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Abstract. The design of an aperture operator is based on adequately constraining the spatial domain and the

graylevel range in order to diminish the space of operators and, consequently, the estimation error. The design of a

resolution constrained operator is based on adequately combining information from two or more different

resolutions and has the same motivation, that is, diminish the space of operators to facilitate design. This paper

joins these approaches and studies multiresolution design of aperture operators for grayscale images. Spatial

resolution constraint, range resolution constraint and the combination of both constraints are characterized, and the

error increase by using the constrained filter in place of the optimal unconstrained one is analyzed. Pyramidal

multiresolution design involves applying the resolution constraint approach hierarchically, from the higher to the

lower resolution space. These approaches are also characterized and their error increase analyzed. The system that

has been implemented to design pyramidal multiresolution operators is described and has its complexity (memory

and runtime) analyzed. Several simulations and two applications for deblurring are shown and compared to

optimal linear filters. The results confirm the usefulness of the approach.
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1. Introduction

Optimal windowed filters [1±4] estimate a pixel value

in an ideal image based on a window of values in an

observed image. The filters are defined by functions

over the random vector in the window. Since there is

rarely a suitable model with which to perform

optimization analytically, the standard design ap-

proach is to estimate the optimal filter from realiza-

tions of pairs of ideal and observed images.

Estimation is problematic when the window is large

owing to the exponentially growing demand for data

to achieve good estimation precision [5]. The data

requirement can be mitigated by constraining filter

optimization to a subclass of all possible filters.

Various constrained filter classes have been studied

[6±22]. Each yields a suboptimal filter having

increased error in comparison with the unconstrained

optimal filter; however, each produces increased

precision (decrease in estimation error). A constraint

is beneficial if it results in designed filters having

better expected performance. The worth of a con-

straint depends on the sample size. A constraint is

typically beneficial for samples below a certain size,

but not for samples beyond that size. Its worth also

depends on the image class under consideration.

This paper joins two filter constraints. Aperture

filters [7] have been used successfully for design of
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grayscale filters, including deblurring. Multiresolution

filters [10] have been used successfully for binary

filtering and their benefit has been mathematically

quantified in that context. Aperture filters form a class

of nonlinear operators that filter grayscale images

by operating in a finite window that is constrained

both temporally (spatially) and in amplitude. These

constraints allow a tractable design procedure to be

applied by limiting the search space to a manageable

size. Multiresolution design takes advantage of the

following observation: optimally filtering an image at

high resolution is better than optimally filtering at low

resolution; however, increased resolution brings an

increase in the number of random variables for a fixed

size domain and a concomitant increase in error when

estimating the optimal filter. More generally, a

pyramidal multiresolution design can be employed

that uses data from different resolutions.

Following this Introduction, Section 2 presents the

family of aperture filters. Section 3 recalls the design

of aperture filters. Section 4 presents the methodology

of resolution constraining an operator. Section 5

presents the methodology of multiresolution design

of operators. Section 6 shows some examples of

application. Finally, Section 7 gives some conclusions.

2. Windowed Operators

Digital signals (or images) can be formally defined and

represented by functions from a non-empty set E, that is

an Abelian group with respect to a binary operation �,

to an interval L . Usually, E is a subset of the set Z of

integers (Z � Z for images) and L is the interval

�0; l ÿ 1� with l 2 Z�. A binary image is an element of

the collection of subsets of E, denoted P(E). It can also

be represented as a function from E to [0; 1] via the

indicator function [23]. The set of all possible functions

from E to L will be denoted by LE. A mapping 	 from

LE to L0E will be called an image operator or filter,

where L0 is the interval [0; l0 ÿ 1] with l0 2 Z�.

2.1. W -Operators

A finite subset W of E, will be called a window and the

number of points in W will be denoted by jW j. A

configuration is a function from W to L and the space

of all possible configurations from W to L will be

denoted by LW . Configurations usually result from

translating a window W by t, t 2 E, and observing the

values of a signal h, h 2 LE, within the translated

window, Wt. If W � fw1;w2; . . . ;wng, n � jW j, and

we associate the points of W to an n-tuple

(w1;w2; . . . ;wn), then a configuration h(Wt) is given by

h(Wt) � (h(t � w1); h(t � w2); . . . ; h(t � wn)):

Digital signals can be modeled by digital random

functions and, in this sense, h(Wt) is a realization of a

random vector X � (X1; X2; . . . ; Xn), that is ,

h(Wt) � x � (x1; x2; . . . ; xn), where x denotes a reali-

zation of X. An important subclass of operators from

LE to L0E is the class of W -operators. They are

translation invariant (t.i.) and locally defined (l.d.)

within W . If an image operator 	 is a W -operator, then

it can be characterized by a function w : LW ! L0,
called a characteristic function, by [24, 25]

	(h) (t) � w(h(t � w1); h(t � w2); . . . ; h(t � wn))

� w(x):

2.2. Aperture Operators

An aperture configuration is a function from W to K

(K � �ÿk; k�; k 2 Z�), and the set of all possible

aperture configurations on W is denoted by KW. These

configurations are usually the result of a spatial

translation of a window W by t, t 2 E, range

translating W by z, z 2 Z, and truncating the observed

values to values inside K. In this case, a configuration

can be written as

h�ÿz(Wt) � (h�ÿz(t � w1); h�ÿz(t � w2); . . . ;

h�ÿz(t � wn));

where hÿz(t) � h(t)ÿ z, z � z(h(Wt)) is a function

from h(Wt) to L, and h�ÿz is defined by

h�ÿz(t) �
hÿz(t) : ÿk � hÿz(t) � k

k : hÿz(t) > k

ÿk : hÿz(t) < ÿk

8<: (1)

Besides being t.i. and l.d. within a window W,

aperture operators are also locally defined by a range

window K � [ÿ k; k]. Let X� be a truncated random

variable X (following the truncation rule of Eq. 1),
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that is, X� � (X �1 ;X
�
2 ; . . . ;X �n ), and let x� be a

realization of X�. An aperture operator is defined by

	(h)(t) � w(h�ÿz(t � w1); h�ÿz(t � w2); . . . ;

h�ÿz(t � wn))� z � w(x�)� z;

where z � z(h(Wt)) is a function from h(Wt) to L, and

w : KW ! K is called the characteristic function of

	. It is important to notice that W -operators are

aperture operators such that k � l and z � 0.

Figure 1 shows two possible aperture placements.

