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Abstract. We present an approach to modeling the average case behavior of learning algorithms. Our motivation
is to predict the expected accuracy of learning algorithms as a function of the number of training examples. We
apply this framework to a purely empirical learning algorithm, (the one-sided algorithm for pure conjunctive
concepts), and to an algorithm that combines empirical and explanation-based learning. The model is used to
gain insight into the behavior of these algorithms on a series of problems. Finally, we evaluate how well the average
case model performs when the training examples violate the assumptions of the model.
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1. Introduction

Most research in machine learning adheres to either a theoretical or an experimental
methodology (Langley, 1989). Some attempt to understand learning algorithms by testing
the algorithms on a variety of problems (e.g., Fisher, 1987; Minton, 1988). Others perform
formal mathematical analysis of algorithms to prove that a given class of concepts is lear-
nable from a given number of training examples (e.g., Valiant, 1984; Haussler, 1987). The
common goal of this research is to gain an understanding of the capabilities of learning
algorithms. However, in practice, the conclusions of these two approaches are quite dif-
ferent. Experiments lead to findings on the average case accuracy of an algorithm. Formal
analyses typically deal with distribution-free, worst-case analyses. The number of examples
required to guarantee learning a concept in the worst-case do not accurately reflect the
number of examples required to approximate a concept to a given accuracy in practice.

We have begun construction of an average case learning model to unify the formal
mathematical and the empirical approaches to understanding the behavior of machine learn-
ing algorithms. Current experience with machine learning algorithms has led to a number
of empirical observations about the behavior of various algorithms. An average case model
can explain these observations, make predictions, and guide the development of new learn-
ing algorithms.

1.1, Mathematical models of human learning

Several psychologists have created mathematical models of strategies proposed as models
of human or animal learning (e.g., Atkinson, Bower, & Crothers, 1965; Restle, 1959). These
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models have focused on average case behavior of learning algorithms. There are several
reasons that these models cannot be directly applied to machine learning algorithms. First,
these models typically study learning algorithms restricted to less complex concepts (e.g.,
single attribute discriminations) than those typically used in machine learning. Second,
these models also address complications not present in machine learning programs since
they must account for individual differences in human learners caused by such factors as
attention, motivation, and memory limitations. Finally, the performance metric predicted
by these models is generally the expected number of trials required to learn a concept with
perfect accuracy. Typically, experimental studies of machine algorithms report on the ob-
served accuracy of learning algorithms after a given number of examples.

1.2. PAC learning

Valiant (1984) has proposed a model to probabilistically justify the inductive leaps made
by an empirical learning program. The probably approximately correct (PAC) model in-
dicates that a system has learned a concept if the system can guarantee with high probability
that its hypothesis is approximately correct. Approximately correct means that the concept
will have an error no greater then e (i.e., the ratio of misclassified examples to total ex-
amples is less than e). The learning system is required to produce an approximately cor-
rect concept with probability 1 - 6 . For a given class of concepts, the PAC model can
be used to determine bounds on the number of training examples required to achieve an
accuracy of 1 — e with probability 1 — 6 . The PAC model has led to many important in-
sights about the capabilities of machine learning algorithms. One such result from Blumer,
Ehrenfeucht, Haussler, and Warmuth (1989) is that for an algorithm that explores a hypothesis
space of cardinality |h|, at most

examples are required to guarantee with probability at least 1—6 that the error is no greater
than e. If this equation is solved for e, it yields the upper envelope on the error for all
target concepts in the hypothesis space and all distributions of examples as a function of
the number of training examples and 6 and |h| (Haussler, 1990). For specific values of
6 and \h\, one can obtain a curve relating t to the number of training examples. There
is typically a wide gap between such a curve and the mean observed error reported in
experimental studies of machine learning algorithms (Haussler, 1990).

A model related to the PAC model has been proposed to deal more directly with analyz-
ing the worst case error of learning algorithms (Haussler, Littlestone, & Warmuth, 1990;
Hembold, Sloan, & Warmuth, 1990). This model is designed to predict the probability
of a classification error on the N + 1st example after being trained on N training examples.
For example, theorem 4 of Hembold et al. (1990) shows that the mean error is at most
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for a particular algorithm (the closure algorithm, a generalization of the one-sided algorithm)
that explores an intersection closed hypothesis space h (such as conjunctive concepts), where
VCdim(h) is the Vapnik-Chervonenkis dimension of the hypothesis space (Vapnik & Cher-
vonenkis, 1971). This result also appears as theorem 2.1 of Haussler et al. (1990). Theorem
3.1 of Haussler et al. (1990) gives a lower bound on the mean error that can be achieved
for any algorithm on the worst case distribution of training examples (for N > VCdim(h),
provided VCdim(h) is finite):

where e is the base of the natural logarithm.
In figure 1, the points plotted are the mean accuracy computed from one hundred runs

of the wholist algorithm (Bruner, Goodnow, & Austin, 1956) as a function of the number
of training examples. The wholist algorithm is shown in table 1. After every training exam-
ple, the accuracy of the current hypothesis was measured by classifying 250 test examples.
The errors bars around the points are the 95% confidence interval around the mean (using
the t-distribution, Winer, 1971). The concept to be learned was a conjunction of five features
from a total of ten Boolean features. Five of these features are irrelevant. The probability
that a given irrelevant feature was present in a positive training example was 0.5 and all
training (and test) examples were positive. For this problem and this algorithm, the value
of |h| is 210 and the VCdim(h) is 10. The curves plotted in this figure are obtained by
substituting these values into the equations given above. The curve from Blumer et al. (1989)
is for 6 = 0.05.

Figure 1. A comparison of the observed accuracy of the wholist algorithm to the worst case accuracy predicted
by the average case model presented here, the PAC model (Blumer, Ehrenfeucht, Haussler, & Warmuth, 1989),
and theorems 2.1 and 3.1 from Haussler, Littlestone and Warmuth (1991). The boxes represent the empirical means,
the y-bars are the 95% confidence interval around those means and the curves are the value predicted by the
various models.
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Table 1. The wholist algorithm.

