
Journal of Mathematical Modelling and Algorithms 1: 215–223, 2002.
© 2002 Kluwer Academic Publishers. Printed in the Netherlands.

215

A Multicomputer System Performance
Predictor Based on an ALN Neurochip

O. B. EFREMIDES1 and M. P. BEKAKOS2

1Department of Informatics, Athens University of Economics and Business, Athens 10434, Greece.
e-mail: obe@aueb.gr
2Department of Electrical and Computer Engineering, School of Engineering,
Democritus University of Thrace, 67100 Xanthi, Greece. e-mail: mbekakos@ee.duth.gr

(Received: 25 September 2001)

Abstract. Although a large number of performance evaluation tools are available today, the efficient
performance prediction of a multicomputer system remains a difficult task. In this work, the develop-
ment of a system capable of predicting the timings for an application executed on the multicomputer
Parsytec GCel3/512 is investigated.

Mathematics Subject Classifications (2000): 68H14, 68H20, 68H10, 68Q85.

Key words: performance, multicomputer, predictor, ALN, neurochip.

1. Introduction

The computer systems performance evaluation and prediction has always con-
cerned the scientific community [2, 4, 6]. Despite a rapid increase in processor
speed, due to the improvements in microprocessor technology, the overall applica-
tion performance is still drastically affected by the communication capabilities of
the supercomputing complex in hand. The performance prediction of an application
to be executed on a system under certain communication requirements and the
ability of the system structure to comply with these requirements, relating to the
corresponding computational load, are essential.

Herein, an adaptive neural network [1] is built, trained to predict the timing re-
sults for an application executed on the multicomputer system Parsytec GCel3/512.
The training and the testing data set for the learning phase of the network have
resulted from the performance evaluation of the real system using a parametric
synthetic workload produced through a distributed-memory procedure [5].

After the completion of the training phase, a prediction function is available.
Further, the layout of the prediction system is proposed and a software tool imple-
menting this function is developed. The entire prediction function is based on a set
of five different parameters [3]: The number of processors, the average amount of
the point-to-point communication for the data transfer, the degree of distribution
of the elements amongst the nodes, the computation-communication ratio and the
size of the problem investigated each time.



216 O. B. EFREMIDES AND M. P. BEKAKOS

2. Forming the Data Set

A parametric synthetic workload produced using a Sparse Matrix Dense Vector
multiplication algorithm, [�α × �π ], given by Equation (1)

y = A × x, (1)

where y is the vector of the results and A, x are the sparse matrix and the dense
vector, respectively. More specifically, the four basic parameters concerning the
production of the workload are defined as follows [3]:

DEFINITION 1. As the number of processors, P , is defined, the total number of
independent nodes which are involved in the computations and are interconnected
through the communication network.

DEFINITION 2. As the average number of point-to-point communications, U , for
the passing of the information elements, is defined the number of the elements of
vector x involved in the computations executed by a processor, but not belonging to
this processor, i.e., the number of the elements of vector x required by a processor
from another processor.

DEFINITION 3. As the distribution degree, Di , is defined, the number of proces-
sors which require an element of vector x not belonging to them. Further, as the
average of the distribution degree, D, is defined the average of the nonzero D′

is.
Thus, 1 � D � (P + 1).

DEFINITION 4. As the computation-communication workload ratio, CCR, is de-
fined the ratio of the floating point multiplication-addition per processor over the
number of point-to-point communications for data transfer per processor.

2.1. THE PARSYTEC GCEL3/512 SYSTEM

The Parsytec GCel3/512 multicomputer system consists of 512 Inmos Transputer
T805 processors organized in gigacubes (i.e., mesh of 64 processors). It achieves
a maximum performance of 22 GFLOPS and it has a total memory of 2 Gbytes.
The topological organization of the system is mesh. The T805 processor is a 32-bit
RISC processor with the following characteristics: Operation frequency: 30 MHz,
floating point unit: 64 bit, maximum performance: 4.3 MFLOPS, cache memory:
4 Kbytes (on chip), external memory DRAM: 4 Mbytes.

A number of processors is exclusively allocated to the user. Hence, the user
executes the application without any interfering with other user applications. The
system runs under the PARIX (PARallel extensions to uniIX) operating system.
The PARIX supports parallel programming via special routines, provides an inte-
grated programming environment and program execution management at the user
and the administrator level, etc.



