'ka World Wide Web: Internet and Web Information Systems, 5, 325-366, 2002
‘ © 2002 Kluwer Academic Publishers. Manufactured in The Netherlands.

Dynamic Restructuring of E-Catalog Communities
Based on User Interaction Patterns

HYE-YOUNG PAIK, BOUALEM BENATALLAH and RACHID HAMADI
{hpaik,boualem,rhamadi} @cse.unsw.edu.au
School of Computer Science and Engineering, The University of New South Wales, Sydney, NSW 2052, Australia

Abstract

Since e-catalogs are dynamic, autonomous, and heterogeneous, the integration of a potentially large number of
dynamic e-catalogs is a delicate and time-consuming task. In this paper, we describe the design and the im-
plementation of a system through which existing on-line product catalogs can be integrated, and the resulting
integrated catalogs can be continuously adapted and personalized within a dynamic environment. The integration
framework originates from a previous project on integration of Web data, called WebFINDIT. Using the frame-
work, we propose a methodology for adaptation of integrated catalogs based on the observation of customers’
interaction patterns.

Keywords: e-catalog, e-catalog community, user interaction patterns, catalog structural adaptation, catalog
personalization

1. Introduction

In recent years, integration of e-catalogs has gained considerable momentum because of
the emergence of online shopping portals, increasing demand for information exchange be-
tween trading partners, the prevalence of mergers and acquisitions [19,29]. In approaches
that address the problem of e-catalog organization and integration, a product catalog is
usually structured in a category-based hierarchy [13,19]. Catalogs are designed in a “one-
view-fits-all” fashion, by a system designer who has a priori expectations for how catalogs
will be “explored” by customers. However, the customers may have different expectations.
Therefore, it is necessary to take into account how the customers are using the catalogs
to continuously minimize the gap between expectations of the system designer and cus-
tomers. For example, in a catalog for computer parts, where it is repeatedly observed that
many users always use product category RAM immediately after using category CPU. If the
administrator merges the two categories and creates a new category CPU&RAM, users only
need to visit this new category once for information on both products.

In this paper, we describe the design and the implementation of a system, called
WebCatalog"®™ [20], through which existing online product catalogs can be integrated, and
the resulting integrated catalogs can be continuously adapted and restructured within a dy-
namic environment. The catalog integration framework used in this paper originates from
a previous project on integration of Web data, called WebFINDIT [6,7].! Based on this

326 PAIK ET AL.

framework, we propose a usage-centric technique for transforming catalog organization.
The objective is to continuously improve the organization of catalogs by being responsive
to the ways customers navigate them when searching for products. The proposed approach
offers the following features:

e Catalog navigation and access model. This model provides a set of actions called cata-
log interaction actions that users would perform while accessing catalogs. The actions
are tracked and analyzed to find any pattern in users’ interaction behavior.

e Catalog transformation operations. These operations are used to transform the struc-
ture and organization of catalogs (e.g., splitting a catalog community, merging catalog
communities).

e Predefined sequences of catalog interaction actions. These sequences represent prei-
dentified interaction patterns of users. They can be considered as heuristics for cata-
log transformation. Discovery of these patterns helps administrators (e.g., communities
owners) decide what kind of transformations would be desirable to improve the organi-
zation of catalogs. Transformations of a catalog over time result in offering improved
alternative of its organization based on user interaction patterns.

Preliminary work on the proposed approach has been presented in [20]. The remainder
of this paper is organized as follows. Section 2 overviews the design of WebCatalog?e™.
Section 3 presents a formal model for integrated catalogs and user interaction actions. The
catalog reorganization operations are introduced in Section 4. Section 5 explains the con-
cept of Predefined Interaction Sequences (PIS) which is used to discover users’ behavior
patterns. In Section 6, we discuss handling of situations where conflict and consolidation
relationships exist between users’ behavior patterns. Implementation overview is presented
in Section 7. Section 8 presents the results of simulation studies. Section 9 discusses re-
lated work and, finally, Section 10 gives concluding remarks.

2. WebCatalog?®™: Design overview

In this section, we give the intuition behind the main concepts that are used in
WebCatalog™", namely, product catalogs and catalog communities. The formalization
of these concepts will be presented in the next section.

2.1. Catalog communities

A catalog community is specialized to a single area of products (e.g., a community for
Motherboards, or Printers etc.). It contains the description of domain-specific
product attributes and terms for interacting within a catalog community, and individual
product catalogs which are members of the community (e.g., a product catalog for Canon
Printers for community Printers). We illustrate catalog communities with an ex-
ample from the domain of computer parts and related services (see Figure 1).

There are two types of relationships defined between catalog communities: SubCom-
munityOf and PeerCommunityOf. SubCommunityOf relationships represent specialization

DYNAMIC RESTRUCTURING OF E-CATALOG COMMUNITIES 327

SubCi Of
PeerC ityOr
Member of a ¢

- CatridgeReplacement

HP Printer EPSON

Figure 1. eCatalogs-Net: Organizing catalog communities.

between domains of two catalog communities. For example, community Printer is a
sub-community of Peripherals.? PeerCommunityOf represents a relationship between
two communities in which one community can be an alternative of the other community.
In Figure 1, community Display is a peer community of VideoCard. It should be
noted that we do not assume that the opposite (i.e., VideoCard is a peer community of
Display) systematically holds. A weight (i.e., a real value between 0 and 1) is attached
to each PeerCommunityOf relationship, which represents a degree of relevancy of the re-
lationship. PeerCommunityOf relationships can be viewed as a referral mechanism in that
when the user cannot find (or is not satisfied with) information from a catalog community,
she/he can refer to other communities that the catalog community considers as its peers. We
call this organization of catalog communities eCatalogs-Net. A11Catalog is a special
community to which a community that is not a sub-community of any catalog community
is related via SubCommunityOf relationship. It should be noted that communities in the
eCatalogs-Net can forward requests to each other.

Our observation shows that the most common form of representing a product p in a
catalog is using a set of attributes A = {ay, a2, ..., a,}, where each q; is an attribute that
describes properties of p [19,29,30]. In our approach, a creator of community defines the
attributes suitable for commonly describing underlying product catalogs, which ultimately
forms the schema of the community. Therefore, each catalog community has a set of
attributes which represents the product catalogs in the community. We refer to the set of
attributes as community product attributes (community attributes, for short). For example,
community attributes of a catalog community of Printers are described as follows:

CatalogCommunity Printers {
CommProdAttr{ (Manufacturer_Name, String), (Print_Resolution, String),
(Body_Colour, String), (Unit_Price, Float),
(LeadTime_Required, Integer), (Full_Description, String)}}

In the above example, Manufacturer_Name is an attribute and String is a type
of the attribute. Once community attributes have been identified, it is left to the product
catalog providers to map their local attributes (i.e., the attributes that describes products in
their catalogs) to the community attributes so that their catalog can be queried using the

328 PAIK ET AL.

attributes of the community. More details about catalog registration will be discussed in
Section 2.2. It should be noted that it is also possible to use a product catalog description
standard (e.g., xCBL, Dublin Core Metadata Initiative) [2,8,11,28]. Although a presenta-
tion model for e-catalog is an important issue, further discussion is beyond the scope of
this paper.

2.2. Catalog registration

A product catalog provider registers his/her local product catalog with one or more catalog
communities to become a member. To explain the registration process, let us assume that
there is a product catalog AceHardware, whose product types are printers and scanners.
The AceHardware will be known to a catalog community by providing: (i) a wrapper,
(i1) an exported interface, and (iii) a mapping between exported interface and community
attributes. Let us assume that AceHardware wants to become a member of the commu-
nity Printers. Then, it uses the following statement to register with Printers:

Registration Source:AceHardware, Target:Printer {
Wrapper "db.catalog.acehardware.com.au/~webcatalog/OracleWrap";
Exported Interface PrinterInt;
Mapping AceHardwareToPrinters; }

Users may use a community to express queries that require extracting and combining
product attributes from multiple underlying product catalogs. For example, being able to
compare prices or descriptions of products is crucial for users to make informed choices.
We refer to these types of queries as global queries. A wrapper translates global queries
(i.e., queries expressed using the community attributes) to local queries (i.e., queries ex-
pressed using the local product catalog’s native query language). The outputs produced in
response to local queries are translated back into the format used by WebCatalog"®™. The
exported interface defines the product attributes to query product information at the local
catalog. For example, AceHardware exports the following interface:

Interface PrinterInt {
LocalAttribute String Brand;
LocalAttribute String Description;
LocalAttribute Float Retail_ Price;}

Global querying is achieved by using community attributes. Community product at-
tributes do not directly correspond to product attributes of local product catalogs. There-
fore, when a product catalog is registered with a community, the catalog provider should
also, define mapping between local product attributes and community attributes. We
call this mapping Source—Community mapping. For example, the mapping between
AceHardware and Printers can be described as follows:

AceHardwareToPrinters Source:AceHardware, Target:Printers {
Attribute String Brand IS String Printers.Manufacturer_Name;
Attribute String Description IS String Printers.Full_Description;
Attribute Float Retail_Price IS Float Printers.Unit_Price;}

DYNAMIC RESTRUCTURING OF E-CATALOG COMMUNITIES 329

In the example, the attribute Brand in Ace Hardware is related (i.e., mapped)
to the attribute Manufacturer_Name in Printers, Description to Full_
Description. It is possible that AceHardware becomes a member of a differ-
ent community (e.g., Computer Accessories) whose attributes are different from
Printers. Naturally, the Source—Community mapping will be separately defined. Cat-
alog registration may concern only a subset of the attributes of a community. Finally,
a community can be registered with another community. By doing so, the members of the
first community become members of the second community as well. For example, the cat-
alog TFT Monitors and HighTech Monitors are registered with the community
Monitors, which itself is registered with the community ComputerDisplayUnits.

2.3. Searching and querying product information

Communities in WebCatalogP®™ are presented to users by displaying direct neighbors
known via the relationships. Users in WebCatalog”®™ will typically be engaged in two-
step product information-seeking activity: (i) browsing communities for product catalog
location (e.g., get communities that are relevant to selling laptops) and (ii) querying se-
lected communities or catalogs for products information (e.g., compare product prices).
Users would have a specific task or a goal to achieve in mind (e.g., product items that wish
to purchase, a category of products they want investigate) when using product catalogs.
We assume that they use the following strategy:>

1. Start at the root (i.e., Al1lCatalog), or at a specific community (if they know the
location of the catalog community).
2. While (current community C is not the target community 7)) do

(a) If any of the SubCommunityOf relationships of C seems likely to lead to 7', follow
the relationship that appears most likely to lead to 7.

(b) Else, if any of the PeerCommunityOf relationships of C seems likely to lead to 7,
follow the relationship that appears most likely to lead to T'.

(c) Else, either backtrack and follow SuperCommunityOf relationship of C, or give up
searching.

Once the user has reached a community she/he was looking for, she/he will submit a
query to it. If the user ends up in the same community again in step 2(a) or 2(b), she/he
will follow a different relationship, since her/his reasoning of which relationship is likely
to lead to the target is changed by then.

3. Modeling catalog communities and user interaction
In this section, we introduce a formal model for representing product catalogs, commu-

nities, and eCatalogs-Net. Then, we identify a set of permissible actions that users can
perform when interacting with eCatalogs-Net.

330 PAIK ET AL.

3.1. eCatalogs-Net

We give the definition of eCatalogs-Net after formally introducing the definitions of prod-
uct catalog and catalog community.

Definition 1 (Product catalog). A product catalog is a tuple P = (NameP,
GeneralAttr, ProductAttr) where

e NameP is the name of the product catalog P,

e GeneralAttr is a set of name-value pairs (a, v), where a is an attribute and v is a
value of a (e.g., (URL, “http://www.cse.unsw.edu.au/~LinuxSoftware”)), and

e ProductAttr is a set of attribute—type pairs (att, type) used to describe products
(e.g., (Product_Name, String)).

