
Journal of Mathematical Modelling and Algorithms 1: 257–268, 2002.
© 2002 Kluwer Academic Publishers. Printed in the Netherlands.

257

An Efficient Algorithm for Embedding
Nonplanar Graphs in Planes

A. KAVEH and H. RAHAMI
Department of Civil Engineering, Iran University of Science and Technology, Narmak, Tehran-16,
Iran. e-mail: alikaveh@iust.ac.ir

(Received: 13 August 2001; accepted in final form: 14 October 2002)

Abstract. An efficient multi-step algorithm is presented for embedding a nonplanar graph on the
least possible number of planes. In the first step, the graph is drawn on a plane with the smallest
possible number of crossings. Then the appropriate crossing edges are selected and moved onto the
second plane. This process is repeated introducing subsequent planes until no crossing remains.

Mathematics Subject Classifications (2000): 05Cxx, 68R10, 05C10.

Key words: thickness, graph, decomposition, embedding, crossings.

1. Introduction

Planarity is important if shorting is to be avoided on a circuit board. An interesting
related question is to determine how many different circuit boards with crossing-
free drawings are needed to print a given nonplanar network.

The minimum crossing problem has applications in printed circuit board layout,
large-scale integration circuit routing, automated graph drawing, and calculating
the degree of static indeterminacy of structures [1–3]. A similar problem arises in
the force method of structural analysis where a cycle basis is constructed using
regional cycles after embedding the graph on a set of planes with some interface
properties, see Henderson [4] and Kaveh [5].

A planar graph can always be embedded on a single plane (disk). However, a
nonplanar graph can be embedded on τ disks. The minimum value of τ is defined as
the thickness of a graph G denoted by t (G). Manfield [6] showed that determining
the thickness of a graph is NP-hard, and therefore the focus of this paper will be on
a heuristic algorithm for embedding a general graph on the least possible number
of planes.

An efficient multi-step algorithm is developed for embedding a nonplanar graph
on the least possible number of planes. In the first step, the graph is drawn on a
plane with the smallest possible number of crossings. Then the appropriate crossing
edges are selected and moved onto the second plane. This process is repeated intro-



258 A. KAVEH AND H. RAHAMI

ducing subsequent planes until no crossing remains. The efficiency of the algorithm
is illustrated using different types of graphs presented in this paper.

Here, three relevant theorems are stated and their proofs can be found in stan-
dard textbooks on the theory of graphs, e.g., [7]:

THEOREM 1. If G is a graph with N (N > 2) nodes and M edges, then

t (G) �
⌈

M

3N − 6

⌉
, (1)

and t (G) � �M/(2N − 4)� if G has no triangle.

THEOREM 2. The thickness of the complete graph KN is

t (KN) =
⌊

N + 7

6

⌋
, except that t (K9) = t (K10) = 3. (2)

THEOREM 3. The thickness of the complete bipartite graph KM,N is

t (G) =
⌈

MN

2(M + N − 2)

⌉
, (3a)

except possibly if M and N are both odd, M � N and there is an integer k

satisfying

N =
⌊

2k(M − 2)

M − 2k

⌋
. (3b)

For other relevant theorems and an excellent survey on the thickness of graphs,
the reader may refer to Alekseev and Goncakov [8] and Mutzel et al. [9]. Standard
definitions of the theory of graphs may be found in any textbook on the theory of
graphs or in [10].

2. Algorithm for Embedding a Graph on Planes

The main idea employed in this paper comprises of drawing a given graph on
a plane with the least possible crossings, and then the edges necessary for the
elimination of the crossings are selected. Clearly, it is ideal to have a minimum
number of such edges. In fact the reverse is also applicable, i.e. in order to reduce
the crossings, the number of such out-of-plane edges should be minimized.

Once the planar part of the graph containing a maximal number of edges is
identified, the deleted edges are transferred onto the second plane, and the second
planar subgraph is obtained. This process is repeated until the number of crossings
becomes zero and no new plane is required. In the process of embedding, it is
important to minimize the number of edges which should be deleted. Heuristically,
the minimum number of crossings will require less such edges to be moved to the
subsequent planes.



AN EFFICIENT ALGORITHM FOR EMBEDDING NONPLANAR GRAPHS 259

In a good drawing, a crossing is produced by two edges, and the question is
to identify the edge to be moved to the next plane. The problem of selecting the
edges to be moved and the layout of the nodes in each plane are the main issues
investigated in this paper.