A MULTICOMPUTER SYSTEM PERFORMANCE PREDICTOR 217

2.2. PERFORMANCE RESULTS

As was mentioned in the previous section, the required number of processors is
exclusively allocated to the user application. Two different gigacubes were set
in order to describe how the performance evaluation of the system is carried out
using the synthetic workload and how the achieved results can be used to com-
pare this system with others. First, the program was executed on two different
gigacubes and then the entire system (512 processors) was set in order to describe
how the performance evaluation of the system is carried out using the synthetic
workload. The algorithm is implemented using Fortran 77 programming language.
The experimentation sequence (i.e., 40 different executions for each different set
of parameters, for statistical accuracy reasons) calculates the execution time of the
algorithm [�α × �π ] under different values for the communication free computa-
tions, (X), the number of point-to-point communications (U = M), the distribution
degree of the vector x elements D, and, finally, the number of processors (P ) [3].

2.2.1. Variations of Communication-Free Computations

To measure the influence on the performance when the communication free com-
putations X vary, a number of different synthetic workloads was timed with the
size of the matrix A (N = S × P) being constant. The parameter X takes different
values, X = 500, 1000, 1500, 2000, 2500, 3000, 3500. In this case, there is no
need for internode communication, hence U = M = 0. The program is executed
for each different parameter set on a varying number of processors (P = 2, 4,

8, 16, 32, 64), in each of the two gigacubes. For the evaluation of the entire system
the size of the matrix A was set constant (S = 35). The parameter X takes different
values, X = 200, 400, 600, 800. Again U = M = 0 and the number of processors
were (P = 32, 64, 128, 256, 512).

2.2.2. Variations of Point-to-Point Communications

The performance has been measured for varying point-to-point communications
with a constant matrix size (S = 100) and various combinations of the number of
processors parameter (P = 2, 4, 8, 16, 32, 64) in each of the two gigacubes. When
U = M the total workload (computation and communication) is determined as
(U + X) = 200 and (U + X) = 2500 (the parameter U takes, in turn, the values
U = 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50). The entire system was evaluated with
a constant matrix size (S = 35) and various combinations of processors (P = 32,

64, 128, 256, 512). Again, for U = M the total workload was determined as
(U + X) = 200 and (U + X) = 800 (the parameter U takes, in turn, the values
U = 0, 5, 10, 15). Since U = M the distribution degree D is constant and equal to
1, thus, each element of vector x is required only by one processor (not the owner)
in order to complete the calculations. This implies that each processor knows that
there is no need for multicasting.



218 O. B. EFREMIDES AND M. P. BEKAKOS

2.2.3. Variations of the Number of Processors

The variation of the timing results is studied when the number of processors vary
and the number of multicasting (M = 50 for each gigacube) was kept constant.
The combinations of processors are (P = 2, 4, 8, 16, 32, 64) and the constant size
of matrix used (S = 100). The parameter U takes the values U = 0, 50, 130, 200,

300, 400, 500 in different executions and the number of communication free com-
putations is X = 1000−U . For the evaluation of the entire system the combinations
of processors are (P = 32, 64, 128, 256, 512) and the constant size of matrix used
(S = 35). The parameter U takes the values U = 0, 5, 10, 13, 20, 30, 40, 50
in different executions and the number of communication-free computations is
X = 120 − U .

2.2.4. Variations of the Elements’ Distribution Degrees

The size of the matrix remains constant, S = 100, and the combinations of proces-
sors are (P = 2, 4, 8, 16, 32, 64) in each of the two gigacubes. The number of
multicasting is constant (M = 50), while the total workload of computation and
communication is (U + X) = 1000 and (U + X) = 3000 (the parameter U

takes, in turn, the values U = 0, 100, 200, 300, 400, 500, 600, 700, 800). For the
evaluation of the entire system the size of the matrix remains constant, S = 35,
and the combinations of processors are (P = 32, 64, 128, 256, 512). The number
of multicasting is constant (M = 5), while the total workload of computation and
communication is (U + X) = 120 and (U + X) = 360 (the parameter U takes, in
turn, the values U = 0, 10, 20, 30, 40, 50, 60, 70, 80).

