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Abstract. A new class of approximate inverses for arrowhead and special tridiagonal linear systems,
based on the concept of sparse approximate Choleski-type factorization procedures, are introduced
for computing fast explicit approximate inverses. Explicit preconditioned iterative schemes in con-
junction with approximate inverse matrix techniques are presented for the efficient solution of sym-
metric linear systems. A theorem on the rate of convergence of the explicit preconditioned conjugate
gradient scheme is given and estimates of the computational complexity are presented. Applications
of the proposed method on linear and nonlinear systems are discussed and numerical results are
given.
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1. Introduction

In recent years, research efforts have been directed towards the production of nu-
merical algorithms and software for solving sparse linear systems of algebraic
equations on uniprocessor or multiprocessor systems. The sparse linear systems
occur in many engineering and scientific problems.

Recently, explicit preconditioned iterative methods have been extensively used
for solving efficiently sparse linear systems, resulting from the finite element, finite
difference, or domain decomposition discretization of partial differential equa-
tions, on multiprocessor systems, cf. [5–7, 9–12]. The effectiveness of the explicit
preconditioned iterative methods based on adaptive approximate inverse matrix
techniques is related to the fact that the approximate inverse exhibits a similar
‘fuzzy’ structure as the coefficient matrix.

Let us consider a matrix X, which is an arrowhead matrix (or bordered diag-
onal), and x denotes the nonzero entries. If we apply the Gaussian elimination

� A preliminary version of this paper has appeared in [19].
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method on X without any re-ordering, we will have a full matrix by the end of this
process. If we permute by matrix P , then there will be no ‘fill-in’ terms during the
factorization process of the matrix Y .

X =




x x x x x
x x 0
x x
x 0 x
x x


 , Y = PXPT =




x x
x 0 x

x x
0 x x

x x x x x


 .

Arrowhead matrices occur in practice (cf. [2, 15, 18], for example) when using
the Lanczos method for solving the eigenvalue problem for large sparse matri-
ces ([16]), in the eigenstructure problems of arrowhead matrices which arise from
applications in molecular physics ([14]), in the application of the finite element
or finite difference method over a region by removing part of the region, and in
Markovian reliability modeling.

Discussions for solving linear systems where the coefficient matrix is an arrow-
type matrix have been given by many researchers. Reduction of an arrowhead
matrix to tridiagonal form using orthogonal similarity transformations combined
with QR algorithms has been presented in [14]. Recently, it was proved that there
is no QR-like algorithm for computing the eigenvalues of arrowhead matrices ([1]).
Additional methods for reducing to tridiagonal forms have been presented in [4, 17,
18]. Ordering schemes for reducing arrow matrices to band form matrices have also
been presented in [9, 18] and computational techniques on the solution of special
tridiagonal linear systems have been presented in [1–4, 14–17].

The derivation of suitable parallel methods was the main objective for which
several forms of an approximate inverse, based on Choleski-type factorization pro-
cedures, have been proposed ([5, 6, 10–12]). The main motive for the derivation
of the approximate inverses lies in the fact that they can be used in conjunction
with explicit preconditioned iterative schemes and are suitable for solving linear
systems on parallel and vector processors.

In Section 2, we introduce approximate inverse matrix techniques, based on
Choleski-type factorization procedures. In Section 3, explicit preconditioned con-
jugate gradient schemes, based on approximate inverse matrix techniques, are pre-
sented. A theorem on the rate of convergence of the explicit preconditioned con-
jugate gradient scheme is given and estimates of the computational complexity are
presented. Finally in Section 4, the performance and applicability of the proposed
explicit preconditioned schemes is discussed by solving linear and non-linear sys-
tems and numerical results are given.
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2. Approximate Inverse Matrix Techniques

In this section we present algorithmic procedures for computing the elements of the
approximate inverse, based on Root-Free Choleski factorization procedures ([5, 6,
11, 12]).

2.1. ARROWHEAD INVERSES

Our attention is now focused on solving arrowhead symmetric linear systems, i.e.,

Au = s, (1)

where A is a sparse arrow-type (n× n) matrix of the following form:

A =




b1 c1

0

symmetric cn−1

bn




. (2)

Let us now assume the root-free Choleski factorization of the coefficient matrix A,
i.e.