In [11] it is shown that, for some special node layouts, drawings with the least
possible crossings can be obtained. The algorithm for such a drawing is as follows:

First select a layout for the given nodes of a graph by positioning them on
a straight line and then construct the corresponding adjacency matrix. Define a
territory for each nonzero entry of this matrix. The relationship between each edge
and the edges in its territory form a virtual graph Gv . Construct the corresponding
Laplacian matrix of Gv , and calculate the maximal eigenvalue λmax of this matrix.
Order the nodes according to the corresponding eigenvector vmax, and separate its
positive and negative entries. We use for the nodes corresponding to the negative
and positive values −1 and +1. This operation is equivalent to drawing the edges
at the top and bottom of the straight line containing the nodes. The graph obtained
in this way has a small number of crossings for the selected layout.

Suppose for the given graph, the layout of the nodes is chosen as in Figure 1(a).
This is not the best layout and it is taken only as an illustrative example. For this
graph, the smallest number of crossings is found to be 10 ([11]). The challenge is
to find the least number of edges that should be removed in order to reduce the
crossings to zero.

The symmetric matrix A∗ is defined for a graph with nodes on a straight line
(Figure 1(a)). This matrix contains +1 and −1 entries, similar to the adjacency
matrix A of a general graph. For this example, the matrix A∗ is formed as

Here, a territory is defined for each entry of the matrix A∗. The territory for the
entry (i, j ) is the union of the left and right parts, as

Ter(i, j) = A∗(1 : i − 1, i + 1 : j − 1) ∪ A∗(i + 1 : j − 1, j + 1 : end). (5)

As an example, the territory for the entry (2,5) of A∗ corresponding to the edge
6–8 is the union of the left and right parts as follows:

Ter(2, 5) = A∗(1 : 1, 3 : 4) ∪ A∗(3 : 4, 6 : 8).

This territory is shaded on A∗. The use of row and column headings helps us to
identify the corresponding edge in the graph.



260 A. KAVEH AND H. RAHAMI

(a) Number of edges: 20; number of crossings: 10

(b) Page 1; number of edges: 15

Figure 1. A graph with an arbitrary layout and its subgraph on the first plane.

For the entry (2,5) with −1 value, the left part of the territory contains only
one entry with −1 corresponding to the edge 5–4, i.e. the edges 5–4 and 6–8 cross
each other. However, the edge 6–8 has two crossings and the second crossing is
generated by the edge 3–7 belonging to the right part of the territory. It should be
mentioned that, in a problem, if the sum of the crossings is important, then only
the left part of the territory can be used, [11]. However, here it is crucial to know
the number of crossings for each individual edge of the graph. Thus both left and
right parts of the territory are employed.



AN EFFICIENT ALGORITHM FOR EMBEDDING NONPLANAR GRAPHS 261

As a second example, consider the entry (2,7) of A∗, as marked in the following
matrix. The territory of this entry with +1 value, in the left part has no crossing
(i.e. there is no +1 in the left part of the territory) and in the right part it contains
three crossings.

Now consider Figure 1(a) once again. The edge 6–2 has three crossings which
can also be observed from the right territory of the entry (2,5). Using A∗, the
number of crossings can be found for each edge. Based on this data, the crossing
matrix C for edges can be constructed. This matrix for the considered example is
obtained as

It is obvious that the sum of the entries (only for the upper triangle) is twice the
number of crossings, since each crossing appears in the territory of two entries of
A∗. In the present example, this number is 20 corresponding to 10 crossings. Now
each number in C is the representative of the number of crossings, therefore for
an efficient embedding, one should delete the edges having the highest crossings.
When only one edge with this property exists, it can be deleted as suggested. How-
ever, if many edges with maximum crossings exist, as in the above example (three
edges each with three crossings), then further consideration is required. Although
the deletion of any of these edges reduces the crossings by three, however, the
effect of the removal of any one such edge on subsequent steps of the algorithm is
different.

As an example, the territory of the entry (2,7) of A∗ shows that the correspond-
ing edge 2–6 crosses the edges 3–1, 4–1 and 8–1. The numbers of crossings for
these edges, from the matrix C, are 1, 2 and 3, respectively, i.e. the edge 6–2 crosses



262 A. KAVEH AND H. RAHAMI

Figure 2. An artificial graph associated with C.

three edges with one, two and three crossings. Similarly, the edge 3–7 has crossings
with three edges having two, one and two crossings, and the edge 8–1 has crossings
with three edges with three, two and one crossings. It is a reasonable heuristic to
delete the edge having the least number of maximum crossings. Therefore, the edge
3–7 should be deleted, since the crossing number ‘3’, corresponds to none of the
edges crossing this edge.