3. An Integrated Predictor

The development of the proposed prediction system integrates hardware and soft-
ware components. The layout of the entire system is presented in Figure 1.

Figure 1. Layout of the predictor.



A MULTICOMPUTER SYSTEM PERFORMANCE PREDICTOR 219

Initially, using the real data set, an Adaptive Learning Network (ALN) is trained
to produce the prediction function. An ALN is a type of an artificial neural system
which uses only simple logical functions, such as AND, OR and NOT for building
a decision tree architecture during the training. The knowledge is stored in the
architecture of the network and in the functions of the system nodes.

The basic components of an ALN are: (i) the Linear Threshold Units (LTUs),
which are the leaves of the decision tree architecture and (ii) other nodes which
are AND and OR operators with two or more inputs [1]. Since the ALN is trained,
several linearform equations (in our case 890) are produced. The form of these
equations is given by Equation (2):

LTUi =
n∑

i=1

aij (xi − bij ), (2)

where coefficients aij , bij are estimated during the training phase for each in-
put measurement with confidence interval 90% (error [−0.668685, 0.563254]).
The resulted root mean square error is 1.25437 over 854 training points (set of
parameters).The prediction function consists of eight different blocks of LTUs
combinations. The form of these blocks is described by relation (3).

MAX(MIN(MAX(84, 85), 86, MAX(MIN(67, 68), 69, 70),

MAX(MIN(71, 72), 73, 74), MAX(64, 65, 66),

MAX(75, 76, 77, 78), MAX(MIN(55, 56), · · · · · ·);
(3)

When new data is entered into the system, the LTUs values are produced. Then
these values are fed into the neurochip. The system executes the appropriate block
according to the decision tree depicted in Figure 2 and the predicted time result
is calculated. Note that, the numbers in the brackets of the classification function
correspond to the LTUs.

4. The Neurochip Design

As it is determined by the prediction function, the hardware implementation of
the neurochip involves two different subcircuits named MIN and MAX, respec-
tively. Each subcircuit accepts two 32-bit numbers. The MIN/MAX subcircuits
output the smaller/greater of the two input numbers, respectively. These subcircuits
can be designed using random logic and structured techniques. With the random
logic technique primitive gates are used, such as AND, OR, NOT, etc., while with
the structured design approach existing circuits are used, such as comparators,
multiplexers, etc.



220 O. B. EFREMIDES AND M. P. BEKAKOS

0 : (x2 <= 9.8733084914990904e+305) ? 1 : 2;
1 : (x0 <= 1.1235582092889473e+307) ? 3 : 4;
2 : block 1;
3 : (x0 <= −2.457783582819572e+307) ? 5 : 6;
4 : (x0 <= 3.49356380700782e+307) ? 11 : 12;
5 : (x2 <= −1.0662999742778974e+307) ? 7 : 8;
6 : (x1 <= −5.0560119418002625e+307) ? 9 : 10;
7 : block 0;
8 : block 4;
9 : block 3;
10 : block 5;
11 : (x2 <= −1.0309959421811433e+307) ? 13 : 14;
12 : block 6;
13 : block 2;
14 : block 7;

Figure 2. Decision tree for the block execution.

Figure 3. Circuit for MIN function using random logic.

4.1. RANDOM LOGIC APPROACH

A truth table is built through the typical procedure for both MIN and MAX oper-
ations. The logic function of each table is simplified using the Quine–McCluskey
technique. The logical diagrams of the circuits are developed using the resulting
simplified functions. For example, a circuit capable of executing the MIN operation
for two (AB, CD) 2-bit numbers is given in Figure 3.

4.2. COMBINATORIAL LOGIC APPROACH

In the second approach, already fabricated circuits are also considered. Each sub-
circuit can be build using a 32-bit comparator and a 64 × 32 multiplexer with two
selection lines. The comparator compares the two 32-bit numbers and produces a



A MULTICOMPUTER SYSTEM PERFORMANCE PREDICTOR 221

sequence of three bits for L(ess), G(reater), and E(qual). For example, an output of
(100) denotes that the first of the two input numbers is less than the second. The
formulae for a 32-bit comparator are described by Equation (4).

