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Abstract. The Haar transform is generalized to the case of an arbitrary time and scale splitting. To any binary tree we

associate an orthogonal system of Haar-type functions - tree-structured Haar (TSH) functions. Unified fast algorithm

for computation of the introduced tree-structured Haar transforms is presented. It requires 2�N ÿ 1� additions and

3N ÿ 2 multiplications, where N is transform order or, equivalently, the number of leaves of the binary tree.
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1. Introduction

The most common ways to decompose a signal into

more elementary signals are the Fourier expansion

and its many generalizations. The signal is represented

as a linear combination of, usually orthogonal, basis

functions of the linear space where the signal belongs

to. The trigonometric functions are natural basis

functions when the signal contains harmonic oscilla-

tions as is the case for many natural signals ± sound

signals and electromagnetic waves being prominent

examples. For `̀ nonharmonic'' signals rectangular

basis functions may be natural. Examples of such

systems are the the well-known Haar, Rademacher

and Walsh systems of functions, which have found a

lot of applications in communication theory and signal

processing since 1960s [2, 9, 13].

Historically, the first set of orthogonal rectangular

functions is known nowadays as the Haar functions

was described by the Hungarian Mathematician A.

Haar in 1910 [9]. The Haar functions take essentially

just two nonzero values, but still provide an expansion

of a continuous function. The specific property of the

Haar functions that could not be obtained by any other

non-sinusoidal orthogonal functions at that time, is the

property of uniform and rapid convergence to a given

continuous function. Discretization of the Haar

functions gives the set of orthogonal discrete Haar

functions that forms the Haar transform matrix [3].

The classical Haar functions are defined by the

dyadic splitting of time interval. In this paper we will

extend the concept of Haar functions to functions

having an arbitrary time splitting.

In Section 2 the concept of binary interval splitting

tree is defined. Based on this tree structure, in Section

3, we define a system of orthogonal functions - tree-

structured Haar (TSH) functions. The class of TSH

functions contains as special cases the following

systems of orthogonal functions: classical system of

Haar functions when the underlying tree is a complete

full binary tree, the system of canonical Haar

functions [10], known also as the Fibonacci system

by Agaian-Aizenberg-Alaverdian [1] when the

underlying tree is the binary logarithmic tree, the

system of generalized Fibonacci-Haar functions [6]

if the underlying tree is the generalized Fibonacci

tree, etc.

In Section 4 the discrete TSH functions and

matrices, are defined. Some special examples of

TSH matrices are considered. Fast algorithms to

compute discrete TSH transforms are developed in

Section 5. Various extensions of TSH transforms

containing, as particular cases, the discrete

Walsh-Hadamard transforms, as well as the

Haar wavelet packet transforms are discussed in

Section 6.
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2. Interval Splitting Trees

A rooted tree is called binary if each node has

outdegree at most two. The length of the path from the

root to a node is called the depth of that node. A non-

leaf (non-terminal) node of the binary tree is a

splitting node if it has outdegree two. A binary tree

whose all non-leaf nodes are splitting nodes is called

full. If all the leaves have same depth the tree is called

complete. If there is a path with origin a and end b; we

say that a is a predecessor of b and that b is a

successor of a. If depth(b) � depth(a)� 1 we say that

b is an immediate successor or child of a and that a is

an immediate predecessor or parent of b.

Starting from the root of the tree, we label each

edge of the tree as follows.

1) If the node has two children, the left outedge will

have label 0 and the right outedge will have label 1,

2) if the node has only one child, the outedge will

have label 2.

Each node of the binary tree will be indexed by

a ternary vector1 (a1(a); :::; ak (a)) (aj 2 f0; 1; 2g;
j � 1; :::; k) of length k; where k is the depth of this

node and aj are labels of the edges to that node

starting from the root of the tree.

Figure 1 shows an example of a binary tree with

indexed arcs and nodes.

The nodes that have depth equal to j form the jth

level of the tree. The index vector of a node on level j

has j components.

Before introducing the notion of binary interval

splitting tree, we will label all the nodes of a binary

tree in the following way: each node~a � (a1; :::; ak) is

labeled by the number �(~a) of leaves that are

successors of this node.

