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Abstract

Indecomposable representations are investigated for the Uq(gl(3)) quantum algebra. The matrix el-
ements are explicitly determined for the elementary representations, and the extremal vectors which
characterize invariant subspaces are given in explicit form. Quotient spaces are used to derive other rep-
resentations from the elementary representations, including the finite-dimensional irreducible represen-
tations and infinite-dimensional representations which are bounded above. Applications to nonlinear-
optical phenomena are discussed.
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1. Introduction

The interaction of photons with atoms can depend on the intensity of electromagnetic fields. These
effects can be described by Hamiltonians which are nonlinear functions of photon creation and annihilation
operators. Nonlinearity can be associated with some algebraic structures. For example, the quantum
group SUq(2) and q-deformed Heisenberg–Weyl group were used in [1–4] to discuss nonlinear effects in
electrodynamics (see also [5, 6]). In order to use the formalism of quantum groups in nonlinear optics, one
needs to investigate the properties of irreducible representations of quantum groups. Quantum groups
can be naturally introduced using structures of the standard Lie groups and Lie algebras. The Lie groups
and their irreducible representations give the possibility of describing different phenomena in quantum
mechanics and quantum optics. A particular role is played by indecomposable representations of Lie
groups.

Indecomposable representations (i.e., representations which are reducible but not completely) of Lie
algebras have been known in physics for a long time. A well-known example of indecomposable representa-
tions encountered in physics is provided by (nontrivial) finite-dimensional indecomposable representations
of the Euclidean groups [7]. Indecomposable representations of the de Sitter group SO(3, 2) have also
found applications in physics (Dirac singletons [8–10]).

Indecomposable representations of the Lorenz group have been investigated in detail by Zhelobenko
[11] and Gel’fand and Ponomarev [12]. Verma [13], on the other hand, studied indecomposable repre-
sentations of semi-simple Lie algebras on certain spaces related to their universal enveloping algebra.
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Subsequently Bernstein, Gel’fand, and Gel’fand [14] added some new results to Verma’s analysis. Gru-
ber and Klimyk [15] analyzed the structure of indecomposable, as well as irreducible representations
of semi-simple Lie algebras on Verma spaces in general. In particular, they analyzed the structure of
nonmultiplicity-free indecomposable representations of the simple algebra SU(1, 1) [16].

In [17, 18], elementary representations d were analyzed for the case of the simple complex Lie algebra
A2. It should be noted that the concept of quasi-exactly solvable problems [19] is based on the theory of
indecomposable representations.

Recently the indecomposable representation appeared to be topical in the representation theory of
quantum algebras described by the parameter q equal to the root of unity.

In this connection, it seems interesting to extend the concept of indecomposable Verma modules on
quantum algebras with generic q in the spirit of [17, 18]. In our paper, elementary representations df are
considered for the quantum algebra Uq(gl(3)). This is done in a purely algebraic manner. The results
of [17] concerning the invariant subspaces dM are transferred to this quantum algebra. The matrix
elements of the elementary representations df are obtained explicitly. The extremal vectors which define
the invariant subspaces are given in explicit form. The representations induced by df on its quotient
subspaces with respect to invariant subspaces are discussed. Attention is devoted to the finite-dimensional
and infinite-dimensional representations with the highest weight which can be transformed into irreducible
representations of the Uq(U(3)) and Uq(U(2, 1)) algebras after unitarization. The concept of extremal
vectors, developed for quantum algebras by Dobrev [20], is a main tool of our analysis.

2. Quantum Algebra Uq(gl(3))

Let us review the properties of generators of the quantum algebra Uq(gl(3)). A conventional choice
of a basis of the quantum algebra Uq(gl(3)) is [21]

Uq(gl(3)) : {Aii, i = 1, 2, 3; Aik, i 6= k, k = 1, 2, 3}. (2.1)

The permutation relations for the generators Aik are of the form

[Aii, Akk] = 0, [A12, A32] = 0, [A21, A23] = 0,

[Aii, Aik] = Aik, [Aii, Aki] = −Aki, i 6= k,

[Aik, Aki] = [Aii −Akk],
[A12, A23]q = A13, [A32, A21]q−1 = A31,

[A12, A13]q−1 = 0, [A23, A13]q = 0,
(2.2)

[A12, A31] = −q−A11+A22A32,

[A13, A21] = −A23q
A11−A22 ,

[A13, A32] = q−A22+A33A12,

[A21, A32]q = −qA31, [A23, A31] = A21 qA22−A33 ,

[A21, A31]q−1 = 0, [A32, A31]q = 0,
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where

[A,B]x = AB − xBA = −x[B,A]x−1 ,
(2.3)

[Y ] =
qY − q−Y

q − q−1
.