E = (x31 ⊕ y31) · (x30 ⊕ y30) · · · (x1 ⊕ y1) · (x0 ⊕ y0),

G = x31 · y31 + (x31 ⊕ y31) · x30 · y30 + (x31 ⊕ y31) · (x30 ⊕ y30) · x29 · y29 +
+ (x31 ⊕ y31) · (x30 ⊕ y30) · (x29 ⊕ y29) · · · (x1 ⊕ y1) · x0 · y0,

L = x31 · y31 + (x31 ⊕ y31) · x30 · y30 + (x31 ⊕ y31) · (x30 ⊕ y30) · x29 · y29 +
+ (x31 ⊕ y31) · (x30 ⊕ y30) · (x29 ⊕ y29) · · · (x1 ⊕ y1) · x0 · y0.

(4)

The multiplexer has two selection lines. Thus, only the two bits resulting by the
comparator are required in order to be decided which of the two input numbers will
be produced by the circuit; namely the L output bit of the comparator is ignored.
The truth table for the MIN subcircuit is given in Table I and its logic function is
described by Equation (5):

fi = Bxi + AByi, for i = 0, . . . , 31. (5)

Similarly, for the MAX circuit, the logic function is described by Equation (6):

fi = Byi + ABxi, for i = 0, . . . , 31. (6)

To exemplify the discussed above, a 2-bit MIN subcircuit built using a 2-bit com-
parator and an 4 × 2 multiplexer is given in Figure 4. Again, the input numbers are
symbolized as AB, CD, respectively.

5. The Simulator

The integrated performance predictor described in Figure 1 has been implemented
using the Fortran programming language. In the program, 2D arrays have been
used to store the coefficient matrices A, B and 1D array for the input vector.

The output of the program for an input vector (P = 512, X = 240, U = 5,

M = 80, A = 17920) is presented in Figure 5. Note that, the execution complexity

Table I. Truth Table for MIN Operation

States A B f0 f1 · · · f31

L 0 0 x0 x1 · · · x31

G 0 1 y0 y1 · · · y31

E 1 0 x0 x1 · · · x31



222 O. B. EFREMIDES AND M. P. BEKAKOS

Figure 4. Circuit for MIN function using a comparator and a 4 × 2 multiplexer.

========================================
LOAD INPUT VECTORS X
LOAD VECTORS As
LOAD VECTORS Bs
CALCULATE Xi-Bi DIFERRENCES
LTU VALUES ARE PRODUCED
OUTPUT VALUE IS CALCULATED
========================================
PREDICTED TIME: 1669.01186695617600 sec
========================================
Figure 5. Output of the simulator.

in the Parsytec GCel3/512 multicomputer system of an application with the same
set of parameters is 1669.800903 sec.

6. Conclusions

Herein, the development of an adaptive neural network, the logic design of a neu-
rochip and the implementation of an integrated predictor, capable of predicting the
time complexity of an application executed on the multicomputer system Parsytec
GCel3/512, are proposed. The basic entity of the system is a prediction function
which is produced using the adaptive learning network. Two different approaches
for the digital design of the neurochip are discussed and the integrated system is
implemented using the Fortran programming language.



A MULTICOMPUTER SYSTEM PERFORMANCE PREDICTOR 223

References

1. Armstrong, W. W. and Thomas, M. M.: Adaptive logic networks, In: E. Fieseler and R. Beale
(eds), Handbook of Neural Computation, Institute of Physics and Oxford Univ. Press, 1996.

2. Bard, Y.: The VM/370 performance predictor, Computer Surveys 10(3) (1978), 333–342.
3. Boyd, E. L., Wellman, J.-D., Abraham, S. G. and Davidson, E. S.: Evaluating the communication

performance of MPPs using synthetic sparse matrix multiplication workloads, In: Proc. 1993
International Conference on Supercomputing, 1993, pp. 240–250.

4. Boyse, J. W. and Warn, D. R.: A straightforward model for computer performance prediction,
Computer Surveys 7(2) (1975).

5. Efremides, O. B.: Distributed memory systems performance evaluation using synthetic paramet-
ric workloads, J. Neural Parallel Sci. Comput. (2000), 299–316.

6. Vrsalovic, D., Siewiorek, D., Segall, Z. and Gehringer, E.: Performance prediction and calibra-
tion for a class of multiprocessor systems, Rept. Dept. of Computer Science, Carnegie-Mellon
Univ., Pittsburg, PA, 1984.