1.

2.

3.

I n i t i a l i z e the hypothesis to the conjunction of all features
that describe t r a i n i n g examples.
If the new example is a positive example, and the hypothesis
misclassifies the new example, then remove all features from the
hypothesis that are not present in the example.
Otherwise, do nothing.

There are a variety of reasons for the gap between the observed accuracy and the equa-
tion (Blumer et al., 1989) on the PAC model. The first, and most important reason is that
the PAC model is not intended to predict the mean, observed accuracy of specific concepts
from specific distributions. Rather, the goal of PAC learning has been to provide bounds
on the number of examples to learn with high probability any concept from a given class
to a given accuracy from any distribution of examples.

Second, the bounds predicted by the PAC model may be tightened somewhat. Buntine
(1989) has argued that the Valiant model can produce overly-conservative estimates of error
and does not take advantage of information available in actual training sets. Finally, and
perhaps most importantly, both the PAC model and the prediction models presented are
distribution-free models. In our simulation there was a single, known distribution of train-
ing examples. In this distribution, the values of the irrelevant features are independent.
The observed learning accuracy on this distribution is much higher than that which would
be observed from a more difficult distribution, such as the worst case distribution used
in the proof of theorem 3.1 in Haussler et al. (1990).

It may be possible to tighten the bounds by specializing the PAC model for a given distribu-
tion. Although there has been some research in this area (e.g., Benedek & Itai, 1987; Kearns,
Li, Pitt, & Valiant, 1987; Natarajan, 1987), it has concentrated on showing that certain
concepts classes are learnable from a polynomial number of examples given a known or
uniform distribution of examples, rather than providing tighter bounds on those concepts
that are PAC-learnable.1

In figure 1, we also plot a curve corresponding to the expected accuracy of the average
case model described in the next section. This model takes advantage of knowledge of the
distribution to produce a predicted accuracy that falls within the 95% confidence intervals
around the mean observed on this problem.

2. The average case learning model

We have been developing a framework for average case analysis of machine learning
algorithms. The framework for analyzing the expected accuracy of the hypothesis produced
by a learning algorithm consists of determining:

• The conditions under which the algorithm changes the hypothesis for a concept.
• How often these conditions occur.
• How changing a hypothesis affects the accuracy of a hypothesis.
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Clearly, the second requirement presupposes information about the distribution of the
training examples. Therefore, unlike the PAC model, the framework we have developed
is not distribution-free. Furthermore, to simplify computations (or reduce the amount of
information required by the model) we will make certain independence assumptions (e.g.,
the probabilities of all irrelevant features occurring in training example are independent).
Similarly, the third requirement presupposes some information about the test examples and
information about the current hypothesis.

Determining conditions under which a learning algorithm changes a hypothesis requires
an analysis of the operators used for creating and changing hypotheses. In this respect,
the framework is more similar to the mathematical models of human and animal learning
strategies than the theoretical results on machine learning algorithms which typically are
concerned with the relationship between the size of the hypothesis space and the number
of training examples.

The goal of the analysis here differs from that of the PAC model. The average case analysis
is intended to predict the accuracy of a given algorithm on a given class of learning prob-
lems. The average case analysis can be used to compare the expected accuracy of different
algorithms on the same problem. As a consequence, the average case model can be used
to show that one learning algorithm will, on average, converge on the correct solution more
rapidly than another. In addition, it can be used to prove that the asymptotic accuracy of
one algorithm is greater than that of another.

The average case analysis uses information that is not available to a learner. For exam-
ple, the analysis requires specifying the distribution from which the training examples are
drawn. In addition, the analysis requires specifying a correct definition of the concept to
be learned. Note that the knowledge of the distribution of examples and correct answer
are not used by the learning algorithm. Rather, this knowledge is used only in the analysis.
To emphasize this difference, we first present below a model of the "learning algorithm"
that is occasionally used as a strawman in experimental machine learning research. This
algorithm simply guesses the most frequent class. We will restrict our attention to the case
in which there are two classes (positive and negative) and there is a fixed probability p
that a randomly drawn example is from the most frequent class (i .e., p > 0.5). If the learner
knew which class was more frequent, then the expected accuracy of this approach would
be p. However, it is not reasonable to assume that the learner has this information. Rather,
the algorithm we analyze will count the number of positive and negative examples en-
countered so far, and predict that the next example belongs to the most frequent class.2
In this case, there is a certain probability ( p f r e q ) that after i examples the algorithm will
correctly identify the most frequent class. This occurs when a greater number of the train-
ing examples belong to the most frequent class. This probability is:
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Therefore, the overall expected accuracy of an algorithm that guesses the most frequent
observed class is:

2.1. An average case model of wholist

We will first show how the framework can be applied to the wholist algorithm, a predecessor
of the one-sided algorithm for pure conjunctive concepts (Haussler, 1987). This algorithm
incrementally processes training examples. The hypothesis maintained is simply the con-
junction of all features that have appeared in all positive training examples encountered.

For example, consider the simple case of learning the concept d ime. We will assume
that the training examples are represented by the following binary features: r o u n d ,
s i l v e r , sh i ny, s m a l l , ed i b Ie, and w a r m . The initial hypothesis is the conjunction
of these six features. The first example is a positive example of a dime. It is described
by the features round A s i l ve r A sh i ny A sma l l. Since the features e d i b l e and wa rm
are not in this positive example they are dropped from the hypothesis. The next example
is a quarter, a negative example of the concept d i me: round A si I ve r A sh i ny A wa rm.
The hypothesis is not revised for negative examples. The third example is another positive
example: round A s i l ve r A wa rm A sma l l. Since the feature sh i ny is not true of this
example, it is dropped from the hypothesis, and the current hypothesis is now the correct
conjunctive definition of the concept: round A s i l ver A sma l l.