Definition 1. A binary interval splitting tree (BIST)

of the depth n is a binary tree that has intervals

assigned to each of non-leaf nodes as follows:

1. Iroot � (0; 1); I0 � I(root;0); I1 � I(root;1); where I0

and I1 are the left and the right sub-intervals of Iroot

corresponding to two children of the root.

2. Let (a1; :::; aj) be a splitting node and Ia1;:::;aj

� (a; b); 0 � a < b < 1; then for j � 1; :::; nÿ 2;

I(a1;:::; aj;0) �
�

a; a� �(a1;:::; aj;0)

�(a1;:::; aj)
(bÿ a)

�
and

I(a1;:::; aj;1) �
�

a� �(a1;:::; aj;0)

�(a1;:::; aj)
(bÿ a); b

�
3. Let (a1; :::; aj) be a non-splitting node. Then

I(a1;:::; aj;2) � I(a1;:::; aj):

Denote by jIa1;:::;aj
j � �(a1;:::;aj) the cardinality of the

interval I(a1;:::;aj) � Iroot; assigned to the node

~a � (a1; :::; aj), j � 1; :::; nÿ 1: Notice that

Ia1;:::; aj;0

[
Ia1;:::; aj ;1 � I(a1;:::; aj); Ia1;:::; aj ;0

\
Ia1;:::; aj;1 � ;;

jIa1;:::; aj
j

jIa1;:::; aj;0j
� �(a1;:::; aj)

�(a1;:::; aj;0)
;
jIa1;:::; aj

j
jIa1;:::; aj;1j

� �(a1;:::; aj)

�(a1;:::; aj;1)
;

�(a1;:::; aj) � �(a1;:::; aj;0) � �(a1;:::; aj;1):

In other words, Ia1;:::; aj;0 and Ia1;:::; aj;1 split the interval

Ia1;:::; aj
into two non-intersecting sub-intervals in the

proportion of the numbers of leaves that are

successors of these nodes.

In Figure 2, the binary tree from Figure 1 with

labeled nodes and corresponding intervals are shown.

3. Tree-structured Haar Functions

Let T be a binary interval splitting tree with N leaves

and of depth n: An example of such a tree is in Figure

2 where N � 3 and n � 2:
Let us define the set of basis functions correspond-

ing to the tree T by the following procedure: to the

root of the tree we associate two basis functions Hroot;0

and Hroot;1 (playing a similar role as the scaling

0 1

0 1
2

0 1

00 01 12
Figure 1. Binary tree with labeled edges and indexed nodes.
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function and the wavelet function in wavelet theory

[12]):

Hroot;0(t) � 1����
N
p ; t 2 (0; 1): (1)

Hroot;1(t) �
��������
�(1)

N�(0)

q
; if t 2 I0;

ÿ
��������
�(0)

N�(1)

q
; if t 2 I1;

8<: (2)

where �(0) and �(1) are the labels of the left and the

right children of the root of the tree, respectively;

and to each non-root splitting node of T with

index (a1; :::; ak) we associate the basis function

H(a1;:::; ak ) (t); t 2 (0; 1); k � 1; :::; nÿ 1; defined by:

H(a1;:::; ak )(t) �

���������������������������
�(a1 ;:::; ak ; 1)

�(a1 ;:::; ak )�(a1 ;:::; ak ; 0)

q
; if t 2 Ia1;:::;ak ;0;

ÿ
���������������������������

�(a1 ;:::; ak ;0)

�(a1 ;:::; ak )�(a1 ;:::; ak ; 1)

q
; if t 2 Ia1;:::;ak ;1;

0; otherwise: (3)

8>><>>:
Definition 2. The set of functions Hroot;0(t); Hroot;1(t)

and H(a1;:::; ak )(t); defined by (1) - (3), for all

splitting nodes of a binary interval splitting tree T ;
is called the set of tree-structured Haar (TSH)

functions of T .

The set of TSH functions of the binary interval

splitting tree of Figure 2 is shown in Figure 3.

Theorem 1. The set of tree-structured Haar func-

tions defined by (1) - (3), form a set of orthogonal

functions.