In part (a) and (b), corresponding to the ideal and

observed signals, the aperture is placed at the

observed values, that is, z � h(t). Part (c) and (d)

are analogous, with placement at the median in the

observed signal, that is, z � median (h(Wt)).

3. Design of Operators

Given two gray-level random images on E, h to be

observed and g to be estimated, the basic design

problem is to find an operator 	 that minimizes an

error measure between 	(h)(t) and g(t), where t 2 E

[26]. The error measure to be minimized is usually the

Mean Absolute Error (MAE) or the Mean Square

Error (MSE). In the following sections, we present

design techniques that minimize the MSE.

3.1. Design of Aperture operators

Assuming the gray-level random images h and g are

jointly stationary [26], the MSE of 	 is given by

E�(g(t)ÿ	(h)(t))2�. If 	 is a W -operator, this is

equivalent to E�(Y ÿ w(X))2�, because 	 is fully

defined by its characteristic function w. We study

operators by their equivalent characteristic functions. For

w defined from LW to L (the expression for a w defined

from KW to K is equivalent), its MSE is given by

MSE(	) �
X
x2LW

Xlÿ1

y�0

( yÿ w(x))2P( y; x) (2)

where P(y; x) is the joint probability of (y; x)

The optimal MSE filter wopt(x) is given by

bE�Y jx� � 0:5c, where b� � 0:5c denotes the floor of

( � �0:5). This operation returns the nearest integer

of �. In practical applications, a design process is used

to estimate wopt as a function of samples obtained

from observed-ideal image pairs. The result is an

approximation of the optimal filter, that is, a

suboptimal filter. We next analyze the MSE of a filter

indirectly by its increment with respect to the MSE of

the optimal filter, using E�Y jx� instead of

bE�Y jx� � 0:5c to simplify the calculus.

3.2. Error Analysis

When using a suboptimal filter instead of the optimal

filter, there is an increase in error. The total increase in

MSE error from using a given filter w in place of the

optimal filter wopt is [26]

�(w;wopt) � MSE(w)ÿMSE(wopt)

�
X
x2LW

(w(x)ÿ wopt(x))2P(x)

� E[(w(X)ÿ wopt(X))2]: (3)

This expression characterizes the MSE error increase

of any filter as a function of the square distance

between the filter and the optimal ideal filter. In

t

h(t)

t

h(t)

t

h(t)

t

h(t)

Figure 1. Aperture placement

(a) (b) (c) (d)
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Appendix A, we analyze this error increase with

respect to the optimal discrete valued filter.

If wopt;N is an estimate of wopt based on N sample

pairs (X1; Y 1); . . . ; (XN ; Y N ), then there is a design

(estimation) cost �(wopt;N ;wopt), and the MSE of the

designed filter can be given as a function of that cost

and the MSE of the optimal filter, that is,

MSE(wopt;N ) � MSE(wopt)��(wopt;N ;wopt): (4)

Since the estimated filter wopt;N depends on the

training sample, it is random. Estimation error

(precision) is defined by the expected cost

E[�(wopt;N ;wopt)] and depends on the estimation

procedure. The expected MSE of wopt;N is found by

taking the expected value of Eq. 4, in which

MSE(wopt) is constant, that is,

E[�(wopt;N ;wopt)] �
X
x2LW

Xlÿ1

��0

(�ÿ wopt(x))2P�wopt;N (x)

� ��P(x) (5)

To estimate E�Y jx� and consequently wopt;N (x), we use

the nearest integer to the sample mean Y x, that is,

wopt;N (x) � �E�Y jx� � 0:5�. This is a consistent esti-

mator. For a configuration unseen in the training

sample, an alternative is to use the sample expectation

of Y , that is, wopt;N (x) � bY � 0:5c.

4. Resolution Constraint

This section presents the main results on resolution

constraining an operator. We begin by introducing

resolution constraint in the special case of down-

sampling. We then consider the general definitions,

first for spatial resolution, second for range resolution,

and finally for the combination of both spatial and

range resolution. The section is completed by

analyzing the error increase of using resolution

constraint.

4.1. Down-sampling Resolution Constraint

For the special case of down-sampling spatial resolution

constraint, let W0;W1 be two windows such that

W1 � W0 � E, L � [0; . . . ; l ÿ 1] be the graylevel

range, and D1 � LW1 and D0 � LW0 be the configura-

tion spaces over W1 and W0 respectively. Let

� : D0 ! D1 be a sub-sampling, that is, a mapping that

assigns to each configuration x 2 D0 a configuration

z � �(x), which is a vector whose values are those of x

over the sub-window W1. Figure 2 shows a configuration

x � (x1; . . . ; x16) of W0 that is sub-sampled to obtain a

configuration z � (z1 � x1; z2 � x3; z3 � x9; z4 � x11)

over W1, where x1; . . . ; x16 2 L. Let LD0 be the space

of all functions from D0 to L. The mapping � defines a

constraint Q � LD0 by: w 2 Q if and only if (iff)

�(x) � �(x0)) w(x) � w(x0), for any x; x0 2 D0. The

size of the configuration space is reduced for the

constrained filter because jD1j � jLjjW1j and jD0j �
jLjjW0j � jLj(jW0jÿjW1j�jW1j) � jLj(jW0jÿjW1j)jD1j. Using

the mapping �, an optimal constrained operator in LD0

is estimated via the optimal operator in LD1 .

For range resolution constraint, consider window

W � E and integer intervals L0 � L � [0; . . . ; l0 ÿ 1]

and L1 � [0; . . . ; l1 ÿ 1], where l0 is an even number

and l1 � l0
2
, be the gray-level ranges for the observa-

tion spaces D0 � LW
0 and D1 � LW

1 . Let � : D0 ! D1

be a quantization, that is, a mapping that assigns

to each configuration x 2 D0 a configuration

z � �(x) � bx
2
c 2 D1, where b�c denotes the floor of

�. In this case, a configuration x 2 D0 with up to l0
gray levels is quantized to half the gray levels to

obtain the configuration z 2 D1 with up to l0
2

gray

levels. The size of the configuration space is reduced

for the constrained filter because jD1j � jL1jjW j and

Figure 2. Downsampling.
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jD0j � jL0jjW j � (2jL1j)jW j � 2jW jjL1jjW j � 2jW jjD1j.
Analogous comments and analysis apply to other

quantizations than l1 � l0
2
.