It is easy to prove by induction that the following relations hold:

AikA
n
ki = An

kiAik + [n]An−1
ki [Aii −Akk − n + 1],

A31A
n
21 = qnAn

21A31,

A12A
n
31 = An

31A12 − [n]An−1
31 A32q

−A11+A22+n−2,
(2.4)

A23A
n
31 = An

31A23 + [n]An−1
31 A21q

A22−A33−n+1,

A13A
n
21 = An

21A13 − [n]An−1
21 A23q

A11−A22−n+1,

A13A
n
32 = An

32A13 + [n]An−1
32 A12q

−A22+A33+n.

Let us introduce the space Ω− with basis

Ω− : {1, Ap
21A

s
31A

t
321, t, s, p = 0, 1, 2, . . . } (2.5)

with t, s, and p not simultaneously equal to zero.
In our paper, those representations of Uq(gl(3)) are discussed for which one has

ρ(A12)1 = ρ(A23)1 = ρ(A13)1 = 0,
(2.6)

ρ(Akk)1 = fk1, k = 1, 2, 3, fk ∈ C.

That is, the “raising” operators ρ(A12), ρ(A23), and ρ(A13), which represent the elements A12, A23, and
A13 as linear transformations on the space Ω−, map the element 1 ∈ Ω− onto zero. At the same time,
the element 1 is a simultaneous eigenvector of the commuting operators ρ(Akk), which represent Akk of
the Cartan subalgebra of Uq(gl(3)) as a linear transformation on the space Ω−. The spaces Ω− defined
by (2.5) and satisfying (2.6) are called Verma modules.

From Eqs. (2.4) one can obtain the following equations:

ρ(A11)A
p
21A

s
31A

t
321 = (f1 − s− p)Ap

21A
s
31A

t
321,

ρ(A22)A
p
21A

s
31A

t
321 = (f2 + p− t)Ap

21A
s
31A

t
321,

ρ(A33)A
p
21A

s
31A

t
321 = (f3 + s + t)Ap

21A
s
31A

t
321,

ρ(A21)A
p
21A

s
31A

t
321 = Ap+1

21 As
31A

t
321,

ρ(A31)A
p
21A

s
31A

t
321 = qpAp

21A
s+1
31 At

321,

ρ(A32)A
p
21A

s
31A

t
321 = q−p+sAp

21A
s
31A

t+1
32 1 + [p]Ap−1

21 As+1
31 At

321,
(2.7)

ρ(A12)A
p
21A

s
31A

t
321 = [p][f1 − f2 − p− s + t + 1]Ap−1

21 As
31A

t
321

−[s]q−f1+f2+s−t−2 Ap
21A

s−1
31 At+1

32 1,

ρ(A13)A
p
21A

s
31A

t
321 = −[p][t][f2 − f3 − t + 1]qf1−f2−p−s+t+1Ap−1

21 As
31A

t−1
32 1

+q−p[s][f1 − f3 − p− s− t + 1]Ap
21A

s−1
31 At

321,

ρ(A23)A
p
21A

s
31A

t
321 = [s]qf2−f3−2tAp+1

21 As−1
31 At

321

+[t][f2 − f3 − t + 1] Ap
21A

s
31A

t−1
32 1.
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Equations (2.7) define the representations under discussion. They are called elementary representations
and will be denoted as df .

Representations of this kind are q-analogs of Verma modules [17]. These representations are either
irreducible or reducible and indecomposable [10–12]. In what follows, our main interest will concern the
reducible indecomposable representations. One can see that the representation operators satisfy nonlinear
equations. Due to this, the Hamiltonians of nonlinear optical systems can be constructed on the basis of
these operators. Examples of such constructions are available in [1–3].