Definition 2 (Catalog community). A catalog community C is a tuple C = (NameC,
GeneralInfo, CommProdAttr, Members) where

e NameC is the name of the community C,

e GeneralInfo is a set of pairs (p, v), where p is a property of the community and v
is a value of p (e.g., (Domain,"CD Writers")),

e CommProdAttr is a set of attribute—type pairs (att, type), where att is a commu-
nity product attribute and type is the type of att (e.g., Model_Numer, Integer)),

e Members is a set of members. A member can be either a product catalog or another cat-
alog community and is defined as a pair (mid, map) where mid represents the identifier
of the member and map contains the Source-Community mapping.

Definition 3 (eCatalogs-Net). An eCatalogs-Net is a labelled directed graph G = (N, Eq,
E,>, W, £) where

e N is a finite set of nodes; a single node represents a catalog community,

e E1 C N x N is a finite set of directed edges (representing SubCommunityOf relation-
ships),

e Ey C N x N is a finite set of directed edges (representing PeerCommunityOf relation-
ships),

e W:Ey — [0, 1] is a weighting function (initially each edge in E7 receives a neutral
weight of 0.5), and

e ¢:N — Cis a naming function where C is a set of catalog communities names.

3.2. Permissible user actions
The permissible actions, noted A, for exploring eCatalogs-Net are listed in Table 1. By

modeling user interaction actions, the system can capture them for future use. It should be
noted that the focus of this paper is not on specifying transactional operations (e.g., or-

DYNAMIC RESTRUCTURING OF E-CATALOG COMMUNITIES 331

Table 1. Permissible user actions A in eCatalogs-Net

Action name Description

NavigateToSub (catalogCommunity c) Invoked when the user goes, from the current catalog com-
munity, to one of its sub-communities, namely, c.

NavigateToSuper () Invoked when the user goes, from the current catalog com-
munity, to its super-community.

NavigateToPeer (catalogCommunity c) Invoked when the user goes, from the current catalog com-
munity, to one of its peer communities c.

SelectBookmark (Bookmark b) Invoked when the user selects the bookmark b defined at the
current community. WebCatalogPe™ then automatically per-
forms the sequence of actions recorded in the bookmark (re-
fer to Section 3.3).

LeaveCatalogCommunity () Invoked when the user leaves the current catalog community.
The user is taken to the default community Al1Catalog.

ShowMembers (Constraint const) Invoked when the user request to show the members of the
current catalog community satisfying the constraint const.

SubmitQuery (Query Q) Invoked when the user submits the query g to the current
catalog community. It could be a global query which uses the
community’s community attributes, or a source query which
concerns one member of the current community (i.e., uses
the exported attributes of the associated member).

dering or payment for products). We assume that it is up to the local product cata-
log supplier to process such operations via interfaces exported to WebCatalog"®™. De-
tailed description on provisioning operations in the context of Web services is presented
in [3].

3.3. WebCatalog™®™ bookmarks

WebCatalog™™ uses the concept of bookmarks. Bookmarks in WebCatalog?®™ are differ-

ent from conventional Web browsers’ bookmarks which usually store a list of URLs. In
WebCatalogP®™, a single bookmark is a recorded sequence of user actions. When a system
administrator discovers that a certain sequence of actions is performed frequently by the
users, she/he may record such actions as a bookmark making it available so that the same
sequence of actions can be easily repeated later by users. A bookmark is formally defined
as follows:

Definition 4 (Bookmark). A bookmark is a pair B = (IdB, {aj, aa, ..., a,)) where

e IdB is the identifier of the bookmark B,
e (aj,az,...,a,) is an ordered sequence of permissible actions where a; € A
i=1,...,n).

After a new community is defined, a set of bookmarks can be associated with it. A book-
mark may become invalid when a community referenced in any action of the bookmark

332 PAIK ET AL.

is changed (e.g., deleted, split etc., see Section 4). For example, assume that there is
a bookmark which contains an action NavigateToSub (CableModem). The action
navigates from the “current” community, down to its sub-community CableModem. As-
sume also that later, the community CableModem is merged with HomeNetworking
and given a new name. This means that the bookmark that contains an action which ref-
erences CableModem is now invalid because CableModem no longer exists. Therefore,
after a restructuring operation, we check for any invalidity that may have been caused by
the operation on bookmarks to make sure that all bookmarks are still valid. Informally,
a bookmark is valid, if: (i) all communities referenced in any action of a bookmark exist in
eCatalogs-Net and have not been moved to a new location and (ii) the attributes of a com-
munity ¢ used by a global query in SubmitQuery or ShowMembers exist in ¢. The first
task in checking the validity of a bookmark is to identify all communities referenced from
actions in the bookmark. All communities thus referenced are identified by a bookmark
path.

Definition 5 (Bookmark path). A bookmark path BP of a bookmark B = (IdB, (a1, a2,
..., ap)) in community ¢ of the eCatalogs-Net G = (N, E1, E», W, £) is a sequence of
nodes BP = (co, c1, ¢2, ..., cy) where

ecic Nfori=0,...,n,

e ¢o = c is the community from which the recording of bookmark B started,

e cj,fori =1,...,n,is the target community4 of the action a;,

e fori =1,...,nifcij_1 # c;j then (¢ci—1,¢;) € E1 U El_l U E» (i.e., a; is one of the nav-

igation actions NavigateToSuper, NavigateToSub, or NavigateToPeer), or
¢; =AllCatalogifa; is LeaveCatalogCommunity,

e fori =1,...,nif ¢;—1 = ¢; then g; is one of non-navigation actions SubmitQuery,
ShowMembers, or SelectBookmark.

For example, the following bookmark B is defined in community BackupDevices:

B = (bmkId001, (NavigateToSub(ZipDrive),
NavigateToPeer(PortableHardDrives),
SubmitQuery("Select Price,

ModelName From PortableHardDrives"))).
Note that ZipDrive is a sub-community of BackupDevices. The associated book-
mark path BP of the bookmark B is

BP = (BackupDevices, zipDrive, PortableHardDrives,
PortableHardDrives).

The recording started at BackupDevices, and then from there the user navigated to
ZipDrive, then again to PortableHardDrives before finally submitting a query

to PortableHardDrives. Using this bookmark path, a valid bookmark is defined as
follows:

DYNAMIC RESTRUCTURING OF E-CATALOG COMMUNITIES 333

Definition 6 (Valid bookmark). A bookmark B = (IdB, (a1, a2, ..., a,)) in eCatalogs-
Net G = (N, Eq, E2, W, £) is valid if and only if its bookmark path BP = (cy, c1,
¢, ..., cp) satisfies the following conditions:

1. ¢ e Nfori =0,...,n,ie., each community in BP must exist in eCatalogs-Net.

2. For each a; such that¢; # ¢j41 (i = 0,...,n — 1), (ci,ci+1) € E1 U El_1 U E» or
ci+1 = AllCatalog. ¢; and c¢;4] are related by one of the following relationships;
SubCommunityOf, SuperCommunityOf and PeerCommunityOf in eCatalogs-Net.

3. Foreacha; suchthatc; = cj41 (i =0,...,n—1), the action g; is a valid non-navigation
action, that is:

e if q; = SubmitQuery(q) then the community attributes in g must exist in ¢;,

e if a; = ShowMembers(cons) then the community attributes in cons must exist
in ¢;,

e if a; = SelectBookmark(b) then b must exist in ¢;.

For an eCatalogs-Net to be consistent, it must satisfy the following conditions: (1) each
catalog community has a unique name, (2) each catalog community cannot have SubCom-
munityOf relationship with neither its ancestors nor with its descendants (other than its
super-community), (3) each catalog community cannot have PeerCommunityOf relation-
ship with its ancestors nor with its descendants. Note that ancestors and descendants of a
community are defined w.r.t. SubCommunityOf relationships, and (4) all bookmarks are
valid. Those conditions are, respectively, formally stated in the following definition.

Definition 7 (Consistent eCatalogs-Net). The eCatalogs-Net G = (N, Ey, Ez, W, £) is
consistent if and only if the following conditions are satisfied:

e The naming function £ is injective (that is, there will not be two communities with the
same name),

e The graph G, = (N, El_l,ﬁ) (generated from the subgraph G| = (N, E1, £) of G by
inverting the edges) is a tree. The root of the tree is A11Catalog, and

e E2N(E1U EI_I)Jr = () (where E™ denotes the transitive closure of E, i.e., (i, j) € E*
iff there is a directed path from i to j in E).

e All bookmarks defined in catalog communities of eCatalogs-Net are valid.

3.4. Capturing user behavior

To analyze user behavior, we need to record all actions that have occurred during the time
the user interacted with the system. Moreover, after recording all user actions, we need to
transform the collection of raw data into the format which is suited by the system to carry
out required processing.

Every time a user invokes one of the permissible actions at a catalog community,
WebCatalogP®™ keeps that event in the system log file. Each element in the log file contains
the name of the action, a user identifier (UID), a time stamp (TS), and parameters of the
action. For example, the first log file entry below shows that the user, whose UID is 987,

334 PAIK ET AL.

was at Hardware catalog community, then navigated down to its sub-community Modem
(see Figure 1), on 10/08/2001 13:05:40 system time, etc.:

(NavigateToSub, UID=987, TS="10:08:2001:13:05:40",
C_FROM="Hardware", C_TO="Modem")

(NavigateToSuper, UID=811, TS="10:08:2001:13:05:42",
C_FROM="IBM", C_TO="Retailers")

To make use of log data when searching interaction patterns (see Section 5), we make
some transformations on the log file. We first, sessionize the log file. We define a session
as follows:

Definition 8 (Session). A session is an ordered sequence of actions performed by a single
user, where the time difference between any two consecutive actions in the list should be
within a preselected time threshold, Tinreshold-

After log file sessionizing, we extract all community attributes selected by global
queries. The extraction process converts a global query, which is contained in the Query
parameter of SubmitQuery actions, into a list of community attributes. The generated
list is stored as a value of a special attribute called GLB_QUERY_ATTR. This is done for
the purpose of analyzing usage pattern of community attributes by users. In the following,
we show an example of a session transformed from a log file. All actions belonging to the
same user are identified® and global query attributes are extracted.

(Session="Start")

(NavigateToSub, C_FROM="AllCatalog", C_TO="Hardware")
NavigateToSub, C_FROM="Hardware", C_TO="Systems")
NavigateToSuper, C_FROM="Systems", C_TO=""Hardware")
NavigateToSub, C_FROM="Hardware", C_TO="Components")
SubmitQuery, C_SUBMITTO="Components",

GLB_QUERY_ATTR="Manufacturer, Description, Price")
(Session="End")

(
(
(
(

4. Restructuring eCatalogs-Net

We now describe a set of restructuring operations on eCatalogs-Net. These operations are
used, for example, to change the relationships between catalog communities (e.g., update
a PeerCommunityOf relationship), remove a catalog community, or merge catalog com-
munities, etc. They can be performed at an administrator’s own discretion. In the next
section, we will introduce predefined interaction sequences which provide means to ob-
serve the user’s interaction patterns. The observation will help decide which operation to
perform in order to improve the organization of the eCatalogs-Net. An operation is applied
to a consistent eCatalogs-Net G = (N, E1, E2, W, £) and produces a consistent eCatalogs-
Net G’ = (N', E|, E;, W', £'). We first list the operations in Table 2 and then give details
in the following subsections.