Proof: First, one can easily check that eq. (2) and

(3) will be of the form

Hroot;1 �
���
1
N

q
; if t 2 I0;

ÿ
���
1
N

q
; if t 2 I1;

8<: (4)

H(a1;:::;ak )(t) �

��������������
2ÿ�nÿk�
p

; if t 2 Ia1;:::;ak ;0;

ÿ
��������������
2ÿ�nÿk�
p

; if t 2 Ia1;:::;ak ;1;
k � 1; :::; nÿ 1;

0; otherwise;

8>><>>: (5)

if the tree is a complete and full one, since N � 2n and

�(a1;:::;ak ) � 2�(a1;:::;ak ;0) � 2�(a1;:::;ak ;1) � 2nÿk :
Thus, the classical system of the Haar functions is a

particular case of the general tree-structured Haar

functions.

Now let us show that the general functions are

orthogonal. Thus, it is enough to show that

S �
Z 1

0

H(a1;:::;aj)(t)H(b1;:::;bk )(t)dt

�
jIa1 ;:::;ak

j
�(a1 ;:::;ak )

6� 0 j � k; ai � bi for all i

0; otherwise

( (6)

for j=1,...,n-1.

We can assume that j � k and let us consider

separately the following three cases:

1. Let j � k and ai � bi for i � 1; :::; j: Then

S � jIa1;:::; ak ; 0j
�(a1;:::; ak ; 1)

�(a1;:::; ak )�(a1;:::; ak ; 0)
�

jIa1;:::; ak ; 1j
�(a1;:::; ak ; 0)

�(a1;:::; ak )�(a1;:::; ak ; 1)

3
0 1

0 1
2

0 1

00 01 12

2 1

1 1 1

1

2/3 1

0 1/3 2/3

I root

0
I 0 I 1

0

1

I 00 I 01 I 12

Figure 2. Binary tree of Figure 1 with the corresponding splitting of

the interval.

3

0 1

0 1
2

0 1

00 01 12

2 1

1 1 1

1

2/3 1

0 1/3 2/3

Hroot ,0(t)

0

0

1

Hroot ,1(t)

H(0)(t)

Figure 3. The tree-structured Haar functions corresponding the tree

from the Figure 2.
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Since from (1) it follows that

jIa1;:::; ak ; 0j
jIa1;:::; ak ; 1j

� �(a1;:::; ak ; 0)

�(a1;:::; ak ; 1)
;

and

jIa1;:::; ak ; 0j � jIa1;:::; ak ; 1j � jIa1;:::; ak
j;

we have

S � jIa1;:::; ak ; 1j
�(a1;:::; ak )

� jIa1;:::; ak ; 0j
�(a1;:::; ak )

� jIa1;:::; ak
j

�(a1;:::; ak )
:

2. Let j � k and let there be i; i 2 f1; :::; jg such that

ai 6� bi. Then, by the construction of the interval

splitting tree (Definition 1.), I(a1;:::;aj) \ I(b1;:::;bk ) � ;;
therefore S � 0:

3. Let, finally, j 6� k (without loss in generality we

suppose that j < k) and ai � bi for i � 1; :::; j: By the

construction of the intervals and the functions H

S �
�����������������������������������

�(a1;:::; aj; 1)

�(a1;:::; aj)�(a1;:::; aj; 0)

s  
jIb1; :::; bk ; 0j�������������������������������������

�(b1;:::; bk ; 1)

�(b1;:::; bk ; 0)�(b1;:::; bk )

r
ÿ jIb1;:::; bk ; 1j

�������������������������������������
�(b1; :::; bk ; 0)

�(b1;:::; bk ; 1)�(b1; :::; bk )

r !

and utilizing (1), we get

S �
����������������������������������������������������

�(a1;:::; aj; 1)

�(a1;:::; aj)�(a1;:::; aj; 0)�(b1;:::; bk )

s  
jIb1;:::; bk ; 0j

�����������������
Ib1;:::; bk ; 1

Ib1;:::; bk ; 0

s

ÿ jIb1;:::; bk ; 1j
�����������������
Ib1;:::; bk ; 0

Ib1;:::; bk ; 1

s !
� 0:

Thus, Theorem 1. is proved.