3. Invariant Subspaces

In the following description, the invariant subspaces are determined for the elementary representations
df , and the extremal vectors defining these invariant subspaces will be given in explicit form.

The invariant subspaces themselves are carrier spaces for elementary representations. Moreover, other
types of representations can be obtained by making use of quotient spaces with respect to the invariant
subspaces. In particular, all finite-dimensional representations of Uq(u(3)) can be obtained in this manner.
Also the infinite-dimensional representations of Uq(u(2, 1)) belonging to the negative discrete series can
be found.

A vector y ∈ Ω− is called extremal if

ρ(Akk)y = fky, ρ(+)y = 0, fk ∈ C. (3.1)

The symbol + denotes, collectively, the set of raising operators. Obviously the vector 1 is an extremal
vector by definition. In order to find extremal vectors, the weight subspaces VM , M = (m1,m2,m3),
ms ∈ C, have to be determined. Given the (highest) weight f = (f1, f2, f3) of the representation df , any
other weight M is of the form

M = f + pβ21 + sβ31 + tβ32, (3.2)

where t, s, p = 0, 1, 2, . . . and
βki = ek − ei, k > i = 1, 2, 3,

are three negative roots of sl(3).
Given f and M , each basis element

ξ = At
32A

s
31A

p
211

of Ω−, with p, s, and t such that Eq. (3.2) is satisfied, belongs to VM . That is, a basis for VM is given by
the set

VM : {Ap
21A

s
31A

t
321|pβ21 + sβ31 + tβ32 = M − f}, (3.3)

where t, s, and p are nonnegative integers.
It follows from Eqs. (3.1) that, for an extremal vector

y =
∑
pst

apst Ap
21A

s
31A

t
321, (3.4)

the following two equations must be satisfied:

ρ(A12)y = 0, ρ(A23)y = 0. (3.5)
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The equation
ρ(A13)y = 0

is satisfied automatically if Eqs. (3.5) are valid. We consider the case where f1 ≥ f2 ≥ f3 and differences
fi − fk are integers, which provides the elementary representation df with the maximum number of
extremal vectors.

Employing the same procedure as in [14], we can prove the following statement:
Statement 1. The space df with integers f1 ≥ f2 ≥ f3 contains the following extremal vectors:

1) M1 = (f1, f2, f3) (trivial case, holds by definition), y1 = 1,

2) M2 = (f2 − 1, f1 + 1, f3), y2 = Af1−f2+1
21 1,

3) M3 = (f1, f3 − 1, f2 + 1), y3 = Af2−f3+1
32 1,

4) M4 = (f3 − 2, f1 + 1, f2 + 1), y4 = Af1−f3+2
21 Af2−f3+1

32 1,

5) M5 = (f2 − 1, f3 − 1, f1 + 2), y5 = Af1−f3+2
32 Af1−f2+1

21 1,

6) M6 = (f3 − 2, f2, f1 + 2), y6 = Af1−f2+1
32 Af1−f3+2

21 Af2−f3+1
32 1

= Af2−f3+1
21 Af1−f3+2

32 Af1−f2+1
21 1.

It is easy to show by direct calculations that the vectors yi(i = 1, 2, . . . , 6) satisfy Eqs. (3.5). Making use
of the permutation relation [21]

Aa
21A

b
31 =

∑
c

(−1)c [a]![b]!
[c]![a− c]![b− c]!

Ab−c
32 Ac

31A
a−c
21 qc+(a−c)(b−c), (3.6)

we can reduce the expressions for y6 to the form (3.4):

y6 =
∑

c

(−1)c [f1 − f3 + 2]![f2 − f3 + 1]!
[c]![f1 − f3 + 2− c]![f2 − f3 + 1− c]!

Af1−f3+2−c
32 Ac

31

×Af1−f3+2−c
21 qc+(f1−f3+2−c)(f2−f3+1−c)1. (3.7)

The standard notation [n]! = [n][n− 1][n− 2] . . . [1] for q-factorials was used above.