Spatial and range constraints can be combined

to obtain a new space that is a constraint of

D � LW . Consider windows W1 � W0 and let

L0 � L � �0; . . . ; l0 ÿ 1� a n d L1 � �0; . . . ; l1 ÿ 1�,
with l0 an even number and l1 � l0

2
. Let D0 � LW0

0 ,

D01 � LW1

0 , D1 � LW1

1 , and �1 : D0 ! D01 be defined

by spatial resolution constraint from W0 to W1.

Let �2 : D01 ! D1 define a resolution constraint

over W1 by �2(x) � bx
2
c, for any x 2 D01. The

composition � : D0!�1
D01!�2

D1 is a mapping from

D0 to D1 which takes a configuration x 2 LW0

0 ,

subsamples and quantizes it to obtain a configuration

z � �(x) 2 LW1

1 . The mapping � defines a resolution

constraint on the space LD0 . Figure 3 shows an

example of combined spatial and range constraint.

In this case, L0 � �ÿ4;ÿ3;ÿ2;ÿ1; 0; 1; 2; 3; 4�,
L1 � �ÿ2;ÿ1; 0; 1; 2�, W0 is a 5-point vector, W1 is

a 3-point vector, and

�1(x1; x2; x3; x4; x5) � (median(x1; x2; x3);

median(x2; x3; x4);median(x3; x4; x5))

�2(z1; z2; z3) � (bz1

2
c; bz2

2
c; bz3

2
c)

Down-sampling can be defined more generally

[10]. Consider a subsampling where each pixel

�i 2 W1, 1 � i � jW1j, corresponds to a subwindow

W�i
� W0, where the subwindows form a partition of

W0. A downsampling is defined via mappings

�i : L
W�i

0 ! L1 that assign values to each pixel

�i 2 W1 as functions of the configuration x 2 D0

restricted to W�i
. Formally, � : D0 ! D1 is defined by

z � �(x) � (�1(xjW�1
); . . . ; �jW1j(xjW�jW1 j

))

This definition extends all the previous ones. For

example, if L1 � L0 � L and W�i
consists of the

single pixel in W0 that is in the same place as �i, then

the mappings are equivalent to the previously defined

spatial resolution constraint.

4.2. Resolution Constraint

To define resolution constraint in its general form,

consider two configuration spaces D0 and D1 related

by a surjective mapping � : D0 ! D1. � determines an

equivalence relation on D0 by x � x0 iff �(x) � �(x0).
Therefore, for each z 2 D1, there exists an equiva-

lence class C[z], given by C[z] � �ÿ1(z). For gray-

level operators over a fixed range L, optimal design is

relative to the product space L� D0 with probability

mass P(y; x), y 2 L; x 2 D0. A probability mass is

induced on D1 by P(z) � P(�ÿ1(z)) and on L� D1 by

P(y; z) � P(fyg � �ÿ1(z)):

As in the binary case [10], an operator � on D1

induces an operator w� on D0 by w�(x) � �(�(x))

(Fig. 4). w� is spatially resolution constrained, in

accordance with the function �: if �(x) � �(x0) then

w�(x) � w�(x0). Conversely, if w is any operator on

D0 satisfying the resolution constraint, then it induces

an operator on D1 by �w(z) � w(x), where x is any

vector in C[z]. Let LD0 and LD1 be the classes of gray-

level operators on D0 and D1, respectively. The

mapping �! w� defines an injection LD1 ! LD0 . If

3 point Median Range Downsampling

1 2
ρ ρ

ρ
1 2

ρ

Figure 3. Combined spatial and range constraint.
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Q is the subset of LD0 composed of operators

satisfying the resolution constraint, then the mapping

w! �w defines a bijection Q! LD1 whose inverse is

given by the mapping �! w�. This bijective relation

allow us to identify operators on D1 with resolution

constrained operators on D0.

A key point here is whether an optimal operator on

D1 can be associated to an optimal resolution

constrained operator on D0. If this is the case, then

consistent estimators for the optimal operator in LD1

will induce consistent estimators for the optimal

operator in Q. The following theorem shows this is

always true for any loss function.

Theorem 4.1. Error Preservation - Let ` : L� L!
R �, be a loss function used to define the risk functions

R: LD0 ! R �, R(w) � E[`(Y ;w(X))] and R : LD1 !
R �, R(�) � E[`(Y ; �(Z))]. Then R(w) � R(�w), 8w
2 Q.

Proof

R(�w) �
X
z2D1

X
y2L

`[ y; �w(z)]P(y; z)

�
X
z2D1

X
y2L

`[ y; �w(z)]
X

x2C[z]

P(y; x)

�
X
z2D1

X
x2C[z]

X
y2L

`[ y; �w(z)]P(y; x)

�
X
z2D1

X
x2C[z]

X
y2L

`[ y;w(x)]P(y; x)

�
X
x2D0

X
y2L

`[ y;w(x)]P(y; x)

� R(w) (6)

An immediate consequence of the Error Preservation

Theorem (EP) is that, under spatial resolution

constraint, MSE and MAE (mean absolute error)

are preserved by the mapping w! �w and, therefore,

the optimal filter on D1 induces the optimal resolution

constrained filter on D0.

4.3. Non-Preservation of Error in Range Resolution

Constraint

The error-preservation theorem has been demon-

strated under the assumption of resolution constraint

in both the spatial domain and range, in particular

with D0 � LW0

0 and D1 � LW1

1 , and the condition that

both w and the induced mapping �w possess the same

range L, that is, w 2 LD0 and �w 2 LD1 . A natural

situation is when w is being used to estimate the value

Y of an ideal image based on the random vector X in

an observation window, with L � L0. Owing to error

preservation, the optimal filter in Q is found by

determining the optimal filter in LD1 . Now consider an

alternate situation in which resolution constraint is not

only applied to the observation X but to the ideal

value Y . Here, w : D0 ! L0, there exists a surjection

s : L0 ! L1, and �w : D1 ! L1. w(X) serves as an

estimator of Y , whereas �w(Z) serves as an estimator

of s(Y ). The question now is whether, if � is the

optimal estimator for s(Y ) in LD1 , does this guarantee

that w� is the optimal estimator for Y in Q? As we will

see, it does not.

To see the problem, consider the simplified situation

in which there is no spatial constraint, so that there is a

single window W, D0 � LW
0 and D1 � LW

1 . Consider a

surjection s : L0 ! L1 and a corresponding injection

r : L1 ! L0, in which case, the composition s � r is the

identity on L1. The pair (r; s) defines a constraint class

Q 2 LD0

0 in accordance with the constraint mapping

�(x) � (s(x1); s(x2); . . . ; s(xjW j)). w 2 Q if and only if

�(x) � �(x0) implies w(x) � w(x0), and w(x) 2 r(L1)

for any x 2 D0. An operator � 2 LD1

1 induces a

resolution-constrained operator w� 2 LD0

0 by

w�(x) � r(�(�(x))) [Fig. 5].