The following notation will be used in describing the algorithm:

• fj is the jth irrelevant feature of a training example. A feature is irrelevant if the true
conjunctive definition of the concept does not include the feature. For example, the feature
s h i n y is irrelevant in the above example.

• N is the number of examples (both positive and negative) seen so far.

The following information is required to predict the expected accuracy of wholist. Note
that while this is much more information than required by the PAC model, this is exactly
the information required to generate training examples from a product distribution to test
the algorithm:

• P is the probability of drawing a positive training example. This value is 1.0 in the data
used to generate the graph in figure 1.

• I is the number of irrelevant features. The value of / is 5 in the data displayed in figure 1.
• P(fj) is the probability that irrelevant feature j is present in a positive training exam-

ple. For example, P(shiny) represents the probability that a dime is shiny. In figure
1, the value of P(fj) is 0.5 for; from 1 to 5.

Note that the accuracy of this algorithm does not depend upon the number of relevant
features that are conjoined to form the true concept definition. Therefore, the analysis
does not make use of the total number of features or the number of relevant features.
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The wholist algorithm has only one operator to revise a hypothesis. An irrelevant feature
is dropped from the hypothesis when a positive training example does not include the irrele-
vant feature. Therefore, if i positive examples have been seen out of N total training ex-
amples, the probability that irrelevant feature j remains in the hypothesis (i.e., feature j
has appeared in all i positive training examples) is:

The hypothesis created by the wholist algorithm misclassifies a positive test example
if the hypothesis contains any irrelevant features that are not included in the test example.
The wholist algorithm does not misclassiry negative test examples (provided that the true
concept definition can be represented as a conjunction of the given features). Therefore,
the probability that feature j does not cause a positive test example to be misclassified after
i positive training examples is given by:3

If all irrelevant features are independent,4 then after /' positive training examples, the prob-
ability that no irrelevant feature will cause a positive test example to be misclassified is:

Finally, in order to predict the accuracy of the hypothesis produced by the wholist
algorithm after N training examples, it is necessary to take into consideration the probability
that exactly i of the N training examples are positive examples for each value of i from
0 to N. Therefore, the accuracy of the wholist algorithm (where accuracy is defined as
the probability that a randomly drawn positive example will be classified correctly by an
algorithm) can be given by:

where b(i, N, P) is the binomial formula:

In figure 1, the predicted and the actual accuracies of the hypothesis produced by the
wholist algorithm are plotted. The expected accuracy of wholist algorithm, as predicted
by equation (4), is plotted along with the results obtained by running the program on the
training data. Since the data is generated from a known distribution that meets the assump-
tions, the predicted accuracy corresponds very closely with the observed accuracy. A com-
mon measure used to describe how well data fit a model is the coefficient of determina-
tion5 (r2). For this data, r2 is greater than 0.99.
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In the following sections, we will illustrate how the framework we have developed for
average case analysis of knowledge-free conjunctive learning algorithms can be used to
gain insight on concept formation in the presence of background knowledge. First, we
describe a performance task and three learning algorithms that can be used to acquire the
knowledge necessary to accomplish that task. Next, we present an average case analysis
of each algorithm and compare the predicted and observed accuracy of the algorithms on
this task.

2.2. Learning a domain theory

The learning and performance tasks to be analyzed differ from those commonly studied
in machine learning. The difference is necessitated by the fact that we are interested in
analyzing the use and learning of a domain theory as opposed to the learning of a single
concept in isolation. A domain theory consists of a set of inference rules that can be chained
together to draw a conclusion. For example, one rule might state that "If a fragile object
is struck, the object will break." A second rule might indicate, "If an expensive object
breaks, the owner will be angry." If presented with an example of a cat knocking over a
glass vase, it would be possible to use both of these rules to conclude that the owner of
the vase will be angry. The average case model from the previous section may be used
to determine the expected accuracy of a single inference rule learned by the wholist
algorithm. In section 2.3, we will use the average case model to determine the expected
accuracy of a conclusion inferred with a domain theory if each rule of the domain theory
is learned by the wholist algorithm.

A domain theory can be used by explanation-based learning (EBL) (DeJong & Mooney,
1986; Mitchell, Keller, & Kedar-Cabelli, 1986) to create new "macro" rules by combining
preconditions of existing rules. For example, the rules in the previous paragraph can be
used to form a new rule, "If a person strikes an expensive fragile object, the owner of the
object will get angry." If we assume that the rules learned by explanation-based learning
are revised whenever the domain theory changes, the model used to predict the expected
accuracy of conclusions drawn from a domain theory can also be used to predict the ac-
curacy of rules learned by explanation-based learning. In section 3, we show how the average
case model can be used to predict whether a rule learned by explanation-based learning
would, on average, be more accurate than a rule learned by the wholist algorithm.

Learning a domain theory requires learning multiple concepts (one for each rule in the
domain theory). We will use the notation G - (P1 - p 2 ) to represent the knowledge ac-
quired by the learning system and used by the performance system. This can be read, "If
G is true, then p1 implies p2." The performance task is to infer whether a predicate, p2,
is true in a situation S given that a predicate p1: is true. We will assume that a situation
is represented as a set of binary features x1:, x2 . . . xn. In this paper, variables starting
with S will be used to refer to specific situations; variables starting with G will be used
to refer to general descriptions of a class of situations. We will assume that each G may
be represented as a conjunction of a subset of the features used to describe specific situations.

Training examples are represented as specific instances of inference rules of the form6

S - (P1 - p2). More general inference rules may be learned by generalizing all of the
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individual situations in which P1 implies p2. A collection of such inference rules, learned
from a variety of examples, may serve as the domain theory for explanation-based learning.