Corollary 1. An elementary representation df with highest weight f = (f1, f2, f3), fi ∈ C has an
invariant subspace if and only if

M = S(f + R)−R = f + m′β32 + n′β21 (3.8)

is a weight of the representation df . Here S denotes an element of the Weyl group W of the simple Lie
algebra sl(3), and R denotes one-half of the sum over the positive roots. M is the weight of df if, for a
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Fig. 1. Structure of the Verma module df at f1 ≥ f2 ≥ f3.

given element S, Eq. (3.9) is satisfied with nonnegative integers m′ and n′. For each S ∈ W for which
the above relation is satisfied for nonnegative m′ and n′, an invariant subspace of df is obtained.

Each subspace dM is generated by the extremal vector y, i.e., a basis for dM can be chosen as follows:

dM : {Au
21A

v
31A

w
32y, u, v, w = 0, 1, 2, . . . }.

Obviously, each subspace dM of Ω− is the carrier space for a subrepresentation of df . This subrepresenta-
tion, induced by the representation df on the subspace dM , will also be denoted by the symbol dM . Each
subrepresentation dM is again an elementary representation with the matrix elements given by Eqs. (2.7)
by replacing f with M . The invariant subspaces of dM , their extremal vectors y, and the values for
(t, s, p) are given by Corollary 1 by replacing f with M . The weights M are related to f through the
elements S of the Weyl group W . One has

M = S(f + R)−R,

where S is some element of W and R is half of the sum over the positive roots of sl(3) [22]. All extremal
vectors (3.6) correspond to the same eigenvalues of Casimir operators C2 and C3 for the Uq(sl(3)) algebra.

The structure of the Verma module df is shown in Fig. 1. The points with integer coordinates at
this weight diagram correspond to the basis vectors ξ. The extremal vectors are labeled by Mi. The
boundaries of invariant subspaces dM , generated by these extremal vectors, are shown by solid lines.

4. Representations on Quotient Spaces

Given an elementary representation df which has an invariant subspace dM , new representations can
be defined on the quotient spaces df/dM and df/(dM + dM ′), with dM and dM + dM ′ acting as ideals.

61



Journal of Russian Laser Research Volume 24, Number 1, 2003

[The symbol + stands for the (not direct) sum of spaces dM and dM ′ .] In fact, all finite-dimensional
irreducible representations of Uq(sl(3)) as well as some infinite-dimensional irreducible representations,
which have the highest (or lowest) weight, can be obtained in this manner.

A. Below we consider the representations on the quotient space

d(f1, f2, f3)
d(f2 − 1, f1 + 1, f3) + d(f1, f3 − 1, f2 + 1)

.

It follows from Statement 1 given in Sec. 3 that, for the case fi − fi+1 = nonnegative integers, the
weights f which satisfy the conditions f1 ≥ f2 ≥ f3 correspond precisely to the highest weight of the
finite-dimensional irreducible representations of Uq(gl(3)). In fact, the representation induced by the
elementary representations

df ≡ d(f1f2f3) on the quotient spaces
d(f1, f2, f3)

d(f2 − 1, f1 + 1, f3) + d(f1, f3 − 1, f2 + 1)

are the finite-dimensional representations of Uq(gl(3)).
The ideal d(f2 − 1, f1 + 1, f3) + d(f1, f3 − 1, f2 + 1) is generated by the elements

y1 = Af1−f2+1
21 1 and y2 = Af2−f3+1

32 1.

Thus, modulo of the ideal, one has

Af1−f2+1
21 1 = 0, Af2−f3+1

32 1 = 0. (4.1)

It should be noted that, because of these restrictions, not all vectors

ξp1

(M) = Af1−p1
21 Ap1−m1

31 Ap2−f2
32 1

with a given weight M are independent. In the Appendix, one of the possible sets of linearly independent
vectors is discussed. These (main) vectors form a basis of the finite-dimensional representation df . All
other (superfluous) vectors ξp̃1

(M) can be expressed in terms of this set of linearly independent (main)
vectors as follows:

ξp̃1

(M) =
∑
p1

Dp̃1p1ξ
p1

(M). (4.2)

(See Appendix for details.)
The representation

d(f1, f2, f3)
d(f2 − 1, f1 + 1, f3) + d(f1, f3 − 1, f2 + 1)

of Uq(gl(3))

is obtained from the elementary representation df given by Eqs. (2.7). It should be noted that, by the
action of the generators ρ(Aik) on the main vectors, some superfluous vectors could appear. In such a
case, these superfluous vectors should be expressed in terms of the main ones, in view of relation (4.2).