A = LDLT (3)

retaining the same number of nonzero entries, by applying the ‘position-principle’
in the factorization process, whereD is a nonzero diagonal matrix and L is a sparse
strictly lower (with main diagonal unity elements) triangular matrix of the same
profile as the coefficient matrix A, cf. (2), viz.,

D ≡ diag(d1, . . . , dn), (4)

L =




1

1 0

0

e1 en−1 1




. (5)
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Then, an Arrowhead Approximate Root-Free Choleski-type FActorization proce-
dure (AHARFCFA algorithm) for computing the elements of the L and D

decomposition factors can be expressed algorithmically by the following compact
form:

For i = 1, . . . , n− 1,

di = bi; ei = ci/di, (6)

dn = bn −
n−1∑
k=1

dke
2
k . (7)

The memory requirements of the AHARFCFA algorithm are O(3n) words and the
computational work required by the factorization process is≈ O(3n)multiplicative
operations.

Let

Mδl ≡ (µi,j ), i ∈ [1, n], j ∈ [max(1, i − δl + 1), min(n, i + δl − 1)],
an [n × (2δl − 1)] matrix, be the approximate inverse of the coefficient matrix A.
The elements of the approximate inverse can be determined by retaining a certain
number of elements of the inverse, i.e. only δl elements in the lower part (by
applying the so-called ‘position-principle’), and can be computed by recursively
solving the following systems:

MδlLD = (LT )−1 and LTMδl = (LD)−1, δl ∈ [1, . . . , n) (8)

without inverting the decomposition factor L (cf. [5, 6, 11]).
It should be noted that the elements of the approximate inverse can be suc-

cessively computed, using a ‘fish-bone’ computational procedure ([10, 11]). Op-
timized forms of the Banded Approximate Inverse Arrowhead Matrix technique,
using a moving window shifted from bottom to top, such that only [n × (2δl −
1)]-vectors are retained in storage ([10, 11]), is particularly effective for solving
‘narrow-banded’ sparse systems of very large order, i.e. δl � n/2. Then the so-
obtained Optimized Banded Approximate Inverse Arrowhead Matrix technique
(OBAIAM algorithm) for computing the elements of the approximate inverse, can
be expressed by the following compact scheme:

The elements of the nth row and column of the optimized form of the approxi-
mate inverse can be determined as follows:

µ1,1 = 1/dn, (9)

For j = n− 1, n − 2, . . . , n− δl + 1,

µ1,n−j+1 = −ejµ1,1, (10)

µ1,δl+n−j = µ1,n−j+1. (11)
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Then the elements of the remaining n−1, . . . , 1 rows and columns of the optimized
form of the approximate inverse can be determined as follows:

For i = n− 1, n − 2, . . . , 1

for j = i, i − 1, . . . ,max(1, i − δl + 1)

if i = j then

µn−i+1,1 = 1/dj − ejµ1,δl+n−i , (12)

else

µn−i+1,i−j+1 = −ejµ1,δl+n−i , (13)

for j = i − 1, i − 2, . . . ,max(1, i − δl + 1)

µn−i+1,δl+i−j = µn+1−i,i−j+1. (14)

The memory requirements of the OBAIAM algorithm are ≈ [n × (2δl − 1)]
words and the computational work involved is ≈ O(δl + 1)n multiplicative op-
erations.

It should be also noted that, according to the proposed computational strategy,
this class of approximate inverses can be considered as including various fami-
lies of approximate inverses having in mind the desired requirements of accuracy,
storage, and computational work as can be seen by the following diagrammatic
relationship, i.e.,

class I class II class III class IV

A−1 ≡ M ← M̃δl ← Mδl ← Mδl
n ← Mi,

(15)

where the entries of M̃δl have been computed based on the diagonal and sub-
diagonal elements of the D and L decomposition factors, respectively. The entries
ofMδl have been computed and retained during the computational procedure of the
(approximate) inversion. The entries of Mδl

n have been retained after the computa-
tion of the approximate inverse, by additionally retaining the nth row and column
of the approximate inverse. The Mi class of approximate inverse is computed by
inverting the elements of the diagonal matrix D, cf. (4), yielding a fast inverse
algorithm.