DYNAMIC RESTRUCTURING OF E-CATALOG COMMUNITIES 335

Table 2. eCatalogs-Net restructuring operations

Primitive operations Description

setCatCommName (catalogCommunity ¢, String n) Setthe name of catalog community c to n.

addPeer (catalogCommunity cj, Add a PeerCommunityOf relationship
catalogCommunity cj) from ¢; to ¢ with default weight of 0.5.

delPeer (catalogCommunity cj, Delete the PeerCommunityOf relationship
catalogCommunity c5) from ¢; to cj-

updatePeer (catalogCommunity cj, Update the weight of the PeerCommunityOf
catalogCommunity cj, Weight w) relationship from ¢; to ¢;, by w.

addsub (catalogCommunity cj, Add a SubCommunityOf relationship
catalogCommunity cj) from ¢; to cj-

delSub (catalogCommunity cj, Delete the SubCommunityOf relationship
catalogCommunity c5) from ¢; to cj.

createCatComm (String n, GeneralInfo gi, Create a new catalog community with
Members m, CommProdAttr gs) Name n, GeneralInfo gi,

Members m, CommProdAttr gs.

superCatComm (catalogCommunity c) Return the super-catalog community of c.
subCatComm (catalogCommunity c) Return direct sub-catalogs communities of c.
indSubCatComm (catalogCommunity c) Return direct and indirect sub-communities
of c.
addBookmark (catalogCommunity c, Add a bookmark (b, sa) to Bookmarks
BookmarkId b, SegActions sa) of c.
delBookmark (catalogCommunity c, Remove the bookmark b from Bookmarks
BookmarkId b) of c.
updateBookmark (catalogCommunity c, Replace every occurrence of colg With cpew
BookmarkID b, catalogCommunity cgid. in a bookmark path associated with b in
catalogCommunity Cpew) community c.
High-level operations Description
delCatComm (catalogCommunity c) Delete the catalog community c.
moveCatComm (catalogCommunity cj, Move the catalog community c¢; to its new
catalogCommunity c5) super-community c;.
mergeCatComm (catalogCommunity cj, Merge two existing catalog communities ¢;
catalogCommunity c5, String n) and Ccj and set the name of new catalog com-
munity to 7.
splitCatComm(catalogCommunity c, Split the catalog community ¢ into two sep-

GeneralInfo gic, String n, GeneralInfo gi, arate catalog communities.
Query g, CommProdAttr cpa,
setOfCommunities sub)

4.1. Primitive operations

In the following, we introduce primitive operations in details. For each operation intro-
duced here, we show signature, preconditions and the effects.

336 PAIK ET AL.

setCatCommName (catalogCommunity ¢, String n)

Precondition: c € N AVc' € N — {c}, £(c') # n.
Effects: c.NameC is setton (i.e., ¢ .NameC = n).

addPeer (catalogCommunity cj, catalogCommunity c5)

Precondition: there should be no existing PeerCommunityOf relationship from c;
to ¢j, and ¢;, c; are not related by a super, or sub-community relationships (i.e.,
(ci.cj) ¢ Ex Acicj ¢ (ELUETDHT).

Effects: A new edge from ¢; to c; is created. We get a graph G = (N,E,E,U
{Cci,cp)}, €, WU {((ci, cj), 0.5))).

delPeer (catalogCommunity cj, catalogCommunity cj)

Precondition: (c;, cj) € Ea.
Effects: The existing edge from c¢; to ¢; is removed. The output graph is G’ =
(N, Er, Ex —{(ci,cj)}, £, W —{(ci, cj), W(ci, cj))).

updatePeer (catalogCommunity cj, catalogCommunity cj,
Weight w)

Precondition: (cj,cj) € Ex A—1 <w < 1.

Effects: The weight of PeerCommunityOf relationship from ¢; to ¢;, W(c;, cj)
is updated. If W(c;,cj) +w > 1 then W/(C,‘,Cj) =1, if W(c,cj))+w<0
then W(c;, cj) =0, and otherwise W'(c;,cj) = W(ci,cj) +w. We get a graph
G' = (N,Ei, Ey, WU {W(c, i)},).

addSub (catalogCommunity c;, catalogCommunity cj)

Precondition: (ci, c;) ¢ (E1UE[)* U Es.
Effects: A new SubCommunityOf relationship from ¢; to ¢; is created. We get a graph
G' = (N, E1U{(ci,cj)}, E2, W, 0).

delSub(catalogCommunity c;, catalogCommunity c5)

Precondition: (¢;, cj) € Eq.
Effects: The SubCommunityOf relationship from ¢; to ¢; is removed. We get a graph
G' = (N,E1 —{(ci,cj)}, E2, W, 0).

createCatComm(String n, GeneralInfo gi, Members m,
CommProdAttr gs)

Precondition: Yc € N, £(c) # n.

Effects: A new catalog community is created. The new catalog community named n
does not have a relationship to any other catalog community yet (i.e., must be followed
by addSub () operation).

superCatComm (catalogCommunity c)

Precondition: c € N — {Al1Catalog}.
Effects: A catalog community which has SuperCommunityOf relationship with c is
returned (i.e., return ¢ such that (¢, c¢1) € Ey).

DYNAMIC RESTRUCTURING OF E-CATALOG COMMUNITIES 337

subCatComm (catalogCommunity c)

Precondition: ¢ € N.

Effects: A set of catalog communities which, directly, have SubCommunityOf rela-
tionship with ¢ are returned (direct sub-communities) (i.e., return all ¢; € N, such
that (c1, ¢) € Ey).

indSubCatComm (catalogCommunity c)

Precondition: c € N.

Effects: A set of catalog communities which, directly or indirectly, have SubCom-
munityOf relationship with ¢ are returned (indirect sub communities) (i.e., return all
c1 € N, such that (c1, ¢) € E}).

addBookmark (catalogCommunity ¢, BookmarkId b,
SegActions sa)

Precondition: c € N AV(id, seqact) € c.Bookmarks, b # id.
Effect: c.Bookmarks = c.Bookmarks U {(b, sa)}.

delBookmark (catalogCommunity ¢, BookmarkId b)o

Precondition: c € N A (b, @) € c.Bookmarks.
Effect: c.Bookmarks = c.Bookmarks — {(b, ¢)}.

updateBookmark (catalogCommunity ¢, BookmarkID b,
catalogCommunity co1g, catalogCommunity Cpew)

Let BP(b) be a function that produces the bookmark path from a bookmark id b.
Precondition: c, cold, Cnew € N A (b, @) € c.Bookmarks A coig € BP(b).
Effect: Vc; € BP(b), if ¢; = coiq then ¢; = cpew.

4.2. High-level operations

High level operations are more complex operations such as deleting, moving, splitting,
or merging catalog communities. Each high level operation is defined as a sequence of
primitive operations.

4.2.1. Deleting a community. The operation delCatComm () removes a catalog com-
munity from the eCatalogs-Net. It is used, e.g., when a catalog community becomes obso-
lete (e.g., has no useful existence inside the eCatalogs-Net). Figure 2 illustrates the effects
of this operation (deletion of community E). All incoming and outgoing edges of E (i.e.,
super- and sub-community, peer-community relationships) have to be removed and book-
marks also have to be checked for validity.

delCatComm (catalogCommunity c)
Precondition: c € N — {Al1lCatalog}.

338 PAIK ET AL.

Figure 2. Deleting a catalog community.

Effects:

e Remove the SuperCommunityOf relationship of ¢ (i.e.,do delSub (c, superCat-
Comm (c))).

e Remove all (direct) SubCommunityOf relationships from ¢’s sub-communities to ¢
(i.e., Ycj returned by subCatComm (¢), do delSub(cy, c)).

e Remove all incoming PeerCommunityOf relationships of ¢ (i.e., Vc3 € {c3](c3,¢) €
E;}, dodelPeer(cs,c)).

e Remove all outgoing PeerCommunityOf relationships of ¢ (i.e., Vea € {c4|(c, ca) €
E;}, dodelPeer(c,cy)).

e Relink all orphan catalog communities to ¢’s super-community (i.e., for every c;
which has been identified in the second step, do addSub (superCatComm (c) ,
c2)).

e Check validity of all bookmarks. Ycs5 € N, for each bookmark b € c5.Bookmarks,
if BP(b) contains ¢, do delBookmark (cy, b).

After deletion of a catalog community E, we delete all bookmarks that reference the
community E because such bookmarks are now invalid. That is, any bookmark that con-
tains an action which navigates to, or submit a query to E is identified and removed. Also,
the members of E will be automatically registered with A11Catalog (i.e., the default
catalog community). However, a member can find another catalog community that they
wish to join afterwards.

4.2.2. Moving a community. The operation moveCatComm () moves a community ¢
from one place to another, by changing its super-community. This operation is used, e.g.,
when an administrator is convinced that the current super-community of ¢ does not effec-
tively represent the domain of products in c.

For example, in Figure 1, the community HardDrive is sub-community of Periph-
erals. Let us assume that observation of user navigation behavior shows that community
Storage is more suitable super-community for HardDrive. This may suggest that it is
beneficial to move HardDrive to Storage. When a community ¢ is moved, all of its
sub-communities are moved with ¢. This creates less overhead, since sub-communities of
¢ do not get affected by the change. The effects of the operation are described in Figure 3
(moving community E from its super-community B to the new super-community C). E’s
sub-communities, i.e., G and H remain as sub-communities of E. However, since a catalog
community cannot be a peer of its super-community, the PeerCommunityOf relationship
from H to C has to be deleted.

DYNAMIC RESTRUCTURING OF E-CATALOG COMMUNITIES 339

Inconsistency

Figure 3. Moving a catalog community.

moveCatComm (catalogCommunity ¢, catalogCommunity newSuper)
Precondition: ¢, newSuper € N A (NewSuper, ¢) ¢ Ef‘
Effects:

e Remove the SuperCommunityOfrelationship of ¢ (i.e., dodelSub (¢, superCat-
Comm (c))).

e Add c to sub-community of newSuper (i.e., addSub (¢, newSuper)).

e Remove all outgoing PeerCommunityOf relationships of ¢’s (direct and indi-
rect) sub-communities to newSuper (i.e., Ve € {c1|indSubCatComm(c) A
(c1,newSuper) € E»},do delPeer (cy, newSuper)).

e Remove all incoming PeerCommunityOf relationships of newSuper to ¢’s (di-
rect and indirect) sub-communities (i.e., Yc» € {ci|indSubCatComm(c) A
(newSuper, c1) € E»}, do delPeer (newSuper, cy)).

e Remove all PeerCommunityOf relationships between ¢ and newSuper (i.e., if
(c,newSuper) € E, do delPeer(c, newSuper) or if (newSuper,c) € E»
do delPeer(newSuper, ¢)).

e Check validity of all bookmarks. Yc3 € N, for each bookmark b € c3.Bookmarks,
if BP(b) contains ¢, do delBookmark (c3, b), where corresponding actions of ¢
in b are either NavigateToSuper or NavigateToSub.

After moving E, we identify all bookmarks that have become invalid by the operation.
Note that even though E is moved, all incoming/outgoing PeerCommunityOf relationships
of E are not affected by the operation (i.e., the edges are still valid, pointing to E). Hence,
for move operation, we only check for existence of actions that navigate to E through
NavigateToSuper or NavigateToSub.

4.2.3. Merging communities with the same super-community. The operation
mergeCatComm () merges two communities ¢ and ¢’ which have the same super-
community.7 It is used, for example, when it is observed that the two catalog communities
c and ¢’ are always accessed together. Hence, it is beneficial that these two catalog commu-
nities are merged, so that the majority of users do not have to visit two separate communi-
ties each time. Figure 4 illustrates the effects of mergeCatComm () . It shows that a new
community is created from merging communities B and C. The super-community of the
new community is the super-community of B and C (i.e., A). All sub-communities of B
and C (i.e., D, F and G) are sub-communities of the new community. All PeerCommuni-
tyOf relationships between B and C, as well as between B and all of C’s sub-communities,

340 PAIK ET AL.

All these cause inconsistency

o
when Band C are merged

Figure 4. Merging two catalog communities of the same super-community.

C and B’s sub-communities should be deleted to maintain the consistency of the eCatalogs-
Net. Also, all PeerCommunityOf relationships coming from other communities into B and
C need to be updated, i.e., the PeerCommunityOf relationships would refer to the name of
the new community B&C, instead of either B or C.

mergeCatComm (catalogCommunity c, catalogCommunity c’,
String newName)

Precondition: c,c’ € N A p = superCatComm(c), p’ = superCatComm(c’) A

p = p’ (s0, let p be the super-community of both ¢ and ¢’).