On the other hand, if w is a resolution constrained

operator in LD0

0 , then it induces an operator �w 2 LD1

1

by �w(z) � s(w(x)) for any x 2 D0 such that �(x) � z.

The mapping �! w� is a bijection from LD1

1 onto Q

having inverse w! �w.

D0

L

ρ

ψ φ

D1

Figure 4. Commutative diagram.
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Now consider the special case in which s( j) � b j
2
c

and r(i) � 2i. The MSE for w as an estimator of Y and

�w as an estimator of s(Y ) � bY
2
c are related by

MSE(�w) � 1

4
MSE(w)� 1

4

X
x2D0

Xl1ÿ1

i�0

2[(w(x)ÿ 2i)ÿ 1

2
]

P(2i� 1; x): (7)

If P(2i� 1; x) � 0 for any i 2 L1, meaning the

probability mass is concentrated in r(L1), then

MSE(�w) � 1
4

MSE(�) and the optimal operator in

LD1

1 induces the optimal operator in Q; otherwise, it

need not.

To exemplify this, let l0 � 4 and l1 � 2, then

L0 � [0; 1; 2; 3] and L1 � [0; 1]. Let W � (u; v) be a

two-point window, �(x) � (bx1

2
c; bx2

2
c). The space D1

has 22 � 4 different configurations: f00,01,10,11g.
The space D0 has 24 � 16 different configurations:

f00,01,02,03,10,11,12,13,20,21,22,23,30,31,32,33g.
The equivalence classes are C[00] � f00; 01; 10; 11g,
C[01] � f02; 03; 12; 13g, C[10] � f20; 21; 20; 31g
and C[11] � f22; 23; 32; 33g. There are 222 � 16

operators in the space LD1

1 . These 16 operators induce

(or are induced by) the 16 operators in Q � LD0

0 .

Suppose now that the distribution P over L0 � D0 is

given by Table 6 (a), and that the induced distribution

over L1 � D1 is given by Table 6 (b). From these

tables, it is straightforward to compute the MSE for

each of the 16 operators in LD1

1 and for the 16 induced

operators in Q � LD0

0 .

Table 6 (c) shows the MSE errors for the 16

constrained operators in Q (labeled MSE(w)) and for

each of the 16 operators in LD1

1 (labeled MSE(�w)).

The best MSE constrained operator in Q is w16, which

is defined by w16(x) � 2 for any x 2 D0. It induces the

operator �w16
2 LD1

1 given by �w16
(z) � 1 for any

L 0 L 1
r

ρ

ψ φ

D1D0

Figure 5. Commutative diagram.

X Y=0 Y=1

00 0.09 0.13

01 0.12 0.16

10 0.15 0.10

11 0.10 0.15

X Y=0 Y=1 Y=2 Y = 3

00 0.01 0.02 0.01 0.01

01 0.01 0.00 0.02 0.01

02 0.02 0.02 0.03 0.01

03 0.01 0.01 0.01 0.02

10 0.02 0.01 0.02 0.02

11 0.01 0.01 0.02 0.02

12 0.01 0.03 0.03 0.01

13 0.02 0.00 0.02 0.03

20 0.03 0.02 0.01 0.02

21 0.01 0.01 0.02 0.01

22 0.00 0.02 0.01 0.01

23 0.01 0.02 0.03 0.02

30 0.02 0.01 0.01 0.01

31 0.03 0.02 0.00 0.02

32 0.01 0.01 0.03 0.01

33 0.01 0.02 0.02 0.02

Operator MSE(w) MSE(�w)

1 3.6400 0.5400

2 2.9200 0.4900

3 3.3600 0.5900

4 2.6400 0.5400

5 2.9600 0.5000

6 2.2400 0.4500

7 2.6800 0.5500

8 1.9600 0.5000

9 3.0800 0.5000

10 2.3600 0.4500

11 2.8000 0.5500

12 2.0800 0.5000

13 2.4000 0.4600

14 1.6800 0.4100

15 2.1200 0.5100

16 1.4000 0.4600

(a)

(b)

(c)

Figure 6. (a) Distribution over L0 � D0, (b) Distribution over

L1 � D1 (c) MSE for all the operators in the constraint and their

induced operators.
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z 2 D1. MSE(w16) � 1:4 and MSE(�w16
) � 0:46.

However, the best MSE operator in LD1

1 is the operator

14. �w14
is defined by �w14

(00) � 1, �w14
(01) � 1,

�w14
(10) � 0 and �w14

(11) � 1. It is induced by the

operator w14 given by w14(x) � 0 if x 2 C[10] and

w14(x) � 2 for the remaining configurations x 2 D0.

MSE(�14) � 0:41 and MSE(w�14
) � 1:68.

The fact that the optimal operator in Q, w16, is

different from the operator w�14
, induced by the

optimal operator in LD1

1 , illustrates that we do not

know the best operator in the constraint class Q

through the best operator in the associated space LD1

1 ,

even with the existence of a bijection between Q

and LD1

1 .

Nonetheless, many simulations have shown that

the EP property either holds or is close to holding.

Moreover, assuming it to be true has provided good

practical results. Therefore we employ it in applica-

tions when there is a range change.

4.4. Error Analysis for Resolution Constraint

If D0 � LW0

0 and D1 � LW1

1 are the full and resolution-

constrained spaces, respectively, and w0 is the optimal

(unconstrained) operator in LD0 , then there are two

possibilities concerning the optimal constrained

operator w1 in Q, where w1 � w�1
and �1 is optimal

in LD1 . The first possibility is that w0 2 Q, in which

case w1 � w0 and there is no additional error owing to

constraint. Of more interest is the second case, in

which w0 =2Q and w1 6� w0. Then there is a cost

�(w1;w0) of constraint. The purpose of constraint is

to lower the design cost and the worthiness of the

constraint depends on the relation between the cost of

constraint and the design costs for the constrained and

unconstrained operators.