In this paper, we consider the case in which there are two possible means to determine
if a predicate c is true in situation S when predicate a is true. The first is to acquire a
rule (GAC - (a - c)) that allows c to be inferred directly. The second is to acquire two
rules (GAB - ( a - b ) ) and (GBC - (b - c)) and allow the performance system to chain
rules to infer b from a, and then infer c from b. Note that GAC can also be represented
as GAB A GBC. For example, a might represent striking an object, b might represent the ob-
ject breaking and c might represent the owner of the object getting angry. The performance
task is to predict when GAC -» (a - c): "If a person strikes an expensive fragile object,
then the owner of the object will get angry." Two other rules may help in the prediction:
"If a fragile object is struck, the object will break" and "If an expensive object breaks,
the owner will be angry." Here, GAC refers to the conditions "expensive and fragile," GAB

is the condition "fragile" and GBC is the condition "expensive."
Three distinct groups of training examples are intermixed and presented incrementally

to the learning system:

where SAc, SAB and SBC are the sets of features of training examples. We will refer to the
first type of training examples as performance examples since these examples will permit
the learning system to learn a rule that directly solves the performance task. We will refer
to the latter two types of examples as foundational examples because these examples do
not allow the problem to be solved directly but provide a foundation for inferring when
c is true.7

We will consider three related learning methods that can be used to acquire the knowledge
for this performance task:

• wholist: The wholist method can be used to learn GAc, from performance examples. In
this case, GAc is the maximally specific conjunction of all examples of SAC. This method
ignores foundational examples.

• chaining: The wholist method can be used to learn GAB, and GBC from foundational ex-
amples and c can be inferred from GAB - (a - b) and GBC - (b - c). In this case,
GAB and GBC are the maximally specific conjunction of all examples of SAB and SBC,
respectively. Note that this method ignores the performance examples. This method can
be viewed as learning the domain theory for explanation-based learning. However, it
is irrelevant to the accuracy of the results of the learning whether the rule GAC - (a
- c) is cached by EBL (and updated whenever the domain theory is changed) or the
performance task is solved by chaining. If GAC were cached by EBL, it would be the
conjunction of all features that are in either GAB or GBC.

• IOSC-TM (Sarrett & Pazzani, 1989a): The result of learning GAC with the wholist
algorithm from performance examples, and the result obtained by learning GAB and GBC

from foundational examples can be combined to form a composite hypothesis. This is
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the technique used by the integrated one-sided conjunctive learning algorithm with truth
maintenance8 (IOSC-TM). Two approximations to GAC are formed. One is the result of
wholist on the performance examples. The other is the result of "chaining" on the foun-
dational examples. A composite hypotheses is created by deleting features not present
in both. It is possible to combine the result of chaining and the result of learning GAC

with wholist because each hypothesis only makes one-sided errors. Unlike the previous
two algorithms, IOSC-TM updates its hypothesis when presented with performance or
foundational examples. The composite hypothesis formed by IOSC-TM is similar to the
S set of the version space merging algorithm (Hirsh, 1989). However, unlike version-
space merging, IOSC-TM learns the domain theory from foundational examples.

Table 2 shows an example of the hypothesis produced by each of these three algorithms
when run on the same training examples. All three algorithms produce the same hypothesis
for GAB and GBC. Note that the hypothesis formed for GAC by IOSC-TM contains only those
features that are both in the hypothesis formed by wholist on performance examples and
in the hypothesis formed by chaining for this concept.

Table 2. Hypotheses produced by the three algorithms.

Training Examples
[x1= 1 ,x 2 = 1 ,x 3 = 1 ,x 4 = 1 ,X 5 = 1] - (a - c)
[x1= I , x 2 = 0 ,x 3 = 1,x4= l , x 5 1] -> (a - b)
[x1= 1,x2= 1 ,X 3 = 0 ,x 4 = 1 ,x5= 1] - (b - c)
[x1= 1 ,x 2 = 1,x3= 0 ,x 4 = 0 ,x s = 1] - (a - b)
[x1,= 0 ,x 2 = 1,x3= 1 ,x 4 = 0 ,x 5 = 1] - (b - c)
[x1,= 1,x2= 1,x3= 1 ,x 4 = 0 , x s = 0] - (a - c)

Hypotheses
All three algorithms: [x1= 1 , x5= 1] - (a - b)

[x2= l ,x ,= 1] - (b - c)

wholist        [x1= 1,x2= 1,x3= 1] - (a - c)
chaining {implicit} [X 1 = 1 , x2= 1 , x5= 1] - (a - c)
IOSC-TM: [x1= 1 ,x 2 = 1] - (a - c)

2.3. An average case model of learning a new domain theory

In this section, we present a general analysis of the problem of learning and using a do-
main theory. Some new notation is necessary to describe this problem:

• PAc, PAg, and PBC are the probabilities of drawing a positive training example from
SAC -* (a -» c), and SAB -> (a - b), SBC -» (b -» c), respectively. For brevity, here
we only consider the case that PAC + PAB + PBC = 1 (i.e., there are no examples that
are not one of the three rules).