2.2. APPROXIMATE INVERSES OF SPECIAL TYPE TRIADIAGONAL SYSTEMS

Let us consider a one-dimensional elliptic equation, i.e. ∂2u/∂x2 = f (x), x ∈ R,
subject to the periodic boundary conditions u(x0) = u(xn), x ∈ ∂R. By applying
the finite difference method, we obtain a linear system, viz.

Au = s, (16)
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where A is a special tridiagonal (n× n) matrix, viz.,

A =




b1 a1 v1

0

symmetric an−1

bn




. (17)

Let us now assume the approximate root-free Choleski factorization of the co-
efficient matrix A, retaining r ‘fill-in’ terms during the decomposition process,
viz.,

A ≈ LrDrL
T
r , (18)

where Dr is a diagonal matrix, cf. (4), and Lr is a sparse, strictly lower (with
main diagonal unity elements) triangular matrix, cf. (19), of the same profile as the
matrix A, cf. (17).

Then, a Special Tridiagonal Approximate Root-Free Choleski-type FActor-
ization procedure (STARFCFA algorithm) for computing the elements of the de-
composition factors can be expressed algorithmically by the following compact
scheme:

Lr =




1

g1 1 0

0

e1 . . . er gn−1 1




, (19)

d1 = b1, g1 = a1/d1, e1 = v1/d1 (20)

for i = 2, . . . , n− 2

di = bi − di−1g
2
i−1, gi = ai/di (21)

if i � r then

ei = −di−1ei−1gi−1/di (22)

endif
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dn−1 = bn−1 − dn−2g
2
n−2, gn−1 = (an−1 − dn−2en−2gn−2)/dn−1, (23)

dn = bn − dn−1g
2
n−1 −

r∑
k=1

dke
2
k . (24)

The memory requirements of the STARFCFA algorithm are O(5n) words and the
computational work required by the factorization process is O(6n)multiplicative
operations.

The elements of the optimized form of the approximate inverse can be computed
by recursively solving the following equations:

Mδl
r LrDr = (LTr )−1 and LTr M

δl
r = (LrDr)

−1, δl ∈ [1, . . . , n), (25)

and the so-obtained Optimized Banded Special Tridiagonal Approximate Inverse
Matrix technique (OBSTAIM algorithm), can be expressed by the following com-
pact algorithmic scheme:

For j = n, n− 1, . . . , n− δl + 1

if j = n then

µ1,1 = 1/dn, (26)

elseif j > r then

µ1,n−j+1 = −gjµ1,n−j , (27)

else

µ1,n−j+1 = −gjµ1,n−j − ejµ1,1, (28)

For j = n− 1, n − 2, . . . , n− δl + 1

µ1,δl+n−j = µ1,n−j+1. (29)

Then the elements of the remaining n−1, . . . , 1 rows and columns of the optimized
form of the approximate inverse can be determined as follows:

For i = n− 1, n − 2, . . . , 1

for j = i, i − 1, . . . ,max(1, i − δl + 1)

if i = j then

if j > r then

µn−i+1,1 = 1/dj − gjµn−j,δl+1, (30)

else

µn−i+1,1 = 1/dj − gjµn−j,δl+1 − ejµ1,δl+n−i , (31)

else

if j > r then

µn−i+1,i−j+1 = −gjµn+1−i,i−j , (32)

else
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µn−i+1,i−j+1 = −gjµn+1−i,i−j − ejµ1,δl+n−i , (33)

for j = i − 1, i − 2, . . . ,max(1, i − δl + 1)

µn−i+1,δl+i−j = µn+1−i,i−j+1. (34)

The memory requirements of the OBSTAIM algorithm are≈ [n×(2δl−1)] words
and the computational work involved is ≈ O(3δln) multiplicative operations.