The area of the representation
d(f1, f2, f3)

d(f2 − 1, f1 + 1, f3) + d(f1, f3 − 1, f2 + 1)
is shown in Fig. 1 by a hexagon

with a vertex M1.
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B. Now we consider the representations on the quotient space
d(f2 − 1, f3 − 1, f1 + 2)

d(f3 − 2, f2, f1 + 2)
.

If the difference (f1 − f2) is a nonnegative integer, then the representation d(f2 − 1, f3 − 1, f1 + 2) is
indecomposable.

If the difference (f1 − f2) is not an integer, then this representation is irreducible.
In the following, we consider the indecomposable representation.
The representation induced by the elementary representation df on the quotient space

d(f2 − 1, f3 − 1, f1 + 2)
d(f3 − 2, f2, f1 + 2)

is obtained from Eq. (2.7) by using (2.2) and the equivalence relation

Af1−f2+1
21 1 = 0.

The resulting infinite-dimensional representation is equivalent (after unitarization) to the irreducible
representation of the Uq(u(2, 1)) algebra belonging to negative discrete series [23]. This representation is
shown in Fig. 1 by the broken line EFM5G.

C. Let us consider the representations on the quotient space
d(f3 − 2, f1 + 1, f2 + 1)

d(f3 − 2, f2, f1 + 2)
.

If the difference (f2 − f3) is a nonnegative integer, then the representation d(f3 − 2, f1 + 1, f2 + 1) is
indecomposable.

If the difference (f2 − f3) is not an integer, this representation is irreducible.
In the following, we consider the indecomposable representation.
The representation induced by the elementary representation df on the quotient space

d(f3 − 2, f1 + 1, f2 + 1)
d(f3 − 2, f2, f1 + 2)

is obtained from Eqs. (2.7) by making use of Eqs. (2.2) and the relation

Af2−f3+1
32 1 = 0.

It is equivalent to the irreducible representation with the highest weight of the Uq(u(1, 2)) algebra. This
representation is shown in Fig. 1 by the broken line BM4CD.

Appendix. The Structure of a Finite-Dimensional Irreducible
Representation

We study here the properties of finite-dimensional representations.
The vectors ξ = Ar

21A
s
31A

t
321 have definite weight

M = (m1,m2,m3), m1 = f1 − r − s, m2 = f2 + r − t, m3 = f3 + s + t. (A.1)

Because of the condition
Af2−f3+1

32 1 = 0,

we obtain the restriction 0 ≤ t ≤ f2 − f3. Therefore, instead of t a new parameter

t = p2 − f3 (f3 ≤ p2 ≤ f2)
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can be introduced.
The condition Af1−f2+1

21 1 = 0 means that r − t ≤ f1 − f2 or r ≤ f1 − f3.
Let us take r = f1−p1; then s = p1−m1. As a result, the vectors ξ belonging to the finite-dimensional

representation df could be reparametrized as follows:

ξp1p2
m1

≡ ξp1

(M) = Af1−p1
21 Ap1−m1

31 Ap2−f3
32 1. (A.2)

In this notation, we have

m2 = f1 + f2 + f3 − p1 − p2, m3 = p1 + p2 −m1

and the parameters m1, p1, and p2 take only integer values satisfying the following conditions:

f1 ≥ m1 ≥ f3, f1 ≥ p1 ≥ m1, f2 ≥ p2 ≥ f3. (A.3)

From the set (A.2) we choose a subset of vectors ξp1p2
m1 in which m1, p1, and p2 obey the following

requirements:

f1 ≥ m1 ≥ f3, f1 ≥ p1 ≥ max (m1, f2), min (m1, f2) ≥ p2 ≥ f3. (A.4)

These vectors will be referred to as the main vectors while the remaining vectors of the set (A.2) will be
called superfluous. It can readily be seen that all vectors ξp1p2

m1 with m1 ≥ f2 are the main vectors. In
the case m1 < f2, both the main and superfluous vectors may occur.

