative real parts, so the center manifold construc-
tion of Section 3 is valid.

6. NUMERICAL SIMULATIONS

Numerical simulations were performed using a fourth-order Runge
Kutta scheme adapted for delay differential equations, on the following
nonlinear equation:

Parameter values for A and -c were chosen on the grid shown in Fig. 9. Two
sets of constant initial data were used: x(t) = x0, -r^t^Q with x0 = 0.1
and 0.2. The results are as reported in Table I.

Using parameter values corresponding to regions A, E, and F in
Fig. 8, we see either solutions on a two torus, or solutions which increase

Fig. 9. Bifurcation set showing parameter values for numerical simulations.
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Table I. Results of the Numerical Simulation of Eq. (6.1)

A

A*o

3.34

3.24
3.14

3.04

2.94

-1 .6

0.1\0.2

Unbounded

Unbounded

Unbounded

Unbounded

Unbounded

-1 .5

0.1\0.2

Unbounded

Unbounded
Torus

Torus

Torus

-1 .4

0.1\0.2

Torus

Torus

Equilibrium\torus

Equilibrium\torus

Torus

without bound. This is consistent with the conjecture that none of the peri-
odic solutions is stable in these regions.

Using parameter values corresponding to region B in Fig. 8, we see the
equilibrium solution for the initial condition x0 = 0.1 and the two-torus
solution for the initial condition x0 = 0.2. Note that these tori do not
appear directly as solutions of the algebraic Eqs. (4.7a)-(4.7c) since these
equations correspond only to periodic solutions of (2.1). However, the
period-doubling bifurcation does follow from these algebraic equations (see
Refs. 13 and 14). Moreover, as was shown in Ref. 13, this period-doubling
is the codimension 2 case studied by Takens [17] and Arnold [2], for
which it is known that tori bifurcate from the periodic solutions. We
therefore conjecture that the tori which are observed in our numerical
simulations are those predicted by the unfolding of the period-doubling
bifurcation and are, thus, a local consequence of the 1:2 resonance in
(2.1).

It is difficult to determine which parameter values will lie in region C
and which in region D in Fig. 8, as we have no expression for the curve of
period doubling bifurcation in the coordinates of our delay differential
equation. For the parameter values considered, and others taken closer to
the n bifurcation curve, we see no evidence of the 7r-periodic solution. This
could be because region C is too thin6 for us to resolve with our simula-
tions or due to some other bifurcation (e.g., a subcritical bifurcation to a
two torus) which renders the ^-periodic solutions unstable. In performing
other simulations further from the bifurcation point (e.g., at A = — 1), we
do see an almost ^-periodic solution, but it exists only in a small range,

6 It is shown in Ref. 13 that this curve has quadratic tangency to the primary n bifurcation
curve at the 1:2 resonant point.
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and we are reluctant to relate this to our analysis, as it occurs quite far
from the double bifurcation point.

7. DISCUSSION

We have shown that the delay differential equation describing the
simple harmonic oscillator with delayed, position-dependent forcing has a
countable number of points of 1:2 resonant double Hopf bifurcation.
Using center manifold analysis and normal forms, we have reduced the
delay differential equation to a set of four ordinary differential equations
representing the long-term behavior of the system near the bifurcation
point. As might be expected, the normal form predicts the creation of two
periodic solutions from the Hopf bifurcations when we are near, but not at
resonance. We show that the proximity to the 1:2 resonance causes these
periodic solutions to interact through a period doubling bifurcation. The
latter bifurcation is related to the problem of stability of self-sustained
oscillations studied by Arnold [2] and Takens [17], who showed that two
tori may bifurcate from the periodic solutions. Numerical simulations per-
formed on the full nonlinear delay differential equation confirm our
analysis and the presence of these two tori.

Our goal here was not to give an exhaustive analysis of the 1:2 reso-
nance in (1.1), but merely to illustrate the occurrence of features which are
special to the 1:2 resonance and which could not be captured by the standard
techniques of nonresonant analysis. It is quite reasonable to expect that by
varying other parameters, for example, A2 (which we have fixed at 9/10
here), one could get bifurcation diagrams where branches of periodic solu-
tions undergo hysteresis, or where branches of periodic solutions exist but
do not bifurcate from the origin. Both of these phenomena have been shown
to occur in unfoldings of the 1:2 resonance (see Refs. 13 and 14) and are
not predicted by the theory of nonresonant Hopf-Hopf interactions.

A variety of mechanical and neuromechanical control systems may be
modeled by the harmonic oscillator with delayed, position-dependent feed-
back. For physical reasons, these systems are generally assumed to have
nonzero damping, which precludes the existence of 1:2 resonant double
Hopf bifurcation points. It would therefore appear that the results of this
paper cannot be applied to these cases of nonzero damping, however, our
results hold for any parameter values which are close to those where a 1:2
resonant Hopf bifurcation occurs. In particular, for values of the damping
constant close to zero, the behavior discussed above will persist. An
illustration of this is the work of Campbell et al. [6]. They numerically
observed isolated period doubling bifurcations in Eq. (1.1) with small



nonzero damping (a % .07), for parameter values near a double Hopf bifur-
cation with frequencies at the ratio w1 :w2 = 0.609:1.274.
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