Similarly, this class of approximate inverses can be considered to include var-
ious families of approximate inverses in terms of the desired requirements of ac-
curacy, storage and computational work, as can be seen by the following diagram-
matic relationship, i.e.,

class I class II class III class IV
A−1 ≡ M ← Mδl ← Mδl

r ← Mδl
r,n ← Mi,

(35)

where the entries of Mδl have been computed based on the diagonal, and co-
diagonal elements of the decomposition factors. The entries of Mδl

r have been
computed and retained during the computational procedure of the (approximate)
inversion. The entries of Mδl

r,n have been retained after the computation of the
approximate inverse, by additionally retaining the nth row and column of the ap-
proximate inverse. The entries of Mi are computed by inverting the entries of the
diagonal matrix Dr , yielding a fast inverse algorithm.

3. Explicit Preconditioned Conjugate Gradient Methods

In this section, we present a class of explicit preconditioned conjugate gradient–
type schemes based on the derived approximate inverses, i.e. as preconditioners, to
the original symmetric positive definite coefficient matrix A.

The Explicit Preconditioning Conjugate Gradient (EPCG) method can be ex-
pressed by the following compact scheme:

Let u0 be an arbitrary initial approximation to the solution vector u. Then,

form r0 = s − Au0, compute r∗0 = Mδlr0, (36)

set σ0 = r∗0 . (37)

Then, for i = 0, 1, . . . , (until convergence) compute the vectors ui+1, ri+1, σi+1

and the scalar quantities αi , βi+1 as follows:

form qi = Aσi, calculate pi = (ri, r∗i ) when i = 0 only, (38)

evaluate αi = pi/(σi, qi), (39)

compute ui+1 = ui + αiσi and ri+1 = ri − αiqi . (40)

Then, form r∗i+1 = Mδlri+1 set pi+1 = (ri+1, r
∗
i+1), (41)

evaluate βi+1 = pi+1/pi, compute σi+1 = r∗i+1 + βi+1σi. (42)

The computational complexity of the EPCG method is ≈ O[(2δl + 7)n mults +
3n adds]ν, where ν is the number of iterations for convergence to a certain level of
accuracy.
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The Explicit Preconditioned Conjugate Gradient Square (EPCGS) method has
been presented in [6, 10]. The computational complexity of the EPCGS method is
≈ O[(4δl + 14)n mults + 8n adds]ν operations.

The Explicit Preconditioned Biconjugate Conjugate Gradient-STAB (EPBI-
CGSTAB) method can be expressed by the following compact scheme:

Let u0 be an arbitrary initial approximation to the solution vector u. Then,

set u0 = 0, compute r0 = s − Au0, (43)

set r ′0 = r0, ρ0 = α = ω0 = 1 and v0 = p0 = 0. (44)

Then, for i = 0, 1, . . . , (until convergence) compute the vectors ui , ri and the
scalar quantities α, β, ωi as follows:

calculate pi = (r ′0, ri−1) and β = (ρi/ρi−1)/(α/ωi−1), (45)

compute pi = ri−1 + β(pi−1 − ωi−1vi−1), (46)

form yi = Mδlpi and vi = Ayi, (47)

and α = ρi/(r ′0, vi), compute xi = ri−1 − αvi, (48)

form zi = Mδlxi and ti = Azi, (49)

set ωi = (Mδlti ,M
δlxi)/(M

δlti,M
δl ti), (50)

compute ui = ui−1 + ayi + ωizi and ri = xi − ωiti . (51)

The computational complexity of the EPBI-CGSTAB method is ≈ O[(6δl +
14)nmults + 6nadds]ν operations, where ν denotes the number of iterations re-
quired for convergence to a predetermined tolerance level.