The vectors (A.2) can be represented graphically (Fig. 2). To each vector ξp1p2
m1 with fixed m1

corresponds a point with integer coordinates (p1, p2) satisfying (A.3). Such points will be called the
allowed points. Figure 2 illustrates the case f2 > m1 ≥ f3. The allowed points of the rectangle FHDT,
including those lying on its perimeter, correspond to the main vectors ξp1p2

m1 , whereas the allowed points
of the rectangle ABCD, excluding those of the rectangle FHDT, correspond to the superfluous vectors
ξp̃1p̃2
m1 . The different vectors ξp1

(M) with fixed weight M are presented by the allowed points lying on a
straight line of the type KN.

The following statement holds:

Statement 2. Any superfluous vector ξp̃1

(M) of weight M is either a zero vector, if there are no main
vectors of weight M , or can be represented as a linear combination of the main vectors by the following
formulas:

ξp̃1

(M) =
g∑

p1=b

D
(M)
p̃1p1

ξp1

(M)(a ≤ p̃1 ≤ b− 1), (A.5)

D
(M)
p̃1,p1

= (−1)b−p̃1q(p1−p̃1)(f1−f2−f3+m1+p2−p̃1+1)

× [p̃2 − f3]![f1 − p̃1]![p̃1 −m1]![p1 − a]![p1 − p̃1 − 1]!
[p1 − p̃1]![b− p̃1 − 1]![p1 − b]![p2 − f3]![f1 − p1]![p1 −m1]![p̃1 − a]!

, (A.6)

where
g = m1 + m3 − f3, a = max (m1,m1 + m3 − f2),

b = a + f2 −m1 = max (f2,m3), g = max (f2,m1 + m3 − f3).

The proof of this statement is similar to the one given in [24] for the classical case q = 1.
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Fig. 2. Structure of the finite-dimensional representation of Uq(gl(3)).

Now let the vector ξp̃1

(M) have coordinates (p̃1, p̃2) which satisfy the condition f2+f3 < p̃1+p̃2 < f1+m1.
We assume for certainty that the point (p̃1, p̃2) belongs to the straight line KN. The allowed points of
this line correspond to all vectors ξp1

(M) with the same weight M . We find equations which involve all
superfluous and main vectors corresponding to allowed points of the straight line KN.

It follows from conditions (4.1) that the vectors ξ satisfy the relations

Ax
321 = 0, x ≥ f2 − f3 + 1, Ay

211 = 0, y ≥ f1 − f2 + 1. (A.7)

This means that the vectors with p2 ≤ f2 should be selected from the vectors ξp1p2
m1 . This restriction is

taken into account in the form (A.2). From the second condition (A.7), we obtain a set of relations

Ap1+p2+k−f3
32 Af2−k−m1

31 Af1−f2+k
21 1 = 0, k = 1, 2, . . . , f2 −m1. (A.8)

Let us introduce instead of vectors (A.2) new vectors

ξp1p2
m1

=
1

[f1 − p1]![p2 − f3]!
ξp1p2
m1

q−(f1−p1)(p2−f2−f3+m1) . (A.9)

After permutations of operators A32 to the right and operators A21 to the left, in view of relation (3.7)
and the relation

Aa
32A

b
21 =

∑
c

[a]![b]!
[c]![a− c]![b− c]!

Aa−c
21 Ac

31A
b−c
32 q−(a−c)(b−c), (A.10)

we obtain the following system of equations:
g∑

p1=a

Bk,0
p1

ξp1p2
m1

= 0, k = 1, 2, . . . , f2 −m1, (A.11)
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where

Bk,0
p1

= (−1)k qp1k

[p1 + k − f2]!
. (A.12)

[The lower and upper limits a and g in sum (A.11) (the abscissas of points N and K, respectively) will
be explained below.]

The system of equations (A.11) contains all superfluous vectors with given M . It is important to
point out that the number of equations is exactly equal to the number of superfluous vectors with given
weight M .