To examine this relation, suppose there are N

sample pairs used to train the operator, and let w0;N

and w1;N denote the operators that result from

estimating the optimal unconstrained and constrained

filters, respectively, from the sample data. According

to Eq. 4, E[MSE(w1;N)] � E[MSE(w0;N)] if and only if

E��(w0;N ; w0)ÿ�(w1;N ; w1)� � �(w1; w0): (8)

in which case the constraint is beneficial. The

expectation of Eq. 8 depends on the way the operator

is estimated.

As shown in Appendix C, Eq. 19, the constraint

cost has the following expression:

�(w1;w0) � E[Var[E[Y jX] jZ]] (9)

For simulations, we have used n0 � 5, n1 � 3 and

L0 � L1 � L � f0; 1g; and 2 distributions �1 and �2.

The conditional probabilities P1(Y � 1jx) for �1 are

defined from the conditional probabilities P1(Y � 1jz)

in Table 7 (a) by P1(Y � 1jx) � P1(Y � 1jz) for z

such that x 2 C[z]. The equivalence class C[z] is

defined by the mapping �2(x1; x2; x3; x4; x5) �
(x2; x3; x4). For example, C[(0,1,0)] = {(0,0,1,0,0),

(0,0,1,0,1), (1,0,1,0,0), (1,0,1,0,1)} and therefore

P1(Y � 1j(0; 0; 1; 0; 0)) � P1(Y � 1j(0; 0; 1; 0; 1)) =

P1(Y � 1j(1; 0; 1; 0; 0)) = P1(Y � 1j(1; 0; 1; 0; 1))

� 0:0421. The conditional probabilities for distribu-

tion �2 are defined in the same way from the

conditional probabilities of Table 7 (b) and the

mapping �2(x1; x2; x3; x4; x5) � (x1; x3; x5). A third

distribution �3 is a linear combination of �1 and

�2: P3(y; x) � 0:4P1(y; x)� 0:6P2(y; x) wi th the

necessary normalization to make �3 a probability

distribution.

For each distribution, we have simulated samples

of size N � 10; 20; . . . ; 100, and have trained the

unconstrained and the constrained operators. Figures

8(a), 9(a) and 10(a) show the average MSE measured

over 200 repetitions of the experiment for both

operators, for �1, �2 and �3 respectively. In Figure

8(a), MSE (w0) = MSE(w1). For �1 the constrained

operator performs better (lower MSE) than the

unconstrained one. For �2, the distribution is well

suited for estimation in D0, and except for very small

N , the constraint is not beneficial. For �3 the

z P(Y = 0) P(Y = 1)

000 0.9579 0.0421

001 0.0421 0.9579

010 0.9579 0.0421

011 0.0421 0.9579

100 0.9579 0.0421

101 0.9579 0.0421

110 0.0421 0.9579

111 0.9579 0.0421

z P(Y = 0) P(Y = 1)

000 0.4198 0.5802

001 0.4963 0.5037

010 0.4643 0.5357

011 0.7088 0.2912

100 0.9579 0.0421

101 0.3544 0.6456

110 0.3472 0.6528

111 0.3280 0.6720

Figure 7. (a) Distribution �1 over {0, 1} � D1, (b) Distribution

�2 over {0, 1} � D1.

(a) (b)
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constrained distribution is better for less than 50

samples, but for a larger number of samples the

unconstrained operator performs better.

Figures 8 (b), 9 (b) and 10 (b) show �(w1; w0)

and the estimation of E��(w0;N ; w0� ÿ�(w1;N ; w1)�,
for �1, �2 and �3, respectively. In Figure 8 (b),

�(w1; w0) � 0, because the optimal filter w0 is a

resolution constrained filter, and thus w0 � w1.

5. Multiresolution Design

In this section, we show how spatial resolution

constraint can be iterated and some consequences of

this approach. Consider windows W2 � W1 � W0,

where the configurations for W1 and W2 are obtained

by downsampling from the configurations for W0 and

W1, respectively. Let D0 � LW0 , D1 � LW1 and

D2 � LW2 be the configuration spaces for the

windows W0, W1 and W2. Let �1 : D0 ! D1 and

�2 : D1 ! D2 be the downsampling mappings defined

by z � �1(x� and v � �2(z). The mappings �1 and �2

define a mapping �12 : D0 ! D2 by �12 � �2 � �1.

More generally, let D0, D1 and D2 be configuration

spaces related by the surjective mappings

�1 : D0 ! D1 and �2 : D1 ! D2. �1 induces an

equivalence relat ion on D0 by x �1 x0 i ff

�1(x� � �1(x0). This equivalence relation defines
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Figure 8. �1 a) MSE, b) Inequality
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a p a r t i t i o n P1 o f t h e s p a c e D0, w h e r e

P1 � fC[z] : z 2 D1g and C[z] � �ÿ1
1 (z). In the

same way, �2 induces a partition fC[v] : v 2 D2g on

the space D1. The mapping �12 : D0 !�1
D1 !�2

D2

induces another partition P2 on D0 by x � 2 x0 iff

�12(x) � �12(x0). This partition is coarser than P1, in

the sense that �ÿ1
12 (v) � [fC[z] : z 2 C[v]g. Compar-

ing constraint cost and estimation errors at different

resolutions simply involves subtracting equations of

the form given in Eq. 8. Treating the analysis in a

general setting, multiresolution analysis for filter

design results from recursive parti t ioning

the configuration spaces D0, D1, D2, . . ., relative

to recursively applied resolution mappings �1, �2, . . .,
where �k : Dkÿ1 ! Dk . For configuration space

Dk , there corresponds a resolution constrained

optimal filter wk. The best filtering resolution for a

sample size N is the one for which MSE(wk;N ) is

minimal.

5.1. Error Analysis for Multiresolution

According to Eq. 8, the multiresolution constraint is

beneficial for �k � �kÿ1 � . . . � �1 if

E[�(w0;N ;w0)ÿ�(wk;N ;w0�] � �(wk ;w0) (10)

When the multiresolution analysis is done by

recursive partitioning, each �k is a resolution

mapping, and the optimal filters wkÿ1 and wk are

related by

�(wk ;wkÿ1) � E[Var[E[Y jZ]jW]] (11)

w h e r e W 2 Dk a n d Z 2 C�w� � fz 2 Dkÿ1 :
�k (z) � wg � Dkÿ1 f o r e a c h w 2 Dk . � � �k�
�kÿ1 � . . . � �1 is a resolution mapping between D0

and Dk , and

�(wk ;w0) � E[Var[E[Y jX]jW]] (12)

where W 2 Dk and X 2 C�w� � fx 2 D0 : �(x) � wg
� D0 for each w 2 Dk . Eq. 11 and 12 show two ways

to compute the error increase for the optimal filter wk

on Dk ; as the sum of the error increases for each

mapping (Eq. 11), or directly as a function of the

equivalence class defined over D0 (Eq. 12).