* I*Ac(fj)> PAB(/J^ and PBC(/J) are the probabilities that irrelevant feature; is present in a
positive training example from SAC -»• (a -> c), SAB -» (a -> b), and SBC ~> (b -*• c),
respectively.
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The three algorithms of the previous section differ only in how they update the hypothesis.
Therefore, the only difference in the analysis is the probability that an irrelevant feature
remains for each algorithm. We will use the notation REMAINalg(fj, i0, i1, i2) to indicate
that a particular algorithm leaves irrelevant feature fj in the hypothesis for GAC after ex-
actly i'o positive training examples of SAC - (a - c), i1 positive training examples of
SAB - (a -b), and i2 positive training examples of SBC - (b - c). For each algo-
rithm, the probability that feature j does not cause a positive test example of SAC -
(a - c) to be misclassified is given by N M a l g ( f j , i0, i1, i2):

Since there are a total of N training examples, it is necessary to take into consideration
the probability that there are exactly z'0 positive training examples of SAC -» (a -» c), j,
positive training examples of SAB -» (a -» b), and /2 positive training examples of SBC

-» (b -» c) for each value of j0> /, and i2 from 0 to N. Note that because all examples
are of one of three rules, i2 is equal to N -(i0 + ;']). The multinomial formula is used
to weight the value of NMa\s(fj, i0> /,, /2) by the probability that various values of j'0, ;',
and i'2 occur. Therefore, on the problem of learning GAC, the expected accuracy of each
algorithm, as a function of the total number of training examples can be given by:

The analysis of the wholist algorithm presented in section 2.1 will apply directly to this
problem. The probability that an irrelevant feature remains in the hypothesis for GAC pro-
duced by wholist is given by:

Note that since the hypothesis for GAC produced by wholist is not updated when presented
with foundational examples, REMAIN'Wh0ns,(fj, 'o> 'i. '2) does not depend upon the value
of /i or /2.

2.3. Average case analysis of using chaining

Chaining (GAB -> (a -» b) and (GBC -> (b -> c) requires using the wholist algorithm
to learn two conditions (GAB and GBC). A positive test example will be correctly classified
if both GAB and GBC do not contain any irrelevant feature that is not present in the test ex-
ample. The probability that irrelevant feature./ remains in the hypothesis for GAC produced
by chaining is:
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Note that since the hypothesis for GAC produced by chaining is not updated when
presented with performance examples, REMAINchaining(fj, i0, i1 j2) does not depend upon
the value of i0. In Sarrett and Pazzani (1989b), we consider the general case in which the
inference chain is of any given length. In section 2.4, we illustrate how well equation (8)
models the accuracy of the hypothesis produced by the chaining algorithm.

2.4. Average case analysis of IOSC-TM

The IOSC-TM algorithm combines the hypothesis formed by chaining GAB - (a - b)
and GBC - (b - c) and the hypothesis produced by wholist learning GAC - (a - c).
A positive test example will be incorrectly classified if it does not contain an irrelevant
feature that meets both of the following conditions:

• Either GAB or GBC contains the irrelevant feature.
• GAC contains the irrelevant feature.

If i0 positive training examples of SAC - (a - c), i1, positive training examples of SAB

- (a - b), and i2 positive training examples of SBC - (b - c) have been seen, the
probability that irrelevant feature j remains in the hypothesis for GAC produced by IOSC-
TM is:

REMAINIOSC-TM(fj, i0, i1, i2) = PAC(fj)io*(1-((1- PAB(fj)i1) * (1 - PBC)(fj)i2))) (9)

In order to compare the accuracy of the hypotheses produced by the three algorithms under
a variety of conditions, we substituted various values for PAC(fj), PAB(fj)> PBC(fj), PAC,

PAB, and PBC into equations (7), (8), and (9). In addition, to obtain confirmation of the
mathematical result and to visualize the equations, we ran each of the three algorithms
on data generated according to the values of the parameters. Figure 2 shows the three
algorithms when PAC is 0.4, 0.2, and 0.1. In each case, PAB and PBC are (1 - PAC)/2.
The values of PAC(fj), PAB(fj)> PBC(fj) were randomly assigned for each feature from the
range (0.01 to 0.80). Since the data generated meets the assumptions, the predicted accuracy
corresponds very closely with the observed accuracy. In all cases, r2 is greater than 0.99.
In section 4, we will evaluate how well the model performs when the assumptions are
violated.

3. Use of average case models

The goal of our average case analysis is to gain an understanding of how domain knowledge,
especially inaccurate domain knowledge, can facilitate learning. It was found experimen-
tally that IOSC-TM consistently achieved an accuracy greater than or equal to the accuracy
of chaining or wholist. The average case model can help to explain this empirical finding.
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Figure 2. A comparison of the expected and observed accuracy of the three algorithms. The points are the em-
pirical means with 95% confidence intervals and the curves are the value predicted by equations 7, 8, and 9.

The only difference in the model of the three algorithms is in the computation of the
probability that a feature remains after a number of positive examples.

REMAINwholist(fj, i0, i1 i2) = PAC(fj)io

REMAINchaining(fj, io, i1„ i2) = 1-((1- PAB(fj)i1 * (1 - PBC(fj)i2))

REMAIN I O S C - T M ( f j , i0, i1,, i2) = PAC(fj.)'° * (1 - ((1 - PAB(fj)i1) * (1 - PBC(fj)i2)))
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From these equations, it is clear that the probability of a feature remaining in the hypothesis
produced by IOSC is never greater than the probability of a feature remaining in wholist
or the chaining algorithm. Note that REMAIN,IOSC-TM-TM(fj, i0, i1, i2) could also be expressed
as

REMAINchaining(fj, i0, i1, i2)*REMAINwholist,(fj, i0, i1, i2).

Since REMAINchaining(fj, i0, i1, i2) and REMAINw h o l i s t ( f j , i0, i1, i2) never exceed 1, the
product cannot be greater than either term. The implication of this result is that the hypothesis
produced by this particular combination of empirical and explanation-based learning will
be at least as accurate as its empirical and explanation-based components.

The average case model can also be used to gain insight into the purely empirical
algorithm. For example, in the wholist algorithm, is it frequently occurring features, or
rare features that are likely to lead to misclassifications? Rewriting equation (2) clearly
shows that there is a tradeoff since commonly occurring features are more likely to remain
in a hypothesis. However, if the hypothesis contains a rare feature, it is more likely to result
in misclassification (since rare features are less likely to be in the test example).