The convergence analysis of similar explicit approximate inverse precondition-
ing has been presented in [10]. Then, the following theorem on the rate of conver-
gence and computational complexity can be proposed:

THEOREM 3.1. Let 1 = MδlA be the preconditioning matrix of the Explicit
Preconditioned Conjugate Gradient (EPCG) iterative scheme. Suppose there ex-
ists positive numbers ξ1, ξ2 such that [ξ1, ξ2] ⊃ [λmin, λmax]where ξ1 is independent
of the mesh size and it can be shown that ξ2 = O(nδl−1) (cf. [10]). Then the number
of iterations ν of the EPCG method required to reduce the L∞-norm of the error
by a factor ε > 0 is given by

v = O(n1/2δl−1/2 log ε−1) (52)

and the computational complexity for the computation of the solution is given by

O(n3/2δl1/2 log ε−1). (53)

Assuming a PRAM linear array model with n processors, the computation of the
elements of the class IV approximate inverse Mi can be done in O(1), i.e. constant
time, since the inversion of the diagonal elements of D is required. Additionally,
in the implementation of the EPCG scheme, the inner product can be performed
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Table I. The convergence behavior and the computational work per iteration required for
the EPCG, EPCGS and EPBICG-STAB method

Method EPCG with EPCGS with EPBI-CGSTAB with

δl = 1 δl = 1 δl = 1

n No. of Comput. No. of Comput. No. of Comput.

iter. work (mults) iter. work (mults) iter. work (mults)

200 5 1800 5 3600 4 4000

600 5 5400 5 10 800 4 12 000

1000 5 9000 5 18 000 4 20 000

2000 5 18 000 5 36 000 4 40 000

5000 5 45 000 5 90 000 4 100 000

10 000 7 90 000 7 180 000 4 200 000

in O(log n), using the prefix computation. Thus the computational complexity for
obtaining the solution is given by

O(n1/2δl1/2 log n log ε−1). (54)

4. Numerical Results

In this final section, the applicability and effectiveness of the derived explicit pre-
conditioned conjugate gradient schemes is discussed by considering the following
test problem:

Model Problem I. The nonzero elements of A, cf. (2), are set equal to

bi = 1.0, i = 1, . . . , n; ci = 4.0, i = 1, . . . , n− 1.

The right-hand side vector of the liner system was chosen as the product of the
coefficient matrix A by the solution vector, with its components equal to unity. The
EPCG, EPCGS and EPBI-CGSTAB methods were terminated when |ui+1−ui | <
10−7.

Numerical results are presented in Table I for the EPCG, EPCGS and the
EPBI-CGSTAB methods respectively, for several values of order n for the Mi

class of approximate inverse.
It should be mentioned that the convergence behavior of the EPBI-CGSTAB

method is generally better than the EPCG and EPCGS methods in conjunction
with the Mi class of approximate inverse, while the convergence behavior of the
EPCG and EPCGS methods are equivalent. It should be also stated that the EPCG
method is better in performance than the EPCGS and EPBI-CGSTAB methods,
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using the Mi class of approximate inverse, in terms of the overall computational
complexity for convergence.

Model Problem II. Let us consider the following test problems:

uxx = f (x) (55)

with periodic boundary conditions u(0) = u(1). It should be noted that using the
finite difference discretization scheme, the resulting linear system is singular. Our
approach is to use isomorphic iterative schemes which are expected to improve the
rate of convergence of the explicit iterative schemes, according to the following
definitions, cf. [7, 13]:

DEFINITION 4.1. The operator 1∗h is said to be δ0-isomorphous to an operator
1h if 1∗h is identical to 1h, i.e., 1∗h ≡ 1h.

DEFINITION 4.2. The operator 1∗h ≡ {ω∗i,j }, i, j ∈ [1, n], is said to be δi-
isomorphous to an operator 1h ≡ {ωi,j }, i, j ∈ [1, n] if the following relations
hold:

ω∗i,i ≡ ωi,i +
n∑

k=i+1

ωi,k +
n∑

k=i+1

ωk,i, i ∈ [1, n], (56)

ω∗i,j ≡
n−j+1∑
k=1

ωi,j+k−1, i ∈ [1, n − 1], j ∈ [2, µ],

ω∗i,j ≡
n−i+1∑
k=1

ωi+k−1,j , i ∈ [2, µ], j ∈ [1, n − 1],
(57)

and

7∗k(1
∗
h) = 7k(1h), k ∈ [µ+ 1, n], (58)

where 7∗ and 7 are the corresponding diagonal of operators 1∗h and 1h, respec-
tively, while k is the number of diagonals retained next to the main diagonal of
1∗h.