5.2. Pyramidal Design of Optimal Resolution

Constrained Operators

The resolution constrained design approach presented

so far produces a function w1 on D1 and applies it

on D0 (where D1 is a constrained space of D0)

by w0(x) � w1(z) if z � �(x), where � : D0 ! D1.

That means that, even having data to estimate the

filter relative to D0, we only use data relative to D1

via �.
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An alternative approach is to use data from both

spaces. If we have a good estimate of px (the

probability distribution of x) and w0;N (x) 6� w1;N (z),

then it would be prudent to use w0;N (x) in place of

w1;N (z). On the other hand, if we have a poor

estimate, or no estimate, of px, but a better estimate of

p��x�, then it can be beneficial to use w1;N (z). An

operator designed in this way is called a

multiresolution operator because rather than applying

only w0;N for all x, or applying only w1;N for all z, the

precision of the probability estimates are considered

and the function is chosen accordingly. In the simplest

case, requiring only that x be observed at least once,

the multiresolution estimator is given by,

w�0;1�;N (x) � w0;N (x); if N (x) > 0

w1;N (x); if N (x) � 0

�
(13)

This idea can be repeated for any number of

constraints, applied iteratively by a sequence of

resolution constraint operators �1; �2; . . . ; �m,

ultimately, until the size of Wi (Wi � Wiÿ1) is 1 and

the size of Li (Li � Liÿ1) is 2. In this case, the

multiresolution estimator is given by,

w�0;...;m�;N (x) �

w0;N (x); if N (x) > 0

w1;N (x); if N (x) � 0;
N (�1(x)) > 0

..

.

wmÿ1;N (x); if N (x) � 0; . . . ;
N (�mÿ2(x)) � 0;
N (�mÿ1(x)) > 0

wm;N (x); if N (x) � 0; . . . ;
N (�mÿ1(x)) � 0

8>>>>>>>>>>>>><>>>>>>>>>>>>>:
(14)

Figure 11a shows an example where �0 maps each

four pixels from window W0 to one pixel in W1 and �1

maps each two pixels from window W1 to one pixel in

W2. This is a typical case for binary or grayscale

spatial multiresolution design of operators. A slight

modification of this approach requires that N (x) be

sufficiently large (i.e., w(0; 1);N (x) � w0;N (x), if

N (x) > a, where a 2 Z�).

Although the optimal filter at the higher resolution

is better, the designed filter using multiresolution can

outperform the standard designed filter owing to better

probability estimates. In this sense, the pyramidal

multiresolution design is a type of machine learning

algorithm, where there is induction (generalization) [27]

given by the successive constraints.

5.3. Software Implementation for Pyramidal Multi-

resolution Design

The implementation of a system to design and apply

multiresolution operators is straightforward. It con-

sists of three separate procedures: (i) observation or

estimation, (ii) decision and (iii) application.

� The estimation procedure (i) consists of library

functions to read pairs of images (observed, ideal),

read the pyramid specification (the set of windows

and range restrictions which compose the opera-

tor), slide the largest window (i.e., window W0) on

the set of training images and storing, for each

configuration, the values observed in the ideal

image for that configuration plus the number of

times the configuration has been observed with that

value. After observing and storing the configura-

tions and observed values for the largest window,

the same has to be done for all the windows in the

multiresolution pyramid, but now it is enough to

apply the constraint operators �j to x. The result of

this procedure is a set of tables, one for each

constrained operator wj, where each line of each

table contains one observed configuration and the

values associated with their frequencies.

� The decision procedure (ii) has to compute only

one value for each configuration (because an

observed configuration can be linked to several

ideal values) that minimizes a certain risk function

R ; this has to be done for each table. The result of

this procedure is a set of configuration tables (one

for each constrained operator), where each line of

each table contains one configuration, the respec-

tive decided value and the total of times the

configuration has been observed.

� The application procedure (iii) uses functions to

read an image, read the pyramid specification, read

the result of the decision procedure, slide the

window on the application image to get a

configuration, compute the value to be assigned

to the configuration and save the resulting image.

This procedure is similar to the first one. The main

difference is that, instead of storing configurations
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and their respective associated values, the observed

configuration will be searched in the table of

configurations. If the configuration is found, the

corresponding label found in the table is assigned

to the pixel position in the resulting image. If the

configuration is not found, the procedure applies

each constraint operator �j, 1 � j � m, to the

configuration, in this order, and repeats the

searching in the corresponding table j. If the

pyramid is well chosen, there will always be a table

where the constrained configuration is found;

otherwise, we can attribute a specific value to the

output pixels.

6. Examples of Application

In this section, we show some examples comparing

the multiresolution design to other known techniques.

We have three possibilities for multiresolution design

of aperture filters: (i) constrain the window, (ii)

constrain the gray-scale and (iii) constrain both.

6.1. Deblurring 2D Images: Small Range

This application concerns deblurring of a random

Boolean function model [28] whose primary function

is pyramidal, with at most 16 gray levels. Blurring is

accomplished by a (3� 3) non flat convolution kernel

(Fig. 11b). We have generated 20 images, each of size

256� 256 points, and their respective blurrings.

Figure 12 shows part of an original and blurred

image. From this set, we have used 10 images for

training and 10 for testing. Multiresolution aperture

operators have been designed using the training set

and then tested against the test set. Comparisons have

W2

ξ

W0

1

ξ 2

W1

Figure 11. (a) Pyramidal structure, (b) Convolution kernel.

Figure 12. Random Boolean function: part of one image (a) and

its blurring (b).

(a)

(b)

(a)

(b)
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also been made with some previous experiments

presented in Ref. [7] relative to some optimal linear

filters, and some aperture operators without multi-

resolution that have been designed using the same

training set and tested against the same test set. Figure

13 shows the MSE errors for some of the best

designed operators. Each curve represents an experi-

ment with a certain constraint. Each point of a curve

represents the MSE of the operator (averaged over 10

test images) when using a certain amount of training

examples to its design.

The curve labeled `̀ blurred'' is the error between

the blurred and the ideal images. The curve labeled

Lin9� 9 is the result of the optimal linear

filter designed using a 9� 9 window. Figures 14a

and b show the pyramids used to design the W -

operators labeled MresW1 and MresW7, respectively.