Figure 3 graphs the probability of a feature not resulting in a misclassification as a func-
tion of the probability of a feature appearing in a training (and test) example for several
values of i (the number of positive training examples). After one training example, the
features most likely to result in misclassification are those that occur with probability 0.5.
With additional training examples, this function has a minimum at larger values of P (fj)
Therefore, one can conclude that the presence of commonly occurring irrelevant features
will result in less accurate hypotheses than the presence of rare irrelevant features.

Figure 3. The probability of a feature not resulting in misclassification is plotted as a function of the probability
of a feature appearing in a training example.
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4. Violating assumptions of the framework

So far, we have presented an average case model of the wholist algorithm and used the
average case model to explore the relationship between the expected accuracy of wholist,
chaining and IOSC-TM. Here, we consider what happens when the assumptions of the
model are violated. In particular, we compare the predicted and observed accuracies when
the values of features are not independent. In addition, we run the model on the distribu-
tion used in the proof of theorem 3.1 of Haussler et al. (1990). Finally, we compare the
observed and predicted accuracy of the wholist algorithm on a naturally occurring data set.

4.1. Violating independence assumptions

Equation (3) computes the probability that no irrelevant feature will cause a positive test
example to be misclassified by taking the product of the probabilities that each feature does
not cause a misclassification. This assumes that the examples are drawn from a product
distribution (i.e., the values of irrelevant features are chosen independently). First, we con-
sider using equation (3) on a simple problem in which there are two relevant features and
three irrelevant features. One of the irrelevant features is dependent upon the value of the
other two. The goal of these experiments is to evaluate the robustness of equation (3) when
the independence assumptions are violated. In all cases, P(f1) and P(f2)= 0.5 and the
values of f1 and f2 are independent. In the following two simulations, the values of feature
f3 will depend on f1 and f2 as follows:

a. Feature f3 is true whenever f1, and f2 are both true. Therefore the average case model
uses the values P(f1), P(f2) = 0.5 and P(f3) = 0.25. However, the model assumes
that P(f3 | f1 and f2) = 0.25 while, in fact, it is 1.

b. Feature f3 is true whenever either f1 or f2 is true. Therefore, P(f1), P(f2) = 0.5 and
P(f3) = 0.75. However, the model assumes that P(f3 | f1 & f2) = 0.25 while, in fact,
it is 0. Note that, in effect the &-CNF learning algorithm is identical to the wholist algo-
rithm except that it constructs composite features in this manner. These composite features
are disjunctions of k variables used to describe the training examples.9

Figure 4 shows the predicted and observed mean accuracy (and 95 % confidence inter-
val) of the wholist algorithm under these three conditions. In each case, the accuracy is
computed by testing on 250 examples and the accuracy is averaged over 100 simulations.
For the conjunctive case, the average case model accounts for 88.9% of the variation in
the mean observed accuracy. In the disjunctive case, r2 = 0.906. In the conjunctive case,
the predicted accuracy underestimates the observed mean accuracy. This occurs because
the presence of f3 does not affect the accuracy of the algorithm. The average case model,
when there are only two irrelevant features (f1 and f2), has a very good fit with the data.
In the disjunctive case, the predicted accuracy differs from the observed accuracy because
the features f1 and f2 cannot result in a misclassification unless f3 also results in a
misclassification. The average case model, when there is only one irrelevant feature (f3),
has a very good fit with the data.



364 M.J. PAZZANI AND W. SARRETT

figure 4. A comparison of the expected (lines) and observed (points) accuracy of the wholist algorithm when
one irrelevant feature is unknowningly the conjunction (upper) or disjunction (middle) of two irrelevant features.
The lower shows the expected and observed accuracy when P(f2|f1) = 0, 0.25, 0.75, and 1 but the model assumes
P(f2|f1) = P(f2) = O.5.

Next, we consider a problem in which there are two irrelevant features, and one of the
features is dependent upon the value of the other. In all cases, P(f1) and P(f2) = 0.5.
Therefore, the average case model uses 0.5 for P(f1 and P(/2). The independence assump-
tion assumes P(f2 | f1) = 0.5. However, we will generate data such that P(f2 | f1) takes
on the values 1, 0.75, 0.25, and 0. When P(f2 | f1) = 1, then f2 = f1, when P(f2 | f1,) =
0, then f2 = not(f1). Figure 4 (lower) plots this data. The values for r2 are 0.468, 0.954,
0.972, 0.975, and 0.930, respectively. Note that when P(f2 | f1) is greater than 0.5, the
prediction of the average case model is less than the observed accuracy, while when P(f2

| f1) is less than 0.5, the predicted accuracy is greater than the observed accuracy.
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4.2. A distribution that varies with time

The proof of theorem 3.1 of Haussler et al. (1990) uses a distribution that varies with time
(i.e., with the number of training examples) to give a lower bound on the mean error that
can be achieved for any algorithm on this distribution. Here we use a variant on that distribu-
tion, which only makes use of k + 1 distinct training examples where k is the VCdim(H)
and H is a class of concepts. The set of training examples { y 1 , . .., yk] are those that are
shattered by the class of concepts and ;y0 is any example that is not a member of this set.
For example, for the concept class that is the conjunction of 10 features, the VC dimension
is 10. The set {yi, : 1 < i < 10} is shattered by this concept class where in example ;',
feature i is 0 and all other features are 1. In our simulations, we will use (1,1,1,1,1,1,1,1,1,1)
for y0. The following probability distribution is used:10

Here, we consider the case when the wholist algorithm is used to learn a conjunction
of 5 out of 10 of the features. Table 3 lists the training examples and their classifications
for this concept. In this case, there are six positive examples and the probability that an
irrelevant feature occurs in a positive example is 0.833. This value will be used for P ( f 1 ) ,
1 < i < 5 by the average case model. Note, however, that since distribution is a function
of the number of training examples (N), the probability that one of these irrelevant features
is present in a randomly drawn positive example will differ from 0.833.