Effects:

e Create a new community definition which merges the definitions ¢ and ¢’ (i.e.,
createCatComm (newName, gi,m,gs), where gi = c.GeneralInfo U
c¢/.GeneralInfo,m = c.Members U ¢’.Members and gs = c.CommProdAttr
U c'.CommProdAttr).

e Let cpew be the newly merged community. Set temporary Sub(Super)CommunityOf
relationships of cpew. p becomes cpew’s super-community and ¢, ¢’ are sub-com-
munities of cpew (i.€., do delSub(c,p), delSub(c’,p), addSub (Cnew,P),
addSub (¢, Cpew) > addSub (¢’, Cnew)).

e Remove all PeerCommunityOf relationships between ¢ and ¢’ (i.e., if (¢, ¢’) € E; do
delPeer (c,c’) orif (¢, c) € E» do delPeer (c/, c)).

e Remove all PeerCommunityOf relationships between any sub-community of ¢
and any sub-community of ¢’ (i.e., Ve; € {ci|subCatComm(c) A (c1,c’) €
E>}, do delPeer(c1,c’), Yeu € {cplsubCatComm(c’) A (c2,¢) € E3}, do
delPeer (cy,c)).

e Replace references to ¢ (respectively, ¢’) in all PeerCommunityOf relationships of ¢
(respectively, ¢’) with cpew (i.€., Ve1 € {c1 € N|(c1,¢) € E3}, do addPeer (cq,
Cnew) - YC2 € {c2 € N|(c, ¢3) € E3}, do addPeer (Cnew, C2)).

e Delete c and ¢’ (i.e., do delCatComm(c), delCatComm(c’)).

e Check validity of all bookmarks. Vc3 € N, for each bookmark b € c3.Bookmarks,
if BP(b) contains (x,c) or (c, x), where x # ¢, do updateBookmark (cs, c,
Cnew . b) . Also, for (x, ¢’) or (¢/, x), where ¢’ # x,do updateBookmark (c3, c’,
Cnew: D).

DYNAMIC RESTRUCTURING OF E-CATALOG COMMUNITIES 341

F Moved to B

Figure 6. Splitting a catalog community.

As for checking validity of bookmarks, from looking at Figure 4, it is clear that the oper-
ation keeps all incoming/outgoing PeerCommunityOf relationships of B and C. The only
concern is that both B and C are now replaced by B&C. Therefore, for all communities
whose bookmark path contains references to either B or C, we update those references in
bookmarks with the new community name.

4.2.4. Merging communities with different super-communities. A situation may exist
where it is beneficial to merge two catalog communities, but they have different super-
communities. In this case, we first move one of the two communities so that both
of them would have the same super-community and then merge them using merge-
CatComm (). For example, in Figure 5, to merge communities £ and F, moveCat-
Comm (E, C) is used first to move E to C and then mergeCatComm (E, F) is called to
merge E and F.3

4.2.5. Splitting a community. The operation splitCatComm /() splits an existing
catalog community into two separate communities. This operation is used, e.g., when
it is observed that the community represents a domain (described by community at-
tributes) which can be divided into smaller subdomains. This situation is illustrated in
Figure 6. Note that as a result of split, one new community is created out of an ex-
isting one. The definition of the existing community is updated to reflect this change
(e.g., remove community attributes, or members that have been moved to the new commu-
nity).

Figure 6 illustrates that when the community B is split, a new community B’ is created
out of B. All incoming and outgoing PeerCommunityOf relationships of B are inherited
by B’. Also, if it is necessary, some of the sub-communities of B can be moved to B’.

342 PAIK ET AL.

splitCatComm(catalogCommunity ¢, GenerallInfo gic,
String Name, GenerallInfo gi, Query mg, CommProdAttr cpa,
setOfCommunities sub)

Precondition: c € N AVc¢; € N, £(c;) # Name.

Effects: Let p = superCatComm(c) and cpew the new catalog community.

e Create a new catalog community and initialize its attributes and sub-community rela-
tionships using the operation parameters (i.e., do createCatComm (Name, gi, m,
cpa) where m is the result of the query mq).

e Add the new SuperCommunityOf relationship of cpew (i.e., do addSub (Cpeyw, P)).

e Create new PeerCommunityOf relationships: (i) for every incoming PeerCommu-
nityOf relationship of ¢ (i.e., {x € N|(x, c) € E»}), do addPeer (x, Cney) (ii) for
every outgoing PeerCommunityOf relationship of ¢ (i.e., {y|(c,y) € E3}), do
addPeer (Cpey,y). This way, all incoming/outgoing PeerCommunityOf relation-
ships of ¢ are inherited by cpew.

e Update the GeneralInfo of ¢ with gic (this operation mainly affects the domain
of ¢).

e For each community ¢; € sub, do moveCatComm (C;, Cney) -

e Check validity of all bookmarks. Yc; € N, for each bookmark b € c;.Bookmarks,
if BP(b) contains ¢, do delBookmark (cy,b).

Since B has been split into two communities, for any action in a bookmark path that
refers to B, it is difficult to automatically decide whether to replace B with B’ or leave it
as it is. Currently, the definition of operation is set to delete the bookmarks that contain B.
However, it is also a possibility that we give an administrator the choice of either deleting
it, or updating it manually when the bookmark is identified.

The split of an existing catalog community needs careful consideration about “how”
each element (i.e., attribute or relationships) in the community should be treated. It is
an administrator’s responsibility (e.g., person who is performing the changes) to decide
how the attributes GeneralInfo, CommProdAttr, Members and SubCommunityOf
relationships should be initialized. This information is specified via operation parameters.
We will see in the next section, that the use of interaction patterns will help initializing the
attribute CommProdAttr of both communities.

Parameters of the splitCatComm () include the community being split, specification
of its GeneralInfo, and specification of elements of the new community. The specifi-
cation of elements of the new community includes the following: Name, GeneralInfo,
Query, CommProdAttr, and a set of sub-communities to be moved to the new one.
Query is a query which will be used by the operation to select members to be moved.
Note that sub-communities and members are from the community being split.

5. Predefined interaction sequences

Predefined interaction action sequences represent foreseeable user catalog navigation be-
havior. In our approach, we use these sequences of actions to help identify situations where

DYNAMIC RESTRUCTURING OF E-CATALOG COMMUNITIES 343

the organization of an eCatalogs-Net may be improved by means of restructuring opera-
tions. If a particular sequence of actions has prevalent occurrences, it should be recognized
as a recurring user navigation pattern. Each navigation pattern suggests a restructuring
operation. This result in continuous improvement of the organization of an eCatalogs-Net
based on user interaction patterns. A Predefined Interaction Sequence (PIS) is formally
defined as follows:

Definition 9 (Predefined Interaction Sequence (PIS)). A denotes the set of all permissible
user actions (see Table 1). A predefined interaction sequence PIS of lengthn (n > 0) is a
vector of ordered user actions PIS = {(a, as, ..., a,) wherea; € A(i =1,...,n).

For a given PIS, there may exist a session s such that the exact order of actions in PIS
can be found in s. A predefined interaction sequence is matched against each session in
the processed log file to check whether the sequence exists in the session. We refer to the
number of occurrence of a PIS in the log file as Frequency. A formal definition and other
related issues with calculating the confidence of a pattern will be presented in Section 6. In
the following subsections, we present a set of predefined interaction sequences. It should
be noted that, in addition to the predefined interaction sequences introduced, more patterns
can be identified and defined as needed.

5.1. Merging communities

This subsection introduces a generic sequence that describes situations where merging of
communities may be beneficial. We also identify some interesting sequences which repre-
sent special cases of the generic sequence.” It is worth noting that in any of the sequences
we introduce, it is important to identify the target catalog community the user was seeking
in the particular sequence. Generally, in this paper, we use the action SubmitQuery as
the factor that defines the target community, since it is the most appropriate action in indi-
cating a user’s strong interests in a community. However, an administrator may decide to
choose other actions or define new ones such as PurchaseItem for the same purpose.

Definition 10 (PISGenericMerge)- PISGenericMerge Which represents the situations where two
communities are always queried together, is

PISGenericMerge = {SubmitQuery(c;, q1), ai, .. ., an, SubmitQuery(cj, g2)),

where ¢;, cj € N, a; € {NavigateToSub, NavigateToSuper, NavigateToPeer}
(k=1,...,n),and q1, g2 are global query attributes (i.e., community attributes).

PISGenericMerge Captures interaction sequences where users, within a catalog commu-
nity ¢;, first submit a query then perform several navigation actions to reach a catalog com-
munity c¢; from where they finally submit another query (see Figure 7). In the following,
we present particular cases of PISGenericMerge-

344 PAIK ET AL.

A number of NavigateToSub,
NavigateToSuper, or
NavigateToPeer in between.

9
SubmitQuery Merge 7 SubmitQuery

Target Target

Figure 7. Generic PIS for merging two catalog communities.

[Example]

INavigateToSub

4,SubmiIQuery ToSupér

Merge ? Target || SumiQuery 4 SubmitQuery

1.SubmitQuery 3 NavigateToSub

Targe

2 NavigateToSuper

Figure 8. PIS for Merge 1.

3.SubmitQuery 1.SubmitQuery

Target Target

“.
3.SubmitQuery @%
§\zﬂ°§ Target

2 NavigateToSub

1.SubmitQuery
OR

Figure 9. PIS for Merge 2 (two possible sequences).

Merge 1. As shown in Figure 8, PISMerge1 is a particular case of PISGenericMerge, Where
two sub-communities of the same super-community are always accessed together without
using any PeerCommunityOf relationship. In the example of Figure 8, determining prices
of a CPU as well as a RAM requires visiting two catalog communities. If this sequence is
observed frequently, it may imply that the two catalog communities should be merged to
form one catalog community.

Definition 11 (PISMerge1). PISMerge1 is described as

PISMereer = (SubmitQuery(c;, q1), NavigateToSuper(c;, ¢k),
NavigateToSub(c, cj), SubmitQuery(c;, g2)),

where ¢;, ¢j, ck € N and (ci, ck), (cj, ck) € Ej.
Merge 2. 'The PISperger (see Figure 9) shows a situation where a catalog community

and its super-community are always queried together. We have two possible sequences
depending on whether the super-community is queried first.

DYNAMIC RESTRUCTURING OF E-CATALOG COMMUNITIES 345

[Example]

3 SubmitQuery

Targ ! C)Target
.......... !

Merge? 1 SubmitQuery 3.SubmitQuery

Figure 10.

Merge 7 1.SubmiQuery 3.SubmitQuery

Figure 11. PIS for Merge 3 (b).

Definition 12 (PISMerge2). PISMerge2 has two possibilities and they are defined as
PISMergez = (SubmitQuery(ci, q1), a(ci, ¢j), SubmitQuery(cj, q2)),

where a € {NavigateToSuper,NavigateToSub}, ¢, c; € N, and (c;,cj) €
EyUE;".

Merge 3. PISmerge3 shows a similar situation as PISperge1 using NavigateToPeer
instead of NavigateToSub or NavigateToSuper. There are two possible sequences
(cases (a) and (b) from Figures 10 and 11) depending on whether ¢; and c; have the same
super catalog community or not.

Definition 13 (PISMerge3). PISMerge3 is described as

PISMerges = (SubmitQuery(c;, q1), NavigateToPeer(ci, cj),
SubmitQuery(cj, ¢2)),

where ¢;, ¢c; € N and (¢;, ¢j) € E.

5.2. Splitting a community

A catalog community may be split, if a subset of community attributes are always queried
together and the subset can represent a specific domain by itself. One way to detect this
situation is to observe the way the community attributes are queried. The following pattern
is used to identify a subset of attributes that are always queried together. In this pattern, an
administrator has a specific catalog community in mind (c;) that she/he wants to examine
for possibility of splitting, and a set of attributes she/he predicts to be queried together.

346 PAIK ET AL.

1.NavigateToSub

T
° SubCommunityOr 2 LeaveCatalog [Example] 1.NavigateToSub

Communit;
Wrong 4
OR SubCommunityQf Memory
1.NavigateToSuper -
2.LeaveCatalogCommunity
° SubCommunityOr ° 2.LeaveCatalog
Community

Wrong

Figure 12. PIS for deleting a catalog community.