Figures 15a and b show the pyramids used to design

the W -operators labeled MresW8 and MresW9,

respectively. The curve labeled DT17� 5 is the

aperture operator designed using the window of 17

points inside a 5� 5 window, denoted W0 in the

pyramid shown in Figure 15a. The curves labeled

MresA1, MresA7, MresA8 and MresA9 are the MSE

errors for multiresolution aperture operators designed

using the pyramids shown in Figures 14a, 14b, 15a

62500 125000 187500 250000 312500 375000 437500 500000 562500 625000
0.2

0.25

0.3
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M
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Lin 9x9
DT 17x5
Blurred
Mres A 1
Mres A 7
Mres A 8
Mres A 9
Mres W 1
Mres W 7
Mres W 8
Mres W 9

Figure 13. MSE error comparison: small range.

Figure 15. Pyramids for experiments "Mres W 8" and "Mres W 9".

(a) (b)

(a) (b)

Figure 14. Pyramids for experiments "Mres W 1" and "Mres W 7".
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and 15b, respectively. Each aperture in the pyramid

has a grayscale window range K, with k � 5.

Most of the non-linear filters perform better than

the linear one, which stabilizes near 0.438, even

though the linear filter is designed over a significantly

larger window. Even at modest sample sizes, linearity

is too strong of a constraint. The multiresolution filters

MresA1 and MresW 1 perform worse than the non-

multiresolution aperture (17� 5) filter, although for

N � 62500, MresW1 outperforms the non-multireso-

lution aperture filter. The best results are for the filters

MresW8 and MresW 9; followed by MresW 7,

MresA9, MresA8 and MresA7. The Boolean function

model used (short pyramids on a constant zero

background) favors W -operators (aperture operators

with k � l ) over aperture operators with k << l,

because the image range is relatively small and

permits good estimation from the available data. The

cost of the aperture constraint is not made up for by

the savings in estimation error resulting from the

aperture. But multiresolution design is certainly

beneficial.

6.2. Deblurring 2D Images: Large Range

This application is similar to the previous one, but we

have generated 20 different smooth functions to be

summed to each of the 10 ideal images and to each of

the 10 test images of the previous experiment. Each

smooth function has been generated by choosing four

random points at the corners of the image (uniform

distribution between 0 and 50) and generating a

smooth surface connecting those points. The final

image is formed by placing small pyramids at

different graylevel positions on a smooth image. The

idea here is to model a pyramidal texture on a variable

background. Figure 16 shows a 3D view of one

original image (a) and the same image with the

correspondent surface added (b) to it. The blurring has

been generated using the same convolution kernel as

previously and these new pairs (blurring and ideal)

have been used to design new deblurring operators as

before. Figure 17a shows part of one image resulting

from adding one of the previous ideal images to one

surface, and Figure 17b shows its blurring.

Figure 18 shows the MSE errors for some of the

best designed operators in each class. It is constructed

analogously to Figure 13. The curve labeled blurred is

the error between the blurred and the ideal images.

The curve labeled Lin 9� 9 is the result of the optimal

linear for a 9� 9 points window. The curves labeled

MresA6, MresA8, MresA9 and MresW8 show the

MSE errors for multiresolution aperture and W -

operators, respectively, designed using the pyramids

shown in Figure 19a (MresA6), Figure 19b (MresA8

and MresW 8) and Figure 20a (MresA9). Each

aperture in the pyramid has the same grayscale range

K, with k � 5. The curves labeled DT6 and DT15

show the MSE for the aperture operators designed

using the square 3� 3 window and the window of 17

points inside a 5� 5 point window. The latter curve is

Figure 16. Surface of the random Boolean function: one image (a) combined with surface (b).

(a) (b)
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Figure 17. Random Boolean function: combined images (a) and a profile (b). Blurred image (c) and a profile (d).
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Figure 18. MSE error comparison: large range.
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(b)

(c)

(d)
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shown for comparison with the multiresolution

aperture MresA8.

The best performing multiresolution W -operator is

for MresW8, and its performance is very poor, with its

MSE being worse than the MSE of the blurred image

until N � 635040. The large gray range makes the

cost of design exorbitant. The non-multiresolution

aperture filter DT15 outperforms MresW8, but still

requires too much sample data. Much better perfor-

mance is achieved by the non-multiresolution aperture

filter DT6. The multiresolution aperture filter MresA6

outperforms DT6 for smaller N, but DT6 catches up

at N � 381024. The key point is that mutiresolution

aperture filters MresA8 and MresA9 outperform all

multiresolution W-filters and non-multiresolution

aperture filters. The only difference between MresA8

and MresA9 is the window W2 in their pyramids. In

both cases window W2 has 5 points, but experimen-

tally the diagonal cross used for MresA8 works better

than the horizontal-vertical cross used for MresA9 for

the image model used here. A final note of interest is

that the three multiresolution aperture filters consid-

ered in the figure all outperform the optimal linear

filter for relatively small sample sizes. This demon-

strates the ability of learned nonlinear filters to

significantly outperform linear filters for deblurring

large-range grayscale images.

The manner in which pyramidal multiresolution

design provides improved performance for large

windows is illustrated in Figure 21, which shows

MSE curves for multiresolution aperture operators and

non-multiresolution aperture operators designed with

the same number of samples. The multiresolution

pyramid is composed of the windows W0, W1; . . . ;W4

shown in Figure 22. For instance, the sequence

Figure 20. Pyramids for experiments "9" and "11".

W3 W2 W1 W0
0.35

0.4

0.45

0.5

Window sequence

M
S

E

Multiresolution Aperture
Aperture

Figure 21. MSE error comparison: multiresolution � non-

multiresolution.

Figure 22. Pyramids: {W3;W4}, {W2;W3;W4},. . ., {W0;W1; W2;

W3;W4}.

(a) (b)

(a) (b)

Figure 19. Pyramids for experiments "6" and "8"
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labeled W2 is composed of the windows W2;W3 and

W4. The error curve shows that the best aperture

operator for the given design samples is W2. The error

increases for larger or smaller windows. The error

decreases for multiresolution aperture operators as

more levels are added to the pyramid.