The operator1∗h is δ3-isomorphous to the operator1h iff the operator1∗h retains
only three modified diagonals, i.e. the main diagonal and the diagonals next to the
main diagonal in the lower and upper part of 1∗h with the corresponding elements
derived from the relations (56)–(57) and the remaining elements identical to the
elements of 1h.

DEFINITION 4.3. An explicit iterative method is said to be an isomorphic itera-
tive method iff it involves δi-isomorphous operators.
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Table II. The convergence behavior of the EPCG, EPCGS and EPBI-CGSTAB schemes

Method δ3-isomorphous δ3-isomorphous δ3-isomorphous

EPCG EPCGS EPBI-CGSTAB

n δl = 1 δl = 2 δl = 5 δl = 1 δl = 2 δl = 5 δl = 1 δl = 2 δl = 5

100 15 9 5 8 5 3 8 5 4

500 15 9 6 8 5 3 8 5 4

1000 15 9 6 8 5 3 9 5 4

2000 15 9 7 8 5 3 8 5 4

5000 15 10 7 8 5 5 8 5 4

10 000 15 9 7 8 5 5 8 5 5

An efficient solution of the linear systemAu = s can be obtained by considering
a δi-isomorphic iterative scheme. Let us consider 1∗hu∗ = s, where 1∗h is a δi-
isomorphous operator to A. Then the approximate solution u∗ has to be proved
that it is an acceptable approximate solution to the original system Au = s, i.e.
the norm ‖u − u∗‖ has very small values. Further details on isomorphic iterative
schemes can be found in [7, 13].

The EPCG, EPCGS and EPBI-CGSTAB methods, were terminated when
‖ri‖∞ < 10−7.

Numerical results are presented in Table II for the EPCG, EPCGS and the
EPBI-CGSTAB methods, using an δ3-isomorphous operator, for several values of
the order n and the ‘retention’ parameter δl of the approximate inverse.

It should be mentioned that the performance of the EPCG isomorphic iterative
scheme, in terms of the overall computational complexity, is in general better than
the EPCGS or the EPBI-CGSTAB isomorphic iterative scheme for large values
of the order n. Additionally, the lowest complexity occurs for the choice of the
‘retention’ parameter δl = 1 for either the EPCG, EPCGS or the EPBI-CGSTAB
method.

Model Problem III. Let us consider a 1D-nonlinear boundary value problem, i.e.,

uxx = eu, x ∈ R, (59)

subject to periodic boundary conditions

u(0) = u(1), x ∈ ∂R. (59a)

The linearized Picard and quasi-linearized Newton iterations are outer iterative
schemes, i.e.

Lhu
(k+1) = eu(k), k > 0, and

Lhu
(k+1) − eu(k)u(k+1) = (1− u(k))eu(k), k > 0, (60)
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Table III. The convergence behavior of the EPCG, EPCGS and EPBI-CGSTAB
schemes

δ3-isomorphous iterative scheme

Method b.c. δl Picard method Newton method

Outer iter Inner iter Outer iter Inner iter

EPCG 10.0 1 9 37 9 37

2 6 22 6 22

3 6 19 5 17

EPCGS 10.0 1 7 24 5 21

2 5 16 4 14

3 5 15 5 15

EPBICG-STAB 10.0 1 6 22 6 22

2 4 14 4 14

3 4 13 4 13

where Lh denotes the central difference operator. The initial guesses u0 = 5.0
was chosen for the boundary conditions U = 10. The EPCG, EPCGS and the
EPBI-CGSTAB method, was terminated when max |ui+1 − ui| < 10−6.

Numerical results are presented in Table III for the Picard and Newton methods,
as outer iterative schemes, in conjunction with the EPCG, EPCGS and EPBI-
CGSTAB methods, as inner iterative schemes, for several values of the ‘retention’
parameter δl with n = 1000.

Finally, it should be stated that the proposed explicit preconditioned isomorphic
iterative schemes based on the derived classes of the approximate inverse are very
efficient for the solution of highly nonlinear initial/boundary value problem.
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