Definition 14 (PISgpiit). PISspiic which represents the pattern for splitting a catalog com-
munity, is

PISspiit = (SubmitQuery(c;, “attry,...,attr,”)),

where ¢; € N, n < number of community product attributes in ¢;, and attry, ..., attr,
are community attributes that are likely to be queried together.

5.3. Deleting a community

If there is a catalog community that users are constantly leaving without performing any
further action, it may be beneficial to delete it. This situation is illustrated in Figure 12. If
it is observed that the community is obsolete (i.e., has no useful existence), the community
can be deleted.

Definition 15 (PISpeicomm)- PISpeicomm Which represents a situation where Navigate-
ToSub or NavigateToSuper is always followed by LeaveCatalogCommunity,
is

PISpeicomm = {a(ci, ¢j), LeaveCatalogCommunity(c;)),

where ¢;,c; € N, (¢i,cj) € E1 U El_l, and a € {NavigateToSub, NavigateTo-
Super}.

5.4. Moving a community

If users are constantly leaving community ¢ without doing any further action, it may be
worthwhile to consider moving it to other location (i.e., to different super-community)
where the domain of products is more relevant to the community c¢. Having the super-
community which correctly represents the community’s product domain will increase the
chance of getting the user access.

In such case, we need to identify where ¢ should be moved to. To find a new super-
community for ¢, we use Expected Locations [25]. Given that the goal of a user is to find
a catalog community c, the expected locations of ¢ are locations in which the user thought

DYNAMIC RESTRUCTURING OF E-CATALOG COMMUNITIES 347

Togend

[.NavigateToSub

Expected Location

7.Navigate
.6.Navigat e ToPeer
ToSuper

8.Navigate
2.Navigate ToSub

ToSub

5.Navigate
ToSuper

4 Navigate
U ToSub —
C #3.Navigate i D

? ~" ToSuper

Figure 13. Expected Locations.

9.SubmitQuery
Target

(i.e., predicted) to find c, but turns out to be false predictions. That is, ¢ was located
somewhere else. Figure 13 explains the concept of expected locations in which the user
visits community C and D before finding (and submitting query to) the community R.
Therefore, it can be assumed that the user was looking for the community R, and the
communities C, and D were the expected locations for it.

In our approach, we identify expected locations of a given community from users’ in-
teraction actions. Assume that a user is looking for a community c. While navigating
eCatalogs-Net, when the user backtracks from any community ¢’ without doing further
action, we assume the community ¢’ is an expected location of ¢. Those backtrack actions
are marked by interaction patterns such as a sequence of (NavigateToSub(cl, c2),
NavigateToSuper(c2, cl)) !0 or (NavigateToPeer (cl,c2), NavigateTo-
Peerc (c2,cl)). There may be more than one expected location for a given community
(e.g., R had two expected locations, C, D in Figure 13). The following pattern is used
to identify all expected locations of a community c. Among those expected locations, we
choose the one with most prevalent occurrences.

Definition 16 (PISmove). PISmove Tepresents a situation where a number of backtrack ac-
tions occurred before a SubmitQuery action:

PISmove = (a1, a2, ..., an, SubmitQuery(c, q)),

where ¢ is the community which is considered for move, and (co, c1, 2, . .., ¢,) (corre-
sponding sequence of communities of (a1, aa, ..., a,)) satisfies:

e ch=c,cio1 #ci,and (cio1,¢) € EFUET UE (i = 1,...,n),
e oneofthec; (i =1,...,n — 1) is the expected location.

5.5. Updating a PeerCommunityOf relationship

We now discuss predefined interaction sequences designed to observe the usage patterns
of an existing PeerCommunityOf relationship and identify situations where we can up-
grade/downgrade its weight (via updatePeer () operation). The predefined interaction
sequences of this category will help: (i) decide whether to keep or delete the PeerCom-
munityOf relationship, (ii) determine which PeerCommunityOf relationships are more

348 PAIK ET AL.

1.NavigateToPeer

. Portable
----- PeerCommunityOf -~ 2.SubmitQuery HDD

Target 2.SubmitQuery

Figure 14. PIS for upgrading the weight of PeerCommunityOf relationship.

relevant for a given community, and (iii) detect situations where the creation of a new
PeerCommunityOf relationship is beneficial (i.e., result in improved organization of an
eCatalogs-Net).

5.5.1. Upgrading the weight of a PeerCommunityOf relationship. This PIS concerns
upgrading the weight of a given PeerCommunityOf relationship in order to consolidate the
relevancy of this relationship. Figure 14 describes a situation where users navigate from
community ¢;, via PeerCommunityOf relationship, to community c¢;, and submit a query
to c¢j. This indicates that ¢; is the target community users are looking for. The PeerCom-
munityOf relationship in ¢; positively contributed in finding the target. The related PIS is
defined as follows:

Definition 17 (PISypgrade). PISupgrade Which represents the situation where Navigate-
ToPeer is always followed by SubmitQuery, is

PISyperade = (NavigateToPeer(c, ¢j), SubmitQuery(cj, q)),

wherec;, cj € N, (¢, cj) € E3, and q is global query attributes (i.e., community attributes).

When there exist sequences in the log file that give this pattern a high frequency (sub-
ject to the administrator’s interpretation), the weight of PeerCommunityOf relationship
from ¢; to ¢; is increased. If the weight of a PeerCommunityOf relationship in a source
community ¢; reaches the higher threshold (e.g., value of 0.95 out of 1), the target of the
relationship (i.e., ¢;) is considered to be highly relevant alternative to c;.

5.5.2. Downgrading the weight of a PeerCommunityOf relationship. PISs of Fig-
ure 15 show interaction sequences where users follow a PeerCommunityOf relationship
and arrive at a community ¢;. However, they ultimately leave the community without
performing any further action. This may indicate that c; is not relevant to these users.
Figure 15 displays two different possibilities of leaving a community. Users can either per-
form LeaveCatalogCommunity or NavigateToPeer. The former will lead users
to default community AllCatalog and the latter is only possible when there exist an inverse
PeerCommunityOf relationship (i.e., from c; to c;).

Definition 18 (PISdownByLeave): PISdownByLeave Which represents a situation where
NavigateToPeer is followed by LeaveCatalogCommunity, is

PIS4ownByLeave = (NavigateToPeer(c, ¢j), LeaveCatalogCommunity(c;)),

where ¢;, c; € N, (¢i, ¢j) € En.

DYNAMIC RESTRUCTURING OF E-CATALOG COMMUNITIES 349

[Example]