Remark 1. Tree-structured Haar functions coincide

with the classical Haar functions in the case of a

complete full binary tree.

4. Discrete tree-structured Haar functions and

matrices: case studies

Definition 3. Let T be a binary tree with N leaves.

The Discrete tree-structured Haar functions of T are

defined by sampling the tree-structured Haar functions

of T at points j=N , j � 0; 1; . . . ;N ÿ 1. The N � N

orthogonal matrix whose rows are these functions is a

tree-structured Haar (TSH) matrix (of tree T ).

In the following we discuss some properties of TSH

matrices that follow directly from their construction.

Property 1. Let T be a binary tree of depth n and

with N leaves. Then

1. The number of rows of a TSH matrix H based

on the tree T is equal to N , which is the number of all

splitting nodes of the tree T plus 1, since we put into

correspondence by one basis function (i.e. rows of the

matrix H) to each splitting node of the tree T plus one

(first) constant basis function corresponding to the

root of the tree.

2. The rows of a TSH matrix H can be divided into

the following n� 1 subgroups: the first subgroup

( j � 0) contains a single row which is a constant 1���
N
p ,

the number of rows in the j-th subgroup ( j � 1; ::; n)

is equal to the number of splitting nodes in the j-th

level of the tree, and the number of nonzero elements

in each row in the j-th level of the tree (corresponding

to the splitting node in that level) is equal to the label

of the corresponding splitting node, j � 1; :::; n:

Let us consider some constructions of the TSH

matrices, based on the different structures of the

underlying tree.

4.1. Classical Haar matrices, or TSH matrices

based on complete full binary tree

Let T be complete full binary tree of the depth 3

having N � 8 leaves (see Fig. 4).

8

4 4

2

1

2 2 2

1111 11 1

Figure 4. Complete full tree of the depth 3.
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From (1) - (3) and Theorem 1, after discretization

of TSH functions, we will obtain the classical Haar

matrix of order 8:

H �

1

2
��
2
p 1

2
��
2
p 1

2
��
2
p 1

2
��
2
p 1

2
��
2
p 1

2
��
2
p 1

2
��
2
p 1

2
��
2
p

1

2
��
2
p 1

2
��
2
p 1

2
��
2
p 1

2
��
2
p ÿ 1

2
��
2
p ÿ 1

2
��
2
p ÿ 1

2
��
2
p ÿ 1

2
��
2
p

1
2

1
2

ÿ 1
2
ÿ 1

2
0 0 0 0

0 0 0 0 1
2

1
2

ÿ 1
2

ÿ 1
2

1��
2
p ÿ 1��

2
p 0 0 0 0 0 0

0 0 1��
2
p ÿ 1��

2
p 0 0 0 0

0 0 0 0 1��
2
p ÿ 1��

2
p 0 0

0 0 0 0 0 0 1��
2
p ÿ 1��

2
p

0BBBBBBBBBBBBB@

1CCCCCCCCCCCCCA

4.2. Canonical Haar matrices, or TSH matrices

based on full logarithmic binary tree

Let T be a full logarithmic binary tree of the depth 4

having N � 5 leaves (see Fig. 5a). Then the

corresponding TSH matrix will have a form

H �

1��
5
p 1��

5
p 1��

5
p 1��

5
p 1��

5
p

2��
5
p ÿ 1

2
��
5
p ÿ 1

2
��
5
p ÿ 1

2
��
5
p ÿ 1

2
��
5
p

0
��
3
p
2

ÿ 1

2
��
3
p ÿ 1

2
��
3
p ÿ 1

2
��
3
p

0 0
��
2
p��

3
p ÿ 1��

6
p ÿ 1��

6
p

0 0 0 1��
2
p ÿ 1��

2
p

0BBBBBBB@

1CCCCCCCA: �7)

This matrix is known as the canonical Haar matrix2 by

Resnikoff and Wells [10].

Let T be another logarithmic binary tree of the

depth 4 having N � 5 leaves (see Fig. 5b).