We ran a series of 11 simulations in which we interpolated between the distribution from
Haussler et al. (1990) and the product distribution discussed in section 2. For the product

Table 3. Training data for the simulation in figure 5.

Concept to be l e a r n e d : f6 A f7 A f8 A f9 A f 10

y0 = ( 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 ) +
y, = ( 0 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 ) +
y2 = ( 1 , 0 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 ) +
y3 = (1, , 0 , 1 , 1 , 1 , 1 , 1 , 1 , 1 ) +
y4 = (1, , , 0 , 1 , 1 , 1 , 1 , 1 , 1 ) +
ys = (1, , , 1 , 0 , 1 , 1 , 1 , 1 , 1 ) +
y6 = (1, , , 1 ,1 ,0 ,1 ,1 ,1 ,1 )
y7 = ( 1 , 1 , 1 , 1 , 1 , 1 , 0 , 1 , 1 , 1 )
y8 = ( 1 , 1 , 1 , 1 , 1 , 1 , 1 , 0 , 1 , 1 )
y 9 = ( l , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 0 , 1 )
y10 = ( 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 0 )
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distribution, we used a value of 0.833 for the probability that an irrelevant attribute appears
in a positive training example. That was done to match the probability in the time varying
distribution. All of the examples from the product distribution were positive examples.
In the simulation there was a parameter, a, that determined the probability that an example
came from the product distribution. When a was 0, all examples came from the product
distribution and when a was 1, all of the examples came from the time varying distribu-
tion. The 11 simulations used values of a in increments of 0.1 from 0 to 1. Since the distri-
bution may vary with time, it is not possible to test the accuracy of the algorithm after
N examples by testing on a separate set of examples. Instead, the accuracy of the algorithm
after N examples was computed by determining the probability that training example N+
is classified correctly. We ran 10,000 trials for each value of a. Figure 5 plots the observed
error (i.e., 1-observed accuracy) when a is 0.0, 0.2, 0.5, 0.7, and 1.0. Since theorem 3.1
holds when N > VCdim(H), the graph starts with the eleventh training example. For this
graph, example y1 is a positive example. The graph when y1 is a negative example is sim-
ilar. The bottom curve, for a = 0.0 closely approximates the expected accuracy (r2 >
0.99). As conditions diverge from that assumed by average case model, it underestimates
the observed error. Figure 6 shows the value of r2 as a function of a. This graph indicates
that predictions of the average case model degrade gracefully as the distribution diverges
from the specific distribution we have analyzed.

4.3. Naturally occurring data sets

In this section, we compare the expected accuracy to the observed accuracy on an artificial
concept using a naturally occurring data set. Unfortunately, conjunctive concepts are not
expressive enough to obtain a completely accurate concept on any of the data sets in the
archive of machine learning databases at the University of California, Irvine. Furthermore,

Figure 5. The error of the wholist algorithm for distributions that interpolate between the distribution of theorem
3.1 of Haussler et al. (1990) and the product distribution. From the top, the curves are for a = 1.0, 0.7, 0.5,
0.2, and 0.0.
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Figure 6. The goodness of fit of the average case model as a function of the probability that an example does
not come from the product distribution.

most data sets have a variety of complications that we have not yet addressed. These compli-
cations include features that take on more than two values or numeric values. In addition,
many naturally occurring data sets contain missing values for some attributes as well
as attribute and classification noise.

One data set that nearly meets the specification of the wholist algorithm is the database
of congressional voting records. This database has 435 examples. The examples belong
to one of two classes (Republicans and Democrats), and contain 16 Boolean features in-
dicating whether the member of Congress voted for or against particular issues, such as
aid to El Salvador or research on synthetic fuels. In order to run the wholist algorithm
on this data set, we eliminated all examples with missing features. This left a total of 124
Democrats and 108 Republicans. Next, we constructed an approximation to the concept
of Democrats by finding the pair of issues that the most number of Democrats voted for
and eliminated all examples that were not consistent with this conjunction. We performed
the same process on the Republican examples. This left a total of 105 out of the original
set of Democrats and also left 105 Republicans. Now, if the wholist algorithm is run on
the reduced set of the Democrats, it will produce a conjunction of two binary features.
Similarly, the wholist algorithm will return a conjunction of two features when run on the
reduced set of Republicans.11 Note that these manipulations were done to make it possible
to run the wholist algorithm on the data and not to make the data conform to the assump-
tions of the average case model. For each feature of the data sets, we calculated the prob-
ability that each irrelevant feature was present in the positive examples. This data was used
by the average case model to predict the expected accuracy.

We ran 100 trials of the wholist algorithm on this data. The training examples were selected
randomly (with replacement) from the total set of examples. Figure 7 shows the error
predicted by the average case model and observed mean error (with 95 % confidence inter-
vals around the mean). At each point, the error was calculated on 100 examples selected
randomly (with replacement) from the total set of examples. Although there are a variety
of dependencies among the irrelevant features, the predictions of the average case model
have a reasonably good fit with the observed data. For the reduced Republican examples,
r2 = 0.983 and for the reduced Democrats, r2 = 0.993. Nonetheless, there are some
points at which the predicted accuracy is not within a 95 % confidence interval around the
observed mean.



368 M.J. PAZZANI AND W. SARRETT

Figure 7. The error of the wholist algorithm on the reduced Republican data set (upper) and the reduced Democrat
data set (lower). The points represent the empirical means, the y-bars are the 95% confidence interval around
those means and the curves are the value predicted by the average case model.