1.NavigateToPeer

----- PeerCommunityOf - 2.LeaveCatalog ---PeerCommunityOf
Community

Wrong
2. LeaveCatalogCommunity

1.NavigateToPeer

E: ! .
[Example] 1.NavigateToPeer

----PeerCommunityOf -
Backup
-PeerCommunityOf ==~ Devices

2.NavigateToPeer

~~~~~~ PeerCommunityOf -~
--PeerCommunityOf =~ -----

Wrong

2.NavigateToPeer

Figure 15. Two PISs for downgrading the weight of a PeerCommunityOf relationship.

Navigate ToQverlap [ Example ]

1.NavigateToPeer

-PecrCommunilyOf -

PecrCommunityOf

. . 2.NavigateToSub
Anumber of NavigateToPeer
N\ e ¢ o NavigateToSub ,or NavigateToSuper

%u,>\ ) ™ 3.NavigateToPeer
et SubmitQuery /ch,\\ .
Bty S “Cou,
(e S > Mipn, Wy op
B ' Target "a/,;(; ~~~~ :
-------- >
>
4.SubmitQuery

Figure 16. PIS for creating a PeerCommunityOf relationship.

Definition 19 (PISgownByPeer)- PISdownBypPeer Which represents a situation where
NavigateToPeer is followed by another NavigateToPeer to go back to the source
community of the former NavigateToPeer,is

PIS4ownBypPeer = (NavigateToPeer(c;, ¢j), NavigateToPeer(c, ¢;)),

where ¢;, c; € N, (¢i, ¢j), (cj, ¢i) € Ea.

Whenever this pattern (i.e., one of the two described sequences) gets a high frequency,
the weight of the PeerCommunityOf relationship from ¢; to c; is decreased.

5.5.3. Creating a PeerCommunityOf relationship. Here, we introduce another PIS that
may suggest the creation of a new PeerCommunityOf relationship (via addPeer () op-
eration). This PIS is used to identify communities that are constantly used as stop-overs.
Therefore, it may be beneficial to create direct PeerCommunityOf relationships so that
users can bypass them (see Figure 16, for example).

Definition 20 (PIS¢reatepeer)- PIScreatePeer Which represents a situation where there are one
or more navigational actions between NavigateToPeer and SubmitQuery, is

PIScreatepeer = (NavigateToPeer(c;, ¢k), a1, .. ., ap, SubmitQuery(c;, q)),



350 PAIK ET AL.

where a, € {NavigateToSub,NavigateToSuper,NavigateToPeer} (p =
I,...,n),ci,cj,ck € N, (ci,cr) € Ez,and (¢, ¢j) ¢ Eq1 U El_1 U Ej.

If the PeerCommunityOf relationship between ¢; and c; exists already, the weight of the
relationship will be increased.

5.5.4. Deleting a PeerCommunityOf relationship. For the purpose of deleting an ex-
isting PeerCommunityOf relationship, we consider patterns defined for downgrading the
weight of a PeerCommunityOf relationship (i.e., PISqownByLeaves PISdownByPeer). When it
is observed that the weight of a PeerCommunityOf relationship in a community reaches the
lower threshold (e.g., value of 0.05 out of 1), the relationship is considered to irrelevant.
Hence, it can be removed.

5.6. Creating a bookmark

There is no predefined pattern specifically designed to create a new bookmark. However,
an administrator creates new bookmarks according to his/her observation over user’s navi-
gation patterns. An administrator can define a sequence of actions and submit it as a query.
For example, if an administrator suspects that from Hardware, there are many users who
navigate to HDD and then to PortableHardDrives to query for prices, she/he can
query for the following sequence of actions as a pattern:

(NavigateToSub (Hardware, HDD) ,
NavigateToSub (HDD, PortableHardDrives) ,
SubmitQuery (PortableHardDrives, q)).

If the pattern is found to appear frequently, these particular actions can be recorded as a
bookmark and associated with the community Hardware for the convenience of users.

6. Relevance of patterns

In this section, we provide two definitions, namely, frequency and relevance. They are used
to decide whether a PIS can be considered as a pattern for which a restructuring operation
is suggested.

Definition 21 (Frequency). A frequency of a predefined interaction sequence PIS, denoted
by Freq(PIS), is defined as

Freq(PIS) = number of occurrences of PIS in the processed log file.
The frequency of a predefined interaction sequence is used to decide whether the re-

sult of the match is significant enough to consider performing eCatalogs-Net restructuring
operations. We discuss some of the issues that arise from using the patterns.



DYNAMIC RESTRUCTURING OF E-CATALOG COMMUNITIES 351

Table 3. Conflicting and consolidating patterns

o
% o
R S g
¢ £ 2 5 £ 3 3 % .
& z z 5 g 5 5 5 = z
& 8 S 3 o) =) 3
5 <] 3 5 a = p= P 2 =
) v v v 2] 2} 2] 2} 2} 2}
[ 4 [ £ [ = [ = [ 4
2% 2%} 2% 2%} 2% 2%} 2% 2%} 2% 2%}
PISypgrade - - + n n n + n n
PISgownByLeave + - + n n - n n
PISdownByPeer : - + n n - n n
PIScreatePeer - n n n n n
PISpeicomm - - - - -
PlsMergel . . . . . . n n — n
PISMerge2 . . . . . . . n _ n
PISMerge3 : : - n
PISgpit n
PISmove
Legend: n = no conflict, — = conflict, + = consolidation.

First, there is an issue of conflicting patterns where one pattern suggests a certain re-
structuring operation, whereas another pattern leads to a different operation on the same
relationships or communities. For instance, it is possible that the pattern PISypgrade Shows
that the weight of PeerCommunityOf relationship between community A and B needs to
be upgraded, but at the same time, the pattern PISqownBypeer may suggest that the same
relationship should be downgraded.

Second, there is an issue of knowing patterns that can consolidate each other. We refer
to these patterns as consolidating patterns. These patterns, when used together, can rein-
force each other’s findings. For example, suppose that the pattern PISqownByLeave Suggests
that PeerCommunityOf relationship between community A and B should be downgraded.
When PISgownBypeer pattern also suggests downgrading of the same relationship, it con-
firms the need for a restructuring operation. Table 3 lists the identified conflicting and
consolidating patterns among the predefined interaction patterns presented in this paper. In
the following, we discuss a quantitative measure of relevance. Relevance of a PIS, noted
Relevance(PIS), is defined as follows:

RF(cons) RF(cons)

Relevance(PIS) = -log )
RF(conf) RF(conf)

ey

where RF(cons) is a relevance factor of all consolidating patterns of PIS and is equal to

Freq(PIS) + A
RF(cons) = 419 + 4 )
Freq(PIS)
where A is the sum of frequency of all consolidating patterns of PIS. RF(conf) is a rele-
vance factor of all conflicting patterns of PIS and is equal to

_ Freq(PIS) + B

RF(conf) = Freq(PIS) 3)



352 PAIK ET AL.

Table 4. Examples of choosing §

RF(cons) /RF(conf) RF(cons)/RF(conf) - log RF(cons) /RF(conf)

1 0

1.5 0.26413689
2 0.60205999
2.5 0.99485002
3 1.43136376

where B is the sum of frequency of all conflicting patterns of PIS. By using (2) and (3),
(1) becomes

Freq(PIS) + A log Freq(PIS) + A'
Freq(PIS) + B Freq(PIS) + B
In (4), (Freq(PIS)+ A)/(Freq(PIS) + B) shows the degree of deviation of the consolidat-

ing patterns from the conflicting ones. This ratio indicates different relationship between
Freq(PIS) + A and Freq(PIS) + B.

Case 1. If (Freq(PIS) + A)/(Freq(PIS) + B) is close to 1, thatis A ~ B, the frequency of
all conflicting patterns is almost equal to the frequency of all conflicting patterns.

Case 2. If (Freq(PIS) + A)/(Freq(PIS) + B) is less than 1, thatis A < B, then conflicting
patterns occur more frequentlyfrequently than consolidating ones.

Case 3. If (Freq(PIS) + A)/(Freq(PIS) + B) is greater than 1, thatis A > B, then consol-
idating patterns occur more frequently than conflicting patterns.

Relevance(PIS) = 4

In the context of finding relevant patterns, it is obvious that we are only interested in
Cases 1 and 3. Therefore, the logarithm function is taken since log(Freq(PIS) + A)/
(Freq(PIS) + B) is less than O for Case 2. The weight Freq(PIS) + A is added to the mea-
sure to take into account how frequently the consolidating patterns occur. Another weight
1/(Freq(PIS) + B) is introduced to indicate how valid the correlation between consolidat-
ing and conflicting patterns is. Thus, the higher the value Relevance(PIS), the more rele-
vant a pattern PIS. With the above definition of the relevance factors of consolidating and
conflicting patterns, we arrive at the following definition about the relevance of patterns.

Definition 22 (Relevance of a pattern). A pattern PIS is relevant if Relevance(PIS) > 4,
where 6(= 0) is a threshold given by a system administrator.

Table 4 shows examples of how an administrator chooses the value of the threshold §.
For instance, if the administrator decides to say that the pattern is relevant if the sum of its
consolidating patterns is at least twice as much the sum of conflicting patterns, the value
of § will be set to 0.6.

Pers

7. Implementing WebCatalog

In this section, we present the WebCatalog"®™ prototype which implements the concepts

and functionalities of the eCatalogs-Net and its adaptive communities. The purpose of this



DYNAMIC RESTRUCTURING OF E-CATALOG COMMUNITIES 353

WebCatalog 51

Web-Based
User Interface
Catalog

Application User . !
Browse (Sugm'l Query Register Catalog | Provider
Communities 0 Gommunity
Aggregaye
Send info. on Result/Display CatalogBuilder

each action for logging "
LogManager '\:\i‘a/:'?:g;:rn .
Route Query to the Community (Then from Community to Members)
Read ActionDispatcher ¢

Logging Re\ationsh\p/CommunityT Stores Relationship/
Registered

Interact Interact

Pool Of Community Objects

Definition Community Definition
Relationship Definition

Query for
Relationship /
(Community
Definition /
Member
Details etc

Log File

Data
Transformer
Community Definition
S Communities
Processed Metadata Repositary
Log Data |

Update

1 Vi M
Relationship/Community Definitions
oCatalog-Net JDBC JDBC JDBC JDBG
Reorganiser - - - D
Invoke a Restructuring Operation w W w @

Hewlett Packard Intel SamSung Canon

Comeunity
Prnter

Registered Registered

Samsung
Coramraper
I

Storage Registered

P
CatalogWrapper

Log Data

Pattern Query
Engine

Query
Patterns

WebCatalog Admin [ E3

Java Swing:Based Interact
User Interface - >

ok | Geol | An administrator

Pers

Figure 17. Overview of WebCatalog architecture.

implementation is to validate the feasibility of main concepts of eCatalogs-Net, predefined
interaction sequences, and restructuring operations. So far, the implementation has shown
that the ideas of WebCatalog™™ are consistent with one another and are realizable using
existing technologies.

Overall, WebCatalog™™ have been implemented using Java. For persistent storage (log
data and metadata repository), Oracle 8i database is used. The metadata repository in
WebCatalog™™ stores community definitions and the relationships. The interaction with
the database is done via JDBC. The architecture of WebCatalog?®™ is shown in Figure 17.
In the following, we present the main components of WebCataloge™.

7.1. CatalogBuilder

CatalogBuilder allows community creators to build a community and also provides
product catalog providers with methods to register their local product catalog to a commu-
nity. To cater for community creation and catalog registration, CatalogBuilder has
two classes: CommunityWrapper and CatalogWrapper.

The CommunityWrapper class has a set of attributes which describes the underlying
product catalogs (i.e., community attributes). One of the methods provided by the class
is called register_catalog which takes information from a local product catalog
provider and register the catalog to the community as a member. When a catalog provider
registers with a community, the participating catalog provider is represented in the com-
munity as an instance of CatalogWrapper class. Another method query_catalog



354 PAIK ET AL.

in CommunityWrapper class is used to send a user’s query (e.g., global query) to cor-
responding member of the community (i.e., an instance of CatalogWrapper).

The CatalogWrapper class has a set of attributes which describes a product cat-
alog (i.e., local product catalog attributes). One of the methods in the class is called
trans_qguery which loads a translator program that translates (i.e., maps) a global query.
This is expressed using community attributes to a local query which is expressed using lo-
cal product catalog attributes. The output of the query is translated back into the global
format and made accessible through the method get_query_result.

7.2. NavigationManager

The Web-based user interface of WebCatalog™™ provides navigation methods for cus-
tomers to interact with eCatalogs-Net. NavigationManager provides two classes,
namely, ECatalog and ECatalogNet. The class ECatalogNet provides methods
to manipulate eCatalogs-Net graph such as addSub (), getPeerCommunity (). The
ECatalog class provides methods to manipulate single node representing a community
(e.g., setCommName (), getMembers () ). Four JSP programs, namely, ViewCat-
alog, ShowMembers, QueryHandler and ErrorPage use the classes to display
the eCatalogs-Net and handle user actions (e.g., navigation, querying, listing of members
etc.). Especially, ActionDispatcher servlet, which acts as a dispatcher of all user’s
actions, diverts each user action to a proper submodule. For example, all navigation ac-
tions (NavigateToSub, NavigateToSuper, NavigateToPeer) are delivered to
ViewCatalog.

The Web-based user interface also allows catalog providers to register their catalogs with
communities. It uses the register_catalog method of CommunityWrapper and
the registration details provided by the catalog providers (e.g., product attributes, product
domain, attribute mapping information etc.).

7.3. LogManager

The ActionDispatcher servlet also sends parameters of each action to the
LogManager for logging. The LogManager provides a Java class called User-
ActionLogger. This class contains methods which creates log entries. Logged data
is fed into the DataTransformer which performs sessionizing, extraction of global
query attributes. An administrator can operate this module periodically (e.g., every week).

7.4.  Reorganizer

We implemented a Java Swing-based GUI application to be used by an administrator. It
interacts with Pattern Query Engine and eCatalogNetReorganiser. The
Pattern Query Engine processes queries for the predefined interaction sequences.
Currently, we have implemented a set of pattern query using PL/SQL, which is written



DYNAMIC RESTRUCTURING OF E-CATALOG COMMUNITIES 355

s Generellrfo
Peripherfals ey e

A wadliary device, such os a printer moderm, or sorag system, that works n conjunctonwiha  Domain Compute:parts

Prodc: Atrboite
Supsr Catelog: aiare i o
Devicelame Sting
DeviceType Sting |
© AllCatalog > Inteimet.: (0.5) ModelNunber Integer
inintercomected spstern o networks that conects competers.
MamiachreDate Date

Sub Catalogs: WarrentyPerod Integer

Crerlapts) - related catalogs

Pristess Digitel Camerss Mdenss MadeComy Stang
Aderice A camesath: & devicefor ;
that arits captwres and transiiting usually atrbutes: |
testar tores stllbmages digitdl dataover
gaphics on s digtal . ephn s
paper Zondtions
Displass Reshonts
HaudDries
Toprovide & setotkeys,ason