Then the corresponding TSH matrix will have a

form

H �

1��
5
p 1��

5
p 1��

5
p 1��

5
p 1��

5
p

1

2
��
5
p 1

2
��
5
p 1

2
��
5
p 1

2
��
5
p ÿ 2��

5
p

1

2
��
3
p 1

2
��
3
p 1

2
��
3
p ÿ

��
3
p
2

0

1��
6
p 1��

6
p ÿ

��
2
p��

3
p 0 0

1��
2
p ÿ 1��

2
p 0 0 0

0BBBBBBB@

1CCCCCCCA: �8)

This matrix is known as the Fibonacci matrix by

Agaian-Aizenberg-Alaverdian [1]. As it is not difficult

to see, the canonical Haar matrix can be obtained by

permutations of the columns of the Fibonacci matrix.

4.3. Generalized Fibonacci-Haar p-matrices, or

TSH matrices based on generalized Fibonacci

p-tree

Fibonacci matrix [1] is the special case of generalized

Fibonacci-Haar matrices [7], since the logarithmic tree

is the particular case of the Fibonacci p-tree when

p!1:
Let T be a generalized Fibonacci p-tree (p � 2) of

the depth 4 having N � 6 leaves (see Fig. 6).

Then the corresponding TSH matrix will have a

form

5

4 1

3

2

1

1

1 1

5

1 4

1 3

1 2

1 1

a) b)

Figure 5. Logarithmic full binary trees.

6

0 4 2

3

2

1 2

21 1

1 1 1 1 1 1

Figure 6. Generalized Fibonacci 2-tree.
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H �

1��
6
p 1��

6
p 1��

6
p 1��

6
p 1��

6
p 1��

6
p

1

2
��
3
p 1

2
��
3
p 1

2
��
3
p 1

2
��
3
p ÿ 1��

3
p ÿ 1��

3
p

1

2
��
3
p 1

2
��
3
p 1

2
��
3
p ÿ

��
3
p
2

0 0

1��
6
p 1��

6
p ÿ

��
2
p��

3
p 0 0 0

1��
2
p ÿ 1��

2
p 0 0 0 0

0 0 0 0 1��
2
p ÿ 1��

2
p

0BBBBBBBBB@

1CCCCCCCCCA
: (9)

4.4. Other examples of TSH matrices based on

binary interval splitting trees

Let T be an arbitrary binary tree. As an example we

will consider T without any specific predefined form.

In Figure 7 three such binary trees are depicted. First

of them is a full one, and the two others are

isomorphic3 to the first one.

Similarly to the previous constructions, the TSH

matrix for the first and the second trees will have the

same form:

H1 �

1

2
��
2
p 1

2
��
2
p 1

2
��
2
p 1

2
��
2
p 1

2
��
2
p 1

2
��
2
p 1

2
��
2
p 1

2
��
2
p��

3
p

2
����
10
p

��
3
p

2
����
10
p

��
3
p

2
����
10
p

��
3
p

2
����
10
p

��
3
p

2
����
10
p ÿ

��
5
p

2
��
6
p ÿ

��
5
p

2
��
6
p ÿ

��
5
p
2
��
6
p

1

2
��
5
p 1

2
��
5
p 1

2
��
5
p 1

2
��
5
p ÿ 2��

5
p 0 0 0

0 0 0 0 0 2��
6
p ÿ 1��

6
p ÿ 1��

6
p

1
2

1
2

ÿ 1
2
ÿ 1

2
0 0 0 0

0 0 0 0 0 0 1��
2
p ÿ 1��

2
p

1��
2
p ÿ 1��

2
p 0 0 0 0 0 0

0 0 1��
2
p ÿ 1��

2
p 0 0 0 0

0BBBBBBBBBBBBB@

1CCCCCCCCCCCCCA
(10)

and the TSH matrix for the third tree is the following:

H2 �

1

2
��
2
p 1

2
��
2
p 1

2
��
2
p 1

2
��
2
p 1

2
��
2
p 1

2
��
2
p 1

2
��
2
p 1

2
��
2
p��

3
p

2
����
10
p

��
3
p

2
����
10
p

��
3
p

2
����
10
p

��
3
p

2
����
10
p

��
3
p

2
����
10
p ÿ

��
5
p
2
��
6
p ÿ

��
5
p
2
��
6
p ÿ

��
5
p

2
��
6
p

1

2
��
5
p 1

2
��
5
p 1

2
��
5
p 1

2
��
5
p ÿ 2��

5
p 0 0 0

1
2

1
2

ÿ 1
2
ÿ 1

2
0 0 0 0

0 0 0 0 0 2��
6
p ÿ 1��

6
p ÿ 1��

6
p

1��
2
p ÿ 1��

2
p 0 0 0 0 0 0

0 0 1��
2
p ÿ 1��

2
p 0 0 0 0

0 0 0 0 0 0 1��
2
p ÿ 1��

2
p

0BBBBBBBBBBBBB@

1CCCCCCCCCCCCCA
(11)

As we can see, one of these matrices can be obtained

from another one just by permutation of its rows. This

property holds for all the matrices corresponding to

isomorphic trees.

5. Fast tree-structured Haar transforms

In the following we will discuss the properties of the

transform defined by a TSH-matrix.

Definition 4. Let T be a binary interval splitting tree

with N leaves and H its TSH-matrix. The TSH-

transform corresponding to T of a column vector f of

lenth N is F � Hf .

It is well known that the classical Haar transform

(corresponding to the case of complete full binary

tree, see section 4.1) can be computed very efficiently

with an algorithm of linear complexity. This algorithm

is based on decomposing the Haar matrix into a

product of sparse matrices. This reduces the complex-

ity from the (N ÿ 1)2 addition and N2 multiplication

operations of the direct implementation to 2(N ÿ 1)

addition and N multiplication operations [3].

We will show that also the matrix of a tree-

structured Haar transform can be decomposed into a

product of sparse matrices and derive an straightfor-

ward algorithm to find the factorization. This

factorization leads to an algorithm of linear complex-

ity to compute a TSH-transform.

Consider a binary tree ~T of depth n and its tree-

structured Haar matrix H constructed according to

Definition 3. As noted in Section 3 we can assume

that ~T is a full tree and, thus, all its internal nodes are

8

0 5 3

4

2

1

2

1 1

1 1

1 1

1 2

8

0 5 3

4

2

1

2

1 1

1 1

1 1

1 2

1

1 1

111

a) b)

8

0 5 3

4

2

1

2

1 1

1 2

1 1

3

1

1

11

c)

1

Figure 7. Three isomorphic binary interval splitting trees.
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splitting nodes. Now, without changing the matrix H

we can replace ~T with T that is obtained from ~T by

adding non-splitting nodes to make each path from

root to leaf have length n.

Now, T has n� 1 levels, 0; 1; . . . ; n and we denote

by �j the number of nodes on level j and by �j the

number of splitting nodes on level j. Let c ( j; i),
i � 1; . . . ; �j be the nodes of level j from left to right

and, as before, we label each node c( j; i) by the

number � (c ( j; i)) of leaves in the subtree rooted at

c ( j; i).
Let us construct the matrices Aj; j � 1; . . . ; n as

follows.

Aj � Pj 0

0 INÿ�j

� �
; j � 1; :::; nÿ 1; (12)

where Ik is the identity matrix of order k; and Pj is the

(�j � �j) matrix of the form

Pj � Uj

Vj

� �
; (13)

An � Pn.

Uj is the (�jÿ 1 � �j) block diagonal matrix

constructed as follows.

Initialize the (�j � �j) matrix ~Uj � 0

For i � 1; . . . ; �j

if c ( j; i) � left child, then ~Uj�i; i) � ~Uj(i; i� 1) � 1

if c ( j; i) � right child, then ~Uj(i; i) � 0

if c ( j; i) � only child, then ~Uj(i; i) � 1

End For

Uj is now obtained from ~Uj by deleting all zero rows.

Vjis the ((�j ÿ �jÿ1)� �j) block diagonal matrix

constructed as follows.

Initialize (�j � �j) matrix ~Vj � 0

For i � 1; . . . ; �j

if c ( j; i) � left child, then ~Vj(i; i) � � (c ( j; i� 1)),
~Vj(i; i� 1) � ÿ� (c ( j; i))

if c ( j; i) � right child, then ~Vj(i; i) � 0

if c ( j; i) � only child, then ~Vj(i; i) � 0

End For

Vj is now obtained from ~Vj by deleting all zero rows.