Now we associate an artificial graph with the matrix C as follows: Suppose
the nonzero entries of C receive numbers 1, . . . , n. Associate one node with each
number and connect two nodes if the corresponding numbers have the same sign
in the considered territory of the matrix A∗. For the previous example, with the
numbers 1, 2, . . . , 10 associated to the entries of C (shown in parenthesis in matrix
C), the graph of Figure 2 is formed.

Such a graph may be connected or disconnected. The degree of a typical node
of this graph represents the number of crossings of the corresponding edge in C.
For each node, the degrees of neighbouring nodes are the number of crossings of
edges having crossings with the considered edge in the main graph.

The idea of deleting edges for the formation of a maximal planar subgraph can
be viewed as selecting the minimum number of co-cycles of the graph which span
(cover) all its edges. Here we start with a node of maximal degree and among the
nodes of equal degrees, priority is given to the node with minimum number of
nodes of maximal degree in its neighbourhood. For example, for the nodes 4, 5 and
10 having equal degrees, priority is given to the node 4 compared to the nodes 5 and
10. Since every elimination reduces one degree from the adjacent nodes, it is better
if this reduction corresponds to the nodes with lower degrees so that some higher
degrees remain available for further elimination in subsequent steps. This might be
interpreted as selecting a node adjacent to the nodes having a lower degree sum
among the equivalent nodes. However, this is not true as shown in the hypothetical
example for three edges (corresponding to nodes A, B and C) with equal degrees.
The degrees of the adjacent nodes in the artificial graph for these nodes are shown
in Table I.

At this stage, one may choose the node B for the elimination. However, since
the maximum degree among the neighbouring nodes is 9, and 9 does not exist
among the adjacent nodes of C, hence C should be chosen for elimination, despite
the fact that the sum of valencies for the neighbouring nodes of C is more than
those of A and B. The next selection is not necessarily from A or B, since with



AN EFFICIENT ALGORITHM FOR EMBEDDING NONPLANAR GRAPHS 263

Table I. Properties for the three nodes of a hypothet-
ical graph

Nodes Degrees of the Sum of the degrees of

adjacent nodes the neighbouring nodes

A 7 7 1 9 4 28

B 1 9 1 9 1 21

C 8 8 8 8 8 40

each elimination the degrees of the other nodes may be changed in a way that
the selection does not necessarily correspond to the comparison of A or B. The
simplest rule for selecting a node from the nodes of equal degrees, is to consider
the degrees of the adjacent nodes and place them in a descending order. As an
example, for nodes A, B and C, the corresponding numbers are 97741, 99111 and
88888, respectively. The least of these virtual numbers, i.e. 88888 corresponds the
node C, and therefore this node should be eliminated at this stage. As mentioned
before, the entries of the matrix C are updated after each elimination, and this
makes the next selection unpredictable beforehand. The above process should be
continued until all the entries of the matrix C changes to zero. This is the end of the
first stage, where a drawing with zero crossing on the first plane with the maximum
number of possible edges is produced.

As already mentioned, apart from the importance of selecting the edges for
elimination, the layout of the nodes at the beginning of each stage is also important.
This is because, usually, a small number of crossings results in a planar graph with
higher number of edges. For the present example, the selected layout was arbitrarily
chosen and was not necessarily the best possible one. However, the number of
edges left on the plane was 15, as shown in Figure 1(b). The remaining five edges
were drawn on the second plane with no crossing and therefore the thickness of
this graph is at most equal to 2.

It has been observed that for each layout, the method of drawing with the least
crossings and eliminating the least number of edges is a rule-based problem. How-
ever, the layout for nodes requiring the alteration of their position does not obey a
simple rule. The Genetic Algorithm may be used to overcome the problem for the
minimum crossings. Alternatively, an ordering algorithm may be used leading to a
banded matrix for the adjacency matrix A ([11]).

In this article a simplified version of King’s algorithm [12], originally designed
for the profile reduction of sparse matrices is employed. In King’s algorithm, the
starting node corresponds to a node of minimum degree while, in the present ap-
proach, no such requirement is needed. In the process of applying King’s algorithm,
different nodes may have the same priorities and therefore various cases should be
examined. In the present algorithm, control of all such cases is not needed, as an
optimal layout does not correspond to a single ordering of the nodes.



264 A. KAVEH AND H. RAHAMI

(a) K18 Page 1; number of edges: 48

(b) K18 Page 2; number of edges: 48

Figure 3. Embedding of K18.

The present algorithm, being a direct graph-theoretical approach, requires far
less storage and operations compared to that of the genetic algorithm.