A ditkdrive ftenmaton or @ computer
hatreads gaplicsona erminal,word

data stored scres Sor, . Vi P
atastoreq craen pracessor, ty. F Show Mombers B

Figure 18. The main user interface — for navigation.

for each pattern we have introduced in this paper. It searches, session by session, for any
sequence that matches the predefined interaction sequence and returns the actual match-
ing sequences with a frequency. eCatalogNetReorganiser mainly communicates
with the repository. An administrator can invoke any of the defined restructuring opera-
tions through this interface, which involves manipulation of the relationships definitions
and community definitions.

7.5.  Computer and related services application

In order to demonstrate the viability of this architecture, we took examples of product cat-
alogs from the domain of computer and related services and created 27 communities (as in
Figure 1), each community having 3—4 members (i.e., catalog providers). The Catalog-
Wrapper class of product catalog is associated with a Java application which accesses
the product catalog’s local database and handles the translation between global and local
query. The application supports creation of a community, registration of a product cata-
log, querying a product catalog through a community. Figures 18 and 19 illustrate a main
usage scenario of an end user. Figure 18 depicts the main user interface where users can
start navigating through the catalog communities. Relationships between communities are
presented as hyperlinks so that users can easily move between communities by clicking
links. The interface displays current (i.e., the community a user is currently looking at)
community’s GeneralInfo and Product Attributes. Users can submit a global
query to the community using the product attributes, which will be passed on to all of the
community’s members. Figure 19 shows a screen shot of the system, after a user has se-



356 PAIK ET AL.

Selected Meber: Intel

Gencral Information

Propwty Aatue
Tomain CPU Supplier
URL bttp /v intel com

RN

Product Attributes
ProductIl> Number(s)
oot ame Vot iaon
e e
VWarrenty MNumber(2)

I appin

ProductlD
ProductName

Price
Vorrenty

Query this member

Intel:

R T S R R
g e 1115 Gt 900 5

107 ‘Pendum 111 1.5 GHz 250
itis Bentioim 11115 GH " 870
109 Pentium 11T 170 SHz 700
Tio bantiain 111 557 M 400
111 P nun [T MHz 300
i L

T

Figure 19. Querying a member catalog.

lected a member of a community and submitted a query to the member. The result of the
query is displayed on the same screen.

8. Evaluation

In our initial studies, we have concentrated on the particular question of “does restructur-
ing increase the chance of user finding the target?”. Having said that, one would argue
that any user could find a target if she/he was given enough time to search. It should be
noted that our initial experiments are conducted under simulated scenarios, in that we re-
stricted the users’ search in terms of number of moves (e.g., mouse clicks) they can make.
Hence, it could be said that primary goal of this experiment is to demonstrate that given the
same constraint (i.e., limited number of moves), more users find targets after restructuring
operations.

There are other ways to measure the improvement such as comparing the total number
of communities that users had to visit or total time taken (as in seconds/minutes) to find
targets. We plan to incorporate all these measures in the imminent future.

8.1. Evaluation environment

As mentioned under implementing, the eCatalogs-Net (see Figure 1) used in the experi-
ments represents an integrated view of 27 catalog communities in computer and related
services. A key element in our experiment is a log file obtained from the users’ (i.e.,
customers) searching/querying behavior. We used task agents that played the role of



DYNAMIC RESTRUCTURING OF E-CATALOG COMMUNITIES 357

Table 5. A likelihood table

Community name Likelihood
AllCatalog 2
Hardware 7
Software 5
Internet 8
Components 4
Peripherals 6
Modem 7
CableModem 10

customers who wanted to find out information about the products. A Java class called
AgentFactory was used to create agents. More precisely, the class AgentFactory
implements a software component made up of a container and a pool of objects which
represent agents. The container is a process that runs continuously, listening to a socket,
through which an instantiation message from a predefined script (used to create an
agent) is received. Once an agent is created, it interacts with the class ECatalogNet
which provides various methods for exploring the community relationships (e.g.,
getSubCommunityOf (), getPeerCommunityOf () etc.).

The agent’s search and query behavior is based on the same search and query strategy
which is presented in Section 2.3. The agents are equipped with two kinds of information
for autonomous interaction with communities. First, the agents has access to the relation-
ships (i.e., Sub, PeerCommunityOf) between communities. The other information pro-
vided to the agents is called Likelihood Table. An agent is given a name of the community
to find (called the target community). In the likelihood table, given the target community,
every community in eCatalogs-Net is assigned a number value which represents a degree of
“closeness” (i.e., relevance) of the community to the target community. Hence, the higher
the value, the more likely the community will lead the agent to the target. We will refer to
this value as a likelihood and the list of likelihood values as a likelihood table. An example
of a likelihood table is shown in Table 5. The likelihood values in the example table are
produced given that the target community is CableModem.

However, fixing the likelihood values in the table creates a predictable agents’ interac-
tion sequence. Agents should be able to make spontaneous and irregular decisions, re-
sulting in unpredictable behavior. Therefore, we introduced a variant factor which would
diverge a likelihood value. Every time, an agent is given the likelihood values, the agent
recalculates all likelihood values according to this factor before starting navigation. Ta-
ble 6 shows an example of such likelihood table. In the example, given original likelihood
values, new values are created with the variant factor (VF) of “£10%.”

The agent takes the input parameters in Table 7 to run. For the purpose that stated earlier
in Section 8, we limited the MaxMove (refer to Table 7) to 14 for all experiments.

Also, a few parameters are defined in relation to the likelihood tables. Descriptions of
the likelihood table related parameters used in the experiments and their value ranges are
shown in Table 8.



358 PAIK ET AL.

Table 6. Likelihood recalculated by a variant factor

Community name Recalculated (+10%) likelihood

AllCatalog 2.2
Hardware 7.7
Software 5.2
Internet 7.5
Components 4.4
Peripherals 5.8
Modem 7.5
CableModem 10

Table 7. Agent input parameters

Parameter Description

RLoc Location of the repository of eCatalogs-Net.

LogName Name of the log file that the agent’s actions will be logged out to.
LHT Name of the file that contains likelihood table(s).

Target Name of the target community to find.

Query Query to submit when the target is found.

MaxMove Number of moves an agent can make before it gives up searching.

Table 8. Experimental parameters

Parameter Description and setting

NT Number of likelihood tables used. Each table contains different values.
Setting: 1 (single table), 2 (two tables), and 3 (three tables).

RV Range of likelihood values for likelihood tables.
Setting: 1 to 10, 1 to 50, and 1 to 100.

VF Value of the variant factor.

Setting: 5%, 10%, and 15%.

NT represents the number of likelihood tables used in an experiment. As for the parame-
ter NT, we produced three different versions of likelihood tables. One of the three tables is
created by us as domain experts. Naturally it contains reasonable and precise values for the
target. We refer to this table as the “expert table.” Another table is created by non-experts.
We simulated, by asking four people who are not familiar with the domain to create the
likelihood tables, and then averaged the four values. This table contains less precise values
than the first. This table is referred to as the “non-expert table.” The last table contains
unreasonable, least precise likelihood values and is called a “random table.”

RV denotes a range of likelihood values in a likelihood table. It has three different
settings, 1-10, 1-50 and 1-100. The higher the range, the more precisely the community
relationships can be described by the likelihood values. VF represents the value of the
variant factor for a likelihood table. It also has three settings, 5%, 10% and 15%. The
higher the variant factor, the bigger the deviation from given likelihood values.



DYNAMIC RESTRUCTURING OF E-CATALOG COMMUNITIES 359

8.2.  Experiments and results

We now describe the results of experiments that investigated the effect of two restructuring
operations; addPeer () and moveCatComm () with the parameters shown in Table 8.
The experiments carried out were based on two pre-established simulation scenarios.

8.2.1. First scenario. In the first scenario, we experimented on a PeerCommunityOf
relationship. 3000 agents were created and given the task of finding the community
CableModem. The result from initial experiments showed that the following navigation
pattern (which is an instance of PIScreawepeer) g0t a frequency of 590:

NavigateToPeer (Modem, Networking) ,
NavigateToSub (Networking, HomeNetwork) ,
NavigateToSub (HomeNetworking, CableModem) ,
SubmitQuery (CableModem, query)

This constituted about 28% of the agents who found the target. As PIScreatepeer SUZZESLS,
we created a new PeerCommunityOf relationship from Modems to CableModem. That
is, the eCatalogs-Net now had a new edge from Modems to CableModem. Then we
ran the agents again to see the “before and after” effects of the restructuring operation.
Experiment settings and results are discussed in the following.

Experiment I: Varying NT (RV = 1-100 and VF = 15%). In this experiment, we mea-
sured the improvement made and the effect of having different numbers of likelihood ta-
bles. The values of RV and VF are fixed. Each likelihood table created represented a
group of people with a different level of understanding. In NT = 1 setting (i.e., a single
likelihood table), the “expert table” is used, NT = 2 setting uses “expert table” + “non-
expert table.” NT = 3 uses “expert table” + “non-expert table” + “random table.”

As can be seen in Figure 20, there was consistent improvement in the number of agent-
found targets after the operation with different settings of NT. This means that restructuring
operations can benefit all groups of people with different understandings of the community
relationships. Another interesting observation is that the biggest improvement is made on
NT = 3, i.e., with most diverse group of people in terms of the level of understanding.
However, the graph also shows that the number of agent-found targets decreased as NT
increased. This indicates that the group of users with a better understanding of the domain
is more likely to find the target easily.

Experiment 2: Varying RV (NT = 1 and VF = 15%). This experiment measured the im-
provement made, and the effect of having a different range of likelihood values. RV was
setat 1 to 100, 1-50 and 1-10. In Figure 21, again we saw consistent improvement consis-
tently over different settings. Overall, we seemed to get the bigger improvement (biggest
gap between before and after) when RV was set at 1-100. When RV was 1-50, the number
of agent-found targets was the highest. There was only a little improvement (compared
to other settings) when RV was set at 1-10, and also, at this setting the least number of
agent-found targets. We believe this is because the 1 to 10 range probably was too small to
precisely described the relationships between communities.



360 PAIK ET AL.

@ Before @ After

3000
2000
2800
2700
2500
2800
2400
2300
2200
2100
2000
1900
1800
1700
1600
1500
1400
1300
1200
1100
1000

o0

Number of Agents Found Targels

NT=1 NT=2 NT=3

Figure 20. Varying NT (RV = 1-100, VF = 15%): first scenario.

@ Before B After

2900

2800

2700

2800

2500

2400

2300

2200

Number of Agents Found Targel

2100

2000

1900

RV=1-100 RV=1-50 RV=1-10

Figure 21. Varying RV (NT = 1, VF = 15%): first scenario.

Before @ After

2900

2800

2700 1+

2800

2500

2400

2300

2200

Number of Agents Found Targei

2100

VF=15% VF=10% VF=5%

Figure 22.  Varying VF (NT = 1, RV = 1-100%): first scenario.

Experiment 3: Varying VF (NT = 1 and RV = 1-100). In this experiment, we
measured the improvement made by the operation and the effect of different values
of the variant factor. In the experiments, VF varied from 15% to 10%, and then to
5%. As shown in Figure 22, irrespective of creation of the relationship, as VF de-
creases, the more agents were able to find targets. The variant factor (VF) random-



DYNAMIC RESTRUCTURING OF E-CATALOG COMMUNITIES 361

izes the likelihood values from a given table. This result demonstrates that agents
are likely to find the target if their likelihood values are less deviated from the given
likelihood values. Given the fact that the NT = 1 uses the most precise values for
the target, this result can be interpreted as indicating that the user whose understand-
ing does not deviate much from that of an expert is more likely to find targets eas-
ily. Also, the biggest improvement of “before and after” was made when VF was 15
(i.e., highest deviation). This indicates that the restructuring of eCatalogs-Net can be
of most benefit to the user when her/his understanding deviates considerably from the
expert.

8.2.2. Second scenario. In the second scenario, we experimented on moving a com-
munity to a new super-catalog community. In the initial structure of eCatalogs-Net (Fig-
ure 1), HardDrive is sub-catalog community of Peripherals. The likelihood ta-
bles built by both domain experts, and non-experts expected that HardDrive would be
under Storage (i.e., Storage scored higher likelihood value than Peripherals).
In the initial runs, 3000 agents were created and given the task of finding the com-
munity HardDrive and submitting a query “Select BrandName, Capacity,
Price From HardDrive.” For the second runs, we moved HardDrive from
Peripherals to Storage and ran the agents again.

Experiment 1: Varying NT (RV = 1-100 and VF = 15%). This experiment in the
second scenario (NT = 1, 2 and 3), we saw a huge improvement when a single like-
lihood table (“expert table”) is used. The other two settings also showed impressive
improvements, but it was clearly not as huge as the NT = 1 setting. The expert ta-
ble expected the target HardDrive to be under Storage. The fact that we moved