Let D be the diagonal N � N matrix that

normalizes A1;A2; . . . ;An. We note that D can be

read directly from the tree T in the following way. Let

c1; . . . ; cNÿ1 be all the splitting nodes scanned level

by level from left to right and c1; 0 and c1; 1 their left

and right children respectively. Then

D � diag

 
1����
N
p ;

1����������������������������������������
(� (c1; 0)�(c1; 1))�(c1)

p ; � � � ;

1��������������������������������������������������������
(� (cNÿ1; 0)�(cNÿ1; 1))�(cN ÿ 1)

p !
;

(14)

Now, we are ready to state

Theorem 2. Let H, A1;A2; . . . ;An and D as above.

Then

H � DA1A2 � � �An: (15)

Corollary 1. There exists a fast algorithm comput-

ing a tree-structured Haar transform of length N with

2(N ÿ 1) additions and 3N ÿ 2 multiplications.

Proof: According to Property 1, the rows of TSH

matrix H consist of the following submatrices:

H � D

Hroot

H1

H2

� � �
Hnÿ 1

0BBBB@
1CCCCA (16)

First, we show that, for j � 0; 1; :::; nÿ 1:

Bj � Aj� 1 � � �An �
Mj

Hj

..

.

Hnÿ 1

0BBB@
1CCCA (17)

where Hj; � � � ;Hnÿ 1 are submatrices from (16), and

Mj � diag(e�(c ( j; 1)); e�(c( j; 1)); � � � ; e�(c ( j; �j))); (18)

where ek is the row vector of ones of the length k:
One can easily check that the last �n ÿ �nÿ1 rows

of the matrix Pn form the submatrix Hnÿ 1 from (16),

and the first �nÿ 1 rows form a matrix Mnÿ 1 from

(18). Thus, the formula (17) holds for j � nÿ 1: Let

us prove (17) by induction. Let this equation hold

for j � k: We will show that it holds also for

j � k ÿ 1; i.e.
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Bk �
Mk

Hk

..

.

Hnÿ 1

0BBB@
1CCCA � Ak� 1Bk� 1 � Ak� 1

Mk� 1

Hk� 1

..

.

Hnÿ 1

0BBB@
1CCCA:

This is equivalent to show that

Pk Mk� 1 � Mk

Hk

� �
;

or, equivalently,

Uk Mk� 1 � Mk ; and Vk Mk� 1 � Hk :

The first equation is true since the label of the parent

is equal to the sum of the labels of its children, and the

second equation is true by the construction of the

basis functions.

The complexity of the fast tree-structured Haar

transform based on the decomposition (16) consists of

the following operations: N multiplications from

product by the diagonal matrix D, 2(N ÿ 1) additions

and multiplications from the products by the matrices

Pj. Overall these result in 2(N ÿ 1) additions and

3N ÿ 2 multiplications. The theorem and its corollary

are proved.

Illustrations of how this algorithm works for the

trees presented in Figure 7 are given in Figure 8 and

Figure 9.

The action of the proposed algorithm for fast

tree-structured Haar transform can be represented

by the logarithmic tree decomposition structure,

presented in Figure 10 a). Starting from the root

of the tree where we have an input signal - vector x

of the length N to be transformed by the TSH matrix

H ; we apply to x 2 operators: the `̀ low-pass'' operator

Un and the `̀ high-pass'' operator Vn, defined in

Theorem 2. This will divide our signal into 2 parts:

signal x(1) � Unx of the length �nÿ 1, and the

signal Vnx of the length �nÿ 1 ÿ �nÿ 2: This procedure

is continued with the vector x(1); applying to it

operators Unÿ 1 and Vnÿ 1; resulting again in 2 signals:

x(2) � Unÿ 1x(1) of the length �nÿ 2, and the signal

Vnÿ 1x(1) of the length �nÿ 2 ÿ �nÿ 3: Continuing

this process by the same way with x(2); etc.,

until x(n) � U1x(nÿ 1); we will obtain the resulting

transform (reading from left to right the leaves in

Figure 10 a), without normalization by the diagonal

matrix D:

In the Figure 10 b) and c) this decomposition tree

is presented for the fast TSH transforms of Figures 8

and 9, respectively.