We solve the system of equations (A.11) with respect to the superfluous vectors ξp̃1

(M). To do this,
we multiply the kth equation of (A.11) by qa−f2+k+1 and add to it the (k + 1)th equation multiplied by
[a− f2 + k +1]q−f2+k+1. The last equation (k = f2−m) remains as before. As a result, we obtain a new
system of equations

g∑
p1=a

Bk,1
p1

ξp1p2
m1

= 0, (A.13)

with coefficients

Bk,1
p1

= (qaBk,0
p1

+ [a− f2 + k + 1]Bk+1,0
p1

)q−f2+k+1 = (−1)k [p1 − a]qkp1

[p1 + k − f2 + 1]!
. (A.14)

Now let us perform similar transformations with the new system of equations (A.13) by multiplication
of kth equation by qa−f2+k+3 and the (k + 1)th equation by [a − f2 + k + 3]q−f2+k+2. The addition of
these equations gives a system of equations of the form (A.11) and (A.13) with coefficients

Bk,2
p1

= (−1)k qkp1 [p1 − a]!
[p1 − f2 + k + 2]![p1 − a− 2]!

. (A.15)

Continuing with these transformations, we obtain after the ith iteration a system of equations of the type
(A.11) with coefficients

Bk,i
p1

= (Bk,i−1
p1

qa + [a− f2 + k + 2i− 1[)q−f2+k+i = (−1)k qkp1 [p1 − a]!
[p1 − f2 + k + i]![p1 − a− i]!

. (A.16)

By collecting the equations from the different systems obtained, the final set of equations is constructed
and it reads

g∑
p1=a

Bk,f2−m+k
p1

ξp1p2
m1

= 0, k = 1, 2, . . . , f2 −m1. (A.17)

Its explicit form is as follows:
g∑

p1=a

(−1)k

[p1 + b + k]!
ξp1p2
m1

= 0, k = 1, 2, . . . , f2 −m1, (A.18)

where b = a + f2 −m1. To solve these equations with respect to the vectors ξp̃1,p̃2
m1 with a ≤ p̃1 ≤ b− 1,

it is necessary to multiply (A.18) by q−(p̃1+1)(k−1)/[b − p̃1 − k]! and to carry out the summation over k.
Making use of the known relations∑

c=0

(−1)c q(A−B−1)c

[A− c]![c−B]!
= (−1)aq−AδAB
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and ∑
c=0

(−1)c q(A+D−1)c

[A− c]![c + D]!
= q−A [A + D − 1]!

[A]![D − 1]![A + D]!
,

where A,B, D, and c are nonnegative integers, we obtain

ξp̃1p̃2
m1

= (−1)b−p̃1

g∑
p1=b

q(p1−p̃1) [p1 − a]![p̃1 −m1]![p1 − p̃1 − 1]!
[p1 −m1]![p̃1 − a]![b− p̃1 − 1]![p1 − b]![p1 − p̃1]!

ξp1p2
m1

. (A.19)

Here b(g) is the minimum (maximum) value of p1 corresponding to the main vector with given M [abscissa
of the point L(N) in Fig. 2].

It follows from the comparison of (A.3) and (A.4) that

a = max (m1,m1 + m3 − f2), b = max (f2,m3), g = max (f2,m1 + m3 − f3).

From formula (A.19) follows expression (A.6) for the vectors (A.2). Thus, Statement 2 is proved.
It is worth noting that the vectors ξp̃1

(M) with p̃1 + p̃2 > f1 + m1 or p̃1 + p̃2 < f2 + f3 are vanishing
vectors because there are no main vectors in this case. In Fig. 2 these vanishing vectors are shown by
allowed points of triangles AGT and ECH, excluding those lying on straight lines GT and EH.

It is easy to find the total number N(f) of main vectors satisfying the conditions (A.4):

N(f) =
1
2
(f1 − f2 + 1)(f1 − f3 + 2)(f2 − f3 + 1).

This expression is exactly equal to the dimension of the representation df of the quantum algebra Uq(u(3)).
Thus, the main vectors form a complete basis of the finite-dimensional representation df of Uq(gl(3)).
Generators of the quantum SUq(2)-group can be constructed by means of q-oscillators. These oscillators
correspond to nonlinear oscillators of the electromagnetic field at very high field intensities. As was
shown in [4], the high field intensity can produce a blue-shift effect of the light frequency. This effect, if
it exists, could be described within the framework of a nonlinear Hamiltonian based on the interaction
of nonlinear q-oscillators. In view of the construction considered, the Ug(gl(3)) could also be interpreted
in terms of nonlinear vibrations appropriate to describe nonlinear optical phenomena.
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