the HardDrive to the experts’ expected location improved the chances of finding the
target.

Experiment 2: Varying RV (NT = 1 and VF = 15%). The result of this experiment in
the second scenario repeated what we have found in the first scenario (Figure 24). That is,
when RV was set at 1 to 100, 1-50 and 1-10, we saw constant improvement made by the
restructuring operation over the three settings. Also, the biggest improvement was seen
when RV = 1-100. When RV was set at 1-10, regardless of the move, we recorded the
least number of agent-found targets.

Experiment 3: Varying VF (NT = 1 and RV = 1-100). The second scenario of this
experiment also confirmed what we found in the first scenario. As shown in Figure 25,
dramatic improvements were made after the operation. However, irrespective of the move,
as VF decreases, the more agents were able to find targets. Also, the biggest improvement
was made when VF was 15 (i.e., highest deviation).

Overall, across all experiment settings, we saw consistent improvements after restruc-
turing eCatalog-Net. This demonstrates that adaptive restructuring of e-catalogs can help
users have more streamlined, easier navigation/search experiences.



362 PAIK ET AL.

@ Before B After

Number of Agents Found Targel

NT=1 NT=2 NT=3

Figure 23.  Varying NT (RV = 1-100, VF = 15%): second scenario.

Before B After

Number of Agents Found Targel

RV=1-100 RvV=1-10

Figure 24. Varying RV (NT = 1, VF = 15%): second scenario.

& Before B After

3000
2900
2800
2700
2800
2800
2400
2300
2200
2100
2000
1900
1800
1700
1600
1500
1400
1300
1200
1100
1000

Number of Agents Found Targel

VF=15% VF=10% VF=5%

Figure 25. Varying VF (NT = 1, RV = 1-100%): second scenario.
9. Related work
We discuss two major related areas; namely, adaptive Web sites, and Web usage mining.

We use the term “adaptive” in the context of changing Web site organization to help users
have better interaction experience while using the site. Perkowitz and Etzioni [21,22] au-



DYNAMIC RESTRUCTURING OF E-CATALOG COMMUNITIES 363

tomatically construct index pages that supplement an existing organization by looking at
co-occurring pages, so that users can easily locate pages that are conceptually and strictly
related to one topic. The construction of supplementary index pages is a non-destructive
approach because the original Web site remains unchanged. However, the cost of build-
ing/managing such index pages separately, especially in dynamic communities environ-
ment, can be quite expensive. In [18], a technique that discovers the gap between Web
site designer’s expectation and user’s behavior is proposed. The technique uses inter page
conceptual relevance versus inter page access co-occurrence. Srikant and Yang [25] devel-
oped an algorithm to identify “expected locations” of a Web page and create a link from
the expected location to the page. The basic idea is that if a target page of a user’s single
visit is known, the target page’s expected locations can be identified by keeping track of
user’s backtrack points. The correctness of what the algorithm produces heavily depends
on the ability to identify the target page of a single visit which is not a straightforward
task. Toyoda and Kitsuregawa [26] use existing hyperlink structure analysis algorithms to
build a Web community chart, which users can navigate from one community to other re-
lated communities. They extract related pages from a given page (a seed), then investigate
the relationships between two Web pages based on how each page drives other pages as a
related page.

It is worth noting that, while basic principles of this area are complementary to our work,
most approaches only deal with Web pages, which is quite different from the concept of
communities we proposed. For example, in [26], a Web community is defined as “a collec-
tion of Web pages created by an individual or an association that has a common interest on
a specific topic.” In our work, communities are individual and autonomous entities (rather
than a network of Web pages) with which users and members of the community can have
various interactions (submitting a query to, invoking operations from, register with, etc.).

Our work is also related to mining access patterns from Web server logs (e.g., Web usage
mining and navigation sequence mining of data mining area) [1,14,15] in that we use a log
that records sequences of user actions as a basis for our reasoning.

Datta et al. [10] use a Web usage mining concept to dynamically predict user’s next
behavior and to make a recommendation. In [5], Hypertext Probabilistic Grammar is
also used to predict the user’s navigation path. The authors of [9,16] discuss issues and
processes involved in preparation/transformation of data from Web server logs to a format
suited for purposes of mining. Sadri et al. [23] proposed an extension of SQL to allow
fast querying over sequential patterns in a Web server log file. In typical sequence of Web
usage mining, an access pattern is a sequence of visited Web documents which have a
large occurrence frequency. It extracts frequently visited nodes, or nodes that are visited
together, but this kind of access pattern does not reflect how users navigate the imposed
structure. A Web usage mining (WUM) system to evaluate effectiveness of the Web site
organization is proposed in [4,24]. It uses a concept of g-sequence to model sequences of
navigation of users. We use a similar concept to model sequence of user interaction actions
with communities.

Another work worth mentioning is [30], in which decision trees are used to automati-
cally construct catalogs based on popularity of product items (i.e., frequency of visits) and
weighted product attributes. The algorithm of construction is designed in a way that the



364 PAIK ET AL.

depth of product hierarchy (which is a tree) is minimized, pushing the popular product
items/attributes to upper levels so that customers can find them easily (with fewer clicks).
However, it does not discuss the ongoing adaptivity of the catalogs. The salient features of
our work are:

e We specifically model permissible user interaction actions to track user navigation be-
havior. Hence, the log file is not a series of Web pages (which cannot give meaning to
the access of pages), rather it is a series of user interaction actions. Using user actions,
which carry explicit meaning, enables us to infer more precise semantics behind user
navigation patterns ([10] addresses modeling of user actions in the context of predicting
the user’s next move in browsing Web documents).

e Although it is possible to feed our log file data to data mining algorithm to discover
existing navigation patterns, we use quite a different approach, in which we have pre-
defined sequences of catalog interaction actions, and query those sequences to confirm
the existence of some user navigation patterns. These patterns are used as heuristics for
improving the organization of catalogs by means of catalog restructuring operations.

e We used the concept of user navigation mining in a novel application domain, dynamic
reorganization of online product catalog communities. We proposed operations for re-
structuring communities also as means to support making a decision to perform such
operations, which has not been attempted before to the best of our knowledge.

10. Conclusion and future work

In this paper, we proposed a usage-centric approach for transforming and improving inte-
grated catalog structure and organization. We illustrated, through simulated experiments,
the viability of the proposed approach and demonstrated that restructuring operations in-
crease the chances of the user finding his/her targets.

Ongoing work includes case studies to assess improvement of catalog organization as
results of restructuring operations in a realistic environment. Also, we are working to-
wards a new approach in which the relationships between communities (SubCommuni-
tyOf and PeerCommunityOf) are discovered automatically, rather than assigned manually,
by comparing product attributes and descriptions [12,17]. There are also plans to extend
the proposed idea to handle the case where people with similar navigation patterns are
considered [16,27].

Acknowledgements

The work of the second author, Dr. Boualem Benatallah, is partially supported by the ARC
(Australian Research Council) discovery grant DP0211207. We are specially grateful to
Dr. Fabio Casati from HP Laboratories for his valuable comments and suggestions on the
earlier version of this article.



DYNAMIC RESTRUCTURING OF E-CATALOG COMMUNITIES 365

Notes

. It should be noted that the focus of this paper is not on catalog integration, but rather on adapting organization

of integrated catalogs based on customer interaction patterns.

. Itis equivalent to say that Peripherals is a super-community of Printer. We assume that, each catalog

community has at most one super-community, hence this relationship is automatically implied.

. Srikant and Yang [25] uses a similar strategy for browsing and searching Web documents.
. A target community of an action ¢; is the destination of @;. For example, a target community of action

NavigateToSub (CableModem) is CableModem.

. UID and TS are not shown for clarity reasons.
. The symbol e represents the ordered sequence of actions in a bookmark.
. Note that, in this paper, we only consider merging of two communities, but the operation can be generalized

to more than two communities.

. Itis also possible that the catalog community F is moved towards catalog community E and merged under B.
. Note that, even though actions in Table 1 do not include source catalog community parameter, we add them

when defining PIS for clarity reasons.

10. The sequence could be (NavigateToSuper(cl, c2), NavigateToSub(c2, c1)), depending on where

the user is.

References

[1] C.C. Aggarwal and P. S. Yu, “Data mining techniques for personalization,” Bulletin of the Technical Com-
mittee on Data Engineering 23(1), March 2000.

[2] Ariba Inc., http://www.ariba.com

[3] B. Benatallah, M. Dumas, Q. Z. Sheng, and A. H. H. Ngu, “Declarative composition and peer-to-peer pro-
visioning of dynamic Web services,” in Proceedings of the International Conference on Data Engineering,
San Jose, USA, February 2002.

[4] B. Berendt and M. Spiliopoulou, “Analysing navigation behaviour in Web sites integrating multiple infor-
mation systems,” VLDB Journal, Special Issue on Databases and the Web 9(1), 2000, 56-75.

[5] J. Borges and M. Levene, “Data mining of user navigation patterns,” in Proceedings of the Workshop on
Web Usage Analysis and User Profiling (WEBKDD’99), San Diego, CA, August 1999.

[6] A. Bouguettaya, B. Benatallah, and A. K. Elmagarmid, Interconnecting Heterogeneous Information Sys-
tems, Kluwer Academic, Boston, 1998.

[7]1 A. Bouguettaya, B. Benatallah, L. Hendra, M. Ouzzani, and J. Beard, “Supporting dynamic interactions
among Web-based information sources,” IEEE Transactions on Knowledge and Data Engineering 12(5),
September/October 2000, 779-801.

[8] commerceOne Inc., http://www.commerceone.com

[9]1 R. Cooley, B. Mobasher, and J. Srivastava, “Data preparation for mining World Wide Web browsing pat-
terns,” Journal of Knowledge and Information Systems 1(1), 1999.

[10] A. Datta, K. Dutta, D. E. VanderMeer, K. Ramamritham, and S. B. Navathe, “An architecture to support
scalable online personalization on the Web,” VLDB Journal 10(1), 2001, 104-117.

[11] Dublin Core Metadata Initiative (DCMI), http://www.dublincore.org

[12] D. Fensel, Y. Ding, and B. Omelayenko, ‘“Product data integration in B2B e-commerce,” IEEE Intelligent
Systems 16(4), July/August 2001.

[13] J.Jung, D.Kim, S. Lee, C. Wu, and K. Kim, “EE-Cat: Extended electronic catalog for dynamic and flexible
electronic commerce,” in Proceedings of the IRMA2000 International Conference, Anchorage, AK, IDEA
Group Publishing, May 2000.

[14] J. A. Konstan, B. N. Miller, and D. Maltz, “GroupLens: Applying collaborative filtering to Usenet news,”
Communications of the ACM 40(3), March 1997.

[15] D. Mladenic, “Text-learning and related intelligent agents: A survey,” IEEE Intelligent Systems 14(4),

July/August 1999, 44-54.



366 PAIK ET AL.

[16] B. Mobasher, R. Cooley, and J. Srivastava, “Automatic personalization based on Web usage mining,” Com-
munications of the ACM 43(8), August 2000.

[17] G. Modica, A. Gal, and H. M. Jamil, “The use of machine-generated ontologies in dynamic information
seeking,” in Proceedings of Sixth International Conference on Cooperative Information Systems (CooplS
2001), Trento, Italy, 2001.

[18] T.Nakayma, H. Kato, and Y. Yamane, “Discovering the gap between Web site designers’ expectations and
user’s behaviour,” in Proceedings of 9th International World Wide Web Conference, Amsterdam, May 2000.

[19] S. Navathe, H. Thomas, M. Satits, and A. Datta, “A model to support e-catalog integration,” in Proceedings
of the IFIP Conference on Database Semantics, Hong Kong, Kluwer Academic, April 2001.

[20] H. Paik, B. Benatallah, and R. Hamadi, “Usage-centric adaptation of dynamic e-catalogs,” in Proceedings
of 14th International Conference on Advanced Information Systems Engineering, Toronto, Canada, May
2002.

[21] M. Perkowitz and O. Etzioni, “Adaptive Web sites,” Communications of the ACM 43(8), August 2000.

[22] M. Perkowitz and O. Etzioni, “Towards adaptive Web sites: Conceptual framework and case study,” Artifi-
cial Intelligence 118, 2000, 245-275.

[23] R. Sadri, C. Zaniolo, A. Zarkesh, and J. Adibi, “A sequential pattern query language for supporing instant
data mining for e-services,” in Proceedings of the 27th VLDB Conference, Roma, Italy, September 2001.

[24] M. Spilopoulou, “Web usage mining for Web site evaluation,” Communications of the ACM 43(8), August
2000.

[25] R. Srikant and Y. Yang, “Mining Web logs to improve website organization,” in Proceedings of 10th Inter-
national World Wide Web Conference, Hong Kong, May 2001.

[26] M. Toyoda and M. Kitsuregawa, “A Web community chart for navigating related communities,” in Pro-
ceedings of 10th International WWW Conference, Hong Kong, May 2001.

[27] K. Wu, C. C. Aggarwal, and P. S. Yu, “Personalization with dynamic profiler,” Technical Report, IBM
Research Division, T. J. Watson Research Center, Yorktown Heights, NY, 2001.

[28] XML Common Business Library, http: //www.xcbl.org

[29] G. Yan, W. Ng, and E. Lim, “Product schema integration for electronic commerce — A synonym comparison
approach,” IEEE Transactions on Knowledge and Data Engineering 14(3), May/June 2002.

[30] D. Yang, W. Sung, S. Yiu, D. Cheung, and W. Ho, “Construction of online catalog topologies using decision
trees,” in Proceedings of Second International Workshop on Advance Issues of E-Commerce and Web-Based
Information Systems (WECWIS 2000), Milpitas, CA, 8-9 June 2000.