3. Examples

The algorithm is implemented on a PC Pentium IV and many graphs of different
types are examined. In the following some results are presented.

EXAMPLE 1. The complete graph K18 is embedded on four planes as illustrated
in Figures 3(a–d), where the number of edges in each plane are provided. The
computer time required has been 1.64 sec.



AN EFFICIENT ALGORITHM FOR EMBEDDING NONPLANAR GRAPHS 265

(c) K18 Page 3; number of edges: 38

(d) K18 Page 4; number of edges: 19

Figure 3. Embedding of K18 (continued).

EXAMPLE 2. The complete graph K24 is embedded on five planes. The number
of edges of the embedded graph on plane 1 to plane 5 were 66, 66, 62, 51 and 31,
respectively. The computer time required was 8.64 sec.

From Theorem 2 stated in the introduction, we have t (K18) = 4 and t (K24) =
5. It can be seen that in both examples, the present method leads to embeddings
corresponding to the thickness of the considered complete graphs.

EXAMPLE 3. The complete bipartite graph K10,10 is embedded on three planes as
illustrated in Figures 4(a–c), where the number of edges in each plane are provided.
The computer time required has been 0.66 sec.

EXAMPLE 4. The complete graph K20,20 is embedded on six planes. The number
of edges of the embedded graph on plane 1 to plane 6 were 76, 76, 75, 74, 66 and
33, respectively. The computer time required was 30.48 seconds.



266 A. KAVEH AND H. RAHAMI

(a) K10,10 Page 1; number of edges: 36

(b) K10,10 Page 2; number of edges: 35

(c) K10,10 Page 3; number of edges: 29

Figure 4. Embedding of K10,10.



AN EFFICIENT ALGORITHM FOR EMBEDDING NONPLANAR GRAPHS 267

Figure 5. CPU-time for complete graphs versus the number of nodes.

ADDITIONAL EXAMPLES. Two general graphs containing 50 nodes with 149
edges, and 100 nodes with 296 edges are randomly generated and examined. The
computational time for embedding these graphs has been 2.47 and 28.21 seconds,
respectively.

4. Concluding Remarks

An upper bound to the thickness of a graph is obtained with a series of repeated
operations, drawings with the least crossings, and by the elimination of the mini-
mal number of crossings. The reason behind the selection of the examples in this
article from the complete graph and complete bipartite graph viewpoint, is that the
thickness of the graphs is known. Completeness of the graphs does not reduce the
generality of the problem, as the graph becomes noncomplete from the second step
onward.

In order to show the efficiency of the algorithm, the complete graphs K10 to K40

are embedded on planes and the computation time for constructing the maximal
subgraph of the first plane is plotted against the number of nodes as shown in
Figure 5.

References

1. Cimikowski, R. and Shope, P.: A neural-network algorithm for a graph layout problem, IEEE
Trans. Neural Networks 7 (1996), 341–345.

2. Tamasia, R., Di Battista, G. and Batini, C.: Automatic graph drawing and readability of
diagrams, IEEE Trans. Sys. Man. Cybern. SMC-18 (1988), 61–79.

3. Kaveh, A.: Space structures and crossing number of their graphs, Mech. Struct. Mach. 21
(1993), 151–166.

4. Henderson, J. C. de C.: Topological aspects of structural analysis, Aircraft Engng. 32 (1960),
137–141.



268 A. KAVEH AND H. RAHAMI

5. Kaveh, A.: Structural Mechanics: Graph and Matrix Methods, 2nd edn, Research Studies Press,
(Wiley), London, 1995.

6. Mansfield, A.: Determining the thickness of graphs is NP-hard, Math. Proc. Cambridge Philos.
Soc. 93 (1983), 9–23.

7. Beineke, L. W.: Topology, In: L. W. Beineke and R. J. Wilson (eds), Graph Connections, Oxford
Science Publ., 1996, pp. 155–173.

8. Alekseev, V. B. and Goncakov, V. S.: The thickness of an arbitrary complete graph, Math.
Sbornik 30 (1976), 187–202.

9. Mutzel, P., Odenthal T. and Scharbrodt, M.: The thickness of graphs; a survey, Graphs
Combinatorics 14 (1998), 59–73.

10. Kaveh, A.: Optimal Structural Analysis, Research Studies Press (Wiley), London, 1997.
11. Kaveh, A. and Rahami, H.: Planar drawing of space structures using algebraic graph theory,

Asian J. Civil Engng. 3 (2002), 20–32.
12. King, I. P.: An automatic reordering scheme for simultaneous equations derived from network

systems, Internat. J. Numer. Meth. Engng. 2 (1970), 523–533.