For computation of the inverse TSH transform we

can use a similar logarithmic tree as in Figure 10,

starting now from the leaves of the tree and combining

results by adding them from both `̀ low-pass'' and

`̀ high-pass'' parts. Since the basic computational

elements of the fast TSH algorithm are so-called

`̀ butterfly'' operations ± transforms by the matrices of

the form Q � 1 1

a ÿ b

� �
(see the structure of the

matrices Pj in the Theorem 2), in order to invert the

operation we need to apply the inverse `̀ butterfly''

Qÿ1 � b 1

a ÿ 1

� �
=(a� b):
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Figure 8. Decomposition matrices for the TSH matrix for the tree

from the Figure 7a).
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Figure 9. Decomposition matrices for the TSH matrix for the tree

from the Figure 7c).
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Another possibility for efficient implementation of

TSH transforms (both direct and inverse) is to use

a time-varying switching filter banks, as it is done

for the generalized Fibonacci - Haar transforms

in [5].

6. From (time) interval splitting trees to scale

splitting trees: the case of general time-scale

tiling

In the previous sections we have defined an

orthogonal tree-structured Haar (TSH) transform

based on the concept of binary interval splitting trees,

and developed a fast computational scheme for TSH

transforms. This fast computational scheme gives a

logarithmic tree decomposition structure for any TSH

transform. But this is just one possible case of

decomposition structure. Changing this logarithmic

decomposition tree to any binary decomposition tree

structure, we come to the concept of the tree-

structured Haar (TSH) packets4. In another extreme

case, when the decomposition tree is complete and

full, we will obtain an extension of the Walsh

transform [3].

As an example, the Fibonacci - Walsh p-matrix

defined by the tree structure given in Figure 6

( p � 2), as well as its decomposition into the product

of sparse matrices is given below:

H � D

1 1 1 1 1 1

2 2 2 2 ÿ4 ÿ4

1 1 1 ÿ3 0 0

1 ÿ1 0 0 1 ÿ1

1 1 ÿ2 0 0 0

1 ÿ1 0 0 ÿ1 1

0BBBBBBBB@

1CCCCCCCCA

� D

1 1 0 0 0 0

2 ÿ4 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0BBBBBBBB@

1CCCCCCCCA

�

1 1 0 0 0 0

0 0 1 0 0 0

1 ÿ3 0 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0BBBBBBBB@

1CCCCCCCCA
1 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 1

1 ÿ2 0 0 0 0

0 0 0 0 1 ÿ1

0BBBBBBBB@

1CCCCCCCCA
1 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 1

1 ÿ1 0 0 0 0

0 0 0 0 1 ÿ1

0BBBBBBBB@

1CCCCCCCCA
;

where

D � diag

�
1���
6
p ;

1

4
���
3
p ;

1

2
���
3
p ;

1

2
;

1���
6
p ;

1

2

�
:

7. Conclusion

Based on the concept of binary interval splitting trees,

a class of Haar-like orthogonal systems and trans-
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Figure 10. Logarithmic tree decomposition schemes for the TSH

transforms: a) general scheme, b) a scheme for the TSH transform

from Figure 8, c) a scheme for the TSH transform from the Figure 9.
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forms based on them is defined. For any binary tree

we associate a system of Haar-like orthogonal

functions ± tree-structured Haar (TSH) functions.

Particular cases of these systems are the classical Haar

system (the case of complete full binary tree), the

canonical Haar system (the case of logarithmic tree),

the Fibonacci Haar system (the case of Fibonacci

tree), etc. A fast algorithm of linear complexity for

computing TSH transform is developed. An extension

of the TSH transforms toward TSH packets is

described.

Notes

1. In the case of a full binary tree each node a will be indexed by a

binary vector (�1(a); :::; �k(a)) (�j 2 f0; 1g; j � 1; :::; k)

2. changing sign of all rows except the first one

3. here we call trees isomorphic if after deleting all non-splitting

non-leaf nodes from these trees we will obtain exactly the same

trees

4. name is similar to the Haar wavelet packets ( which is a

particular case of TSH packets [14]) based on the similar idea to

expand a Haar transform
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