5. Limitations of the current framework

We view this work as the first step toward a framework for average case modeling of learn-
ing algorithms. In the PAC-model, one need only specify the size, (or VC-dimension) of
the hypothesis space searched by the learning algorithm. The average case framework re-
quires a detailed analysis of an individual algorithm to determine the conditions under which
the algorithm changes the hypothesis. We have performed this analysis for one of the simplest
learning algorithms (wholist), and then expanded this analysis to algorithms that use the
wholist algorithm for learning a domain theory for explanation-based learning. There are
several properties of the wholist algorithm that facilitated this analysis:

• The hypothesis produced by the algorithm is independent of the order in which the ex-
amples are encountered. Therefore, calculating the probability that an irrelevant feature
remains is a function of the number of training examples, but not the order. It would
be possible, but computationally expensive, to compute the probability of a feature re-
maining for each possible order of training examples. However, due to this complexity,
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we would predict that a model of the nearest neighbor algorithm (Cover & Hart, 1967)
would be easier to construct than a model of a variant of the nearest neighbor algorithm
that only retains misclassified instances (Kibler & Aha, 1988), since the latter algorithm
is dependent on the order of examples.

• The algorithm maintains a single hypothesis. A model of algorithms that maintain multi-
ple hypotheses (e.g., Mitchell's (1982) version space algorithm) may require computing
the probability that each hypothesis in the entire hypothesis space is eliminated from
consideration. Although the hypothesis maintained by wholist may be thought of as sum-
marizing a set of more general, consistent hypothesis, in our simulations, classification
of test examples is made by this unique most specific hypothesis.

• A revision to the hypothesis maintained by the algorithm cannot make the hypothesis
less accurate. The wholist algorithm has only one operator for revising a hypothesis.
Algorithms such as POSTHOC (Pazzani, 1989) that have operators for making a hypothesis
more general and operators for making a hypothesis more specific may prove more dif-
ficult to analyze since the use of an operator is dependent upon the accuracy of the cur-
rent hypothesis as well as the current training example.

• A necessary and sufficient concept definition is maintained. It may prove difficult to
analyze how the hypothesis is revised in algorithms such as COBWEB (Fisher, 1987)
that maintain a probabilistic concept definition or neural network algorithms (e.g.,
Rumelhart, Hinton, & Williams, 1986). In these algorithms, the hypothesis is represented
as a complex hierarchy or as weights on connections between nodes.

• Finally, the framework is designed for predicting accuracy, not speed-up. Therefore, the
framework is not relevant to systems such as PRODIGY (Minton, 1988) that use
explanation-based techniques to improve this aspect of performance.

Here, we have analyzed only algorithms for conjunctive concepts, but we anticipate that
the framework will scale to similar algorithms using more complex hypotheses. Hirschberg
and Pazzani (1992) have extended this model to k-CNF hypotheses. Our future plans in-
clude modeling more complex learning algorithms with more expressive concepts (e.g.,
k-DNF) and addressing issues of noise in the training data in order to model naturally occur-
ring concepts.

6. Conclusion

In this paper, we have presented a framework for average case analysis of machine learn-
ing algorithms. Applying the framework consists of 1) understanding how an algorithm
revises a hypothesis for a concept, 2) calculating the probability that a training example
will be encountered that causes an inaccurate hypothesis to be revised, and 3) calculating
the effect of revising a hypothesis on the accuracy of the hypothesis. The framework re-
quires much more information about the training examples than the PAC learning model.
The information required by the model is exactly the information required to generate arti-
ficial data to test learning algorithms. We have applied the framework to three different
learning algorithms. We have verified through experimentation that the equations accurately
predict the expected accuracy and shown how the accuracy of the model degrades when
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data unknowingly violates these assumptions. Finally, we have shown how the average case
model can be used to prove that the hypothesis produced by IOSC-TM will be at least as
accurate as the hypothesis maintained by the wholist algorithm or by an algorithm that
uses the wholist algorithm to learn a domain theory.
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Notes

1. Since the time this paper was submitted for publication there has been further work on distribution specific
and average case analysis of learning algorithms in Oblow (1991).

2. We will assume an odd number of training examples to avoid having to specify a strategy when there are
equal number of positive and negative examples. There are a variety of such strategies possible (e.g., always
guessing positive, guessing randomly, guessing the class of the last example, etc.).

3. NM stands for "not misclassified,"
4. If irrelevant features are not independent, then the average case learning model would also require condi-

tional probabilities for the irrelevant features. Here, we only consider the case when examples are drawn
from a product distribution.

5. The coefficient of determination is frequently used to determine the goodness of fit of regression model
to data (see Winer, 1971). It determines the fraction of total variation of a dependent variable that is ac-
counted for by a model. In our case, the dependent variable (O) is the observed mean accuracy and the
predicted value (P) is determined by equation 4. The following equation is used to calculate r2 (where O
is the mean value of Oi):

Note that linear regression uses r2 to describe the goodness of fit of the equation Oi, = a + bP, while here
it is used to describe the goodness of fit of 0i, = Pi

6. One possible situation in which training examples of this kind occur is in the induction of causal rules. In
this case, a training example of the form S — (P1 - p2) may represent the situation in which an action
P1 was observed to occur in s and a teacher indicates that p2 is an effect of pl

7. Note that the classification of a training example as a performance or foundational example is with respect
to a specific performance task.

8. Truth maintenance implies that the composite hypothesis is updated immediately when a foundational exam-
ple changes the hypothesis of a foundation rule. IOSC without truth maintenance waits until a performance
example is misclassified before updating the composite hypothesis.

9. Note that, due to the feature dependencies, we are not advocating extending the analysis of the wholist algorithm
to the k-CNF algorithm by extending the features in this way. See Hirschberg and Pazzani (1991) for an
average case analysis of the k-CNF algorithm.
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10. Note that this distribution is the worst distribution known and it has a slightly better lower bound than the
distribution used in theorem 3.1 of Haussler et al. (1990) since it places heavy weight on an example y0 out-
side of the shattered set. The lower bound is:

instead of

as given in theorem 3.1 of Haussler et al. (1990).
11. If the wholist algorithm is run on all examples of either class, it will eliminate all features from the initial

hypothesis, i.e., it learns the function that is always true.
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