Figures 23 to 28 show a small region of a test

image, its blurring, and the result of the best filter for

each class (linear, multiresolution W -operator, non-

multiresolution aperture, and multiresolution aper-

ture). Figures 23 and 24 show a region of 500 points

of the original image and the blurred image,

respectively. The latter figure shows 161 points

(marked by black edges) with different values. Most

of them differ by 1 (129 points) or 2 (30 points). The

estimated MSE for the region is 0.534. Figure 25

shows the result of the 9� 9 linear filter. The MSE

drops to 0.434, but the number of erroneous points

does not decrease. The error decrease is due to the

decrease of points that differ more than 1 (with a

corresponding increase of the number of points that

differ by 1). Figure 26 shows the result of the best

multiresolution W -operator filter. In this case, the

MSE rises to 0.552, but the number of erroneous

points drop to 130. The number of points with

difference 1 decreases to 102, while the number of

points with difference greater than 1 increases. Figure

27 shows the result of the best non-multiresolution

aperture filter (17 points window). The MSE and

number of erroneous points drop to 0.3420 and 89,

respectively. Especially visible is the improved

restoration at grain edges. The best result is shown

in Figure 28. It results from a multiresolution aperture

filter starting with a 17-point window. The MSE and
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Figure 23. Section of the original Image.
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number of erroneous points drop to 0.222 and 73,

respectively. Edge restoration is further improved over

the non-multiresolution aperture filter.

7. Conclusion

By defining a window-based filter at the finest

resolution for which it has been sufficiently observed,

multiresolution design takes advantage of statistics at

multiple levels and avoids the problem of generalizing

the definition to vectors for which it has not been

observed. This paper has extended the original binary

methodology to gray-scale signals and images for

both ordinary W -operators and aperture filters. It has

empirically shown the advantage of multiresolution

aperture design for large gray ranges. In particular, it

has illustrated improved deblurring over optimal

linear and non-multiresolution aperture filters.

Error preservation when the gray range is main-

tained has been proved, and empirical results have

been presented to show that for practical purposes it is

possible to design the filter in the resolution-

constrained space even when the gray range is

compressed. The errors of the multiresolution and

pyramidal multiresolution approaches to aperture-filter

design have been analyzed. The implementation of

pyramid multiresolution design and application algo-

rithms have been presented and discussed. Pyramid

design remains heuristic in the sense that as of yet

there is no automatic routine to design the constraints.

It would be beneficial to be able to determine the best

pyramid given knowledge concerning the filter class

considered. Such an automatic approach must employ

Figure 24. Blurred Image.
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filter and image characteristics, since a strict combi-

natoric approach is not possible.

Appendix

A. Quantized operator error analysis

The value �(w;wopt) (Eq. 3) is useful to compare the

error of two operators as error increases with respect

to the optimal operator. In that analysis, E[Y jx] is used

as the optimal operator for MSE error. If

bE[Y jx]� 0:5c is used, then the equations become

more complex. Eq. 15 shows the expression for the

error increase �(w;wopt) for the optimal quantized

operator:

�(w;wopt) �
X
x2D

Xlÿ1

y�0

(yÿ wopt(x))2P(y; x)

ÿ
X
x2D

Xlÿ1

y�0

(yÿ w(x))2P(y; x)

�
X
x2D

Xlÿ1

y�0

[(w(x)ÿ wopt(x))2 � 2(w(x)

ÿ wopt(x))(wopt(x)ÿ y)]P(y; x)

�
X
x2D

[(w(x)ÿ wopt(x))2 � 2(w(x)

ÿ wopt(x))(wopt(x)ÿ E[Y jx])]P(x)

�
X
x2D

[(w(x)ÿ wopt(x))2 � 2ax
opt(w(x)

ÿ wopt(x))]P(x) (15)

Figure 25. Result from best linear operator.
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where ax
opt � (wopt(x)ÿ E[Y jx]) is the quantization

error for wopt at x. Defining a polynomial function

Ax(�) � �2 � 2ax
opt� for each x, the error increase can

be written as,

�(w;wopt) �
X
x2D

Ax(w(x)ÿ wopt(x))P(x)

B. Quantizing the estimated value

Proof of Eq. 7. Under the hypothesis of Eq. 7,

MSE(�w) �
X
z2D1

Xl1ÿ1

i�0

(iÿ �w(z))2P1(i; z)

�
X
z2D1

Xl1ÿ1

i�0

(iÿ �w(z))2P0(sÿ1(i); �ÿ1(z))

�
X
z2D1

Xl1ÿ1

i�0

(iÿ �w(z))2
X

x2C�z�

X1

j�0

P0(2i� j; x)

�
X
z2D1

X
x2C�z�

Xl1ÿ1

i�0

X1

j�0

(iÿ �w(z))2P0(2i� j; x)

�
X
x2D0

Xl1ÿ1

i�0

X1

j�0

(iÿ w(x)

2
)2P0(2i� j; x)

� 1

4

X
x2D0

Xl1ÿ1

i�0

X1

j�0

(2iÿ w(x))P(2i� j; x) �16�

Figure 26. Result from best multiresolution W -operator.
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MSE(w) �
X
x2D0

Xl0ÿ1

t�0

(t ÿ w(x))2P(t; x)

�
X
x2D0

Xl1ÿ1

i�0

X1

j�0

(2i� jÿ w(x))2P(2i� j; x)(17)

Hence, given that for j � 0 the terms are identical,

MSE(�w)ÿ 1

4
MSE(w) � 1

4

X
x2D0

Xl1ÿ1

i�0

((2iÿ w(x))2

ÿ (2i� 1ÿ w(x))2)P(2i� 1; x)

� 1

4

X
x2D0

Xl1ÿ1

i�0

2�(w(x)ÿ 2i)

ÿ 1

2
]P(2i� 1; x) (18)

Eq. 7 follows.

C. Constraint cost

�(w1;w0) �
X
x2D0

(w1(x)ÿ E[Y jx])2P(x)

�
X
z2D1

X
x2C�z�

(w1(z)ÿ E[Y jx])2P(xjz)P(z)

�
X
z2D1

E[(w1(z)ÿ E[Y jX])2jz]P(z)

�
X
z2D1

(Var[(w1(z)ÿ E[Y jX])jz]

� E2[w1(z)ÿ E[Y jX]jz])P(z)

�
X
z2D1

(Var[E[Y jX]jz]� (w1(z)

Figure 27. Result from best non-multiresolution aperture.
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�
X
z2D1

(Var[E[Y jX]jz]� (w1(z)

ÿ E[E[Y jX�jz])2)P(z)

�
X
z2D1

(Var[E[Y jX]jz]� (w1(z)

ÿ E[Y jz])2)P(z)

�
X
z2D1

Var[E[Y jX]jz]P(z)

� E[Var[E[Y jX]jZ]]: (19)
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