
World Wide Web: Internet and Web Information Systems, 5, 125–157, 2002
 2002 Kluwer Academic Publishers. Manufactured in The Netherlands.

A Query Language for XML Based on Graph
Grammars

SERGIO FLESCA, FILIPPO FURFARO and SERGIO GRECO {flesca,furfaro,greco}@si.deis.unical.it
DEIS, Università della Calabria, 87030 Rende, Italy

Abstract

In this paper we present a graphical query language for XML. The language, based on a simple form of graph
grammars, permits us to extract data and reorganize information in a new structure. As with most of the current
query languages for XML, queries consist of two parts: one extracting a subgraph and one constructing the
output graph. The semantics of queries is given in terms of graph grammars. The use of graph grammars makes
it possible to define, in a simple way, the structural properties of both the subgraph that has to be extracted and
the graph that has to be constructed. We provide an example-driven comparison of our language w.r.t. other XML
query languages, and show the effectiveness and simplicity of our approach.

Keywords: XML, query language, graph grammar

1. Introduction

The problem of developing query languages for XML, the emerging new standard for the
representation of semistructured data on the Web, has been investigated widely. XML doc-
uments are composed of a sequence of nested elements: each element is delimited by a
pair of tags giving a formal description of their content and a semantics to the enclosed in-
formation. Most of the languages proposed so far are declarative languages [18], although
there have been proposals for graphical [11] and procedural languages [17].

In this paper we present a declarative, graphical language, called XGL (XML Graphical
Language), for querying XML data. The basic idea underlying our language is that XML
and semistructured data can be represented by means of graphs [1,2,9]; thus, the query
problem is basically the extraction of subgraphs and the creation of a new graph. It is
widely accepted that, for this kind of query, graphical notations are more natural [13,15].

As with most of the proposed languages for XML, XGL queries consist of two parts
used, respectively, for extracting information from data and restructuring information into
novel XML documents. Our language provides (graphical) constructs to express nesting of
elements, variables associated with both tags and values, path expressions, grouping, and
permits us to collect and integrate information coming from different documents.

With respect to other graphical languages [11,12], the main difference of XGL is that
graphs are defined by means of (extended) graph grammars and the semantics of the lan-
guage is based on the theory of graph grammars [22]. A graph grammar is a graph rewriting
system consisting of a set of rewriting rules (or productions). As well as a production of

126 FLESCA ET AL.

a standard grammar defines how to substitute a non terminal symbol (or a group of sym-
bols) with a string, a production of a graph grammar defines how to replace a node (or an
edge) in a graph with a subgraph. A graph grammar defines a class of graphs which have
common structural properties (e.g., the class of complete graphs, the class of trees, etc.).

Thus, an XGL query consists of a set of (graphical) production rules which describe
the structural property of the graphs which we want to extract and construct. More specif-
ically, the structure of an XGL query on a set of XML documents is a set of extended
graph grammars. Each (extended) graph grammar is described by means of a sequence of
extended production rules describing how graphs can be expanded (each rule says how and
under which conditions a node of a given graph can be replaced by a specified graph).

In our opinion, the use of (extended) graph grammar production rules makes the lan-
guage flexible and usable since they make it possible to describe the structural properties
of the graph to be extracted in a simple, compact and intuitive way. We point out that
the features of XGL include several requirements which have been recognized [8,27,36]
to be of primary importance for a query language for XML documents: declarativeness
(the specification of the query defines the content of the result rather than a strategy for
its computation), possibility of “reducing” documents (i.e. extracting whole subportions
of a document), restructuring documents, expressing join conditions and expressing path
expressions.

The rest of the paper is organized as follows. Section 2 contains a brief, informal de-
scription of the language. Section 3 presents preliminary definitions of graphs and graph
grammars. Section 4 introduces an extension of graph grammars to query graph-like data.
Section 5 shows how extended graph grammars can be used to query XML data. Section 6
presents the language XGL.

2. XGL in a nutshell

In this section we informally present the XGL query language. We use a classical XML
document containing bibliography entries conforming to the following DTD [18]:

<!ELEMENT book (title, author+, publisher)>
<!ATTLIST book year CDATA>
<!ELEMENT title PCDATA>
<!ELEMENT author PCDATA>
<!ELEMENT publisher PCDATA>

The main features of the language are described by means of the Example 1, where
some queries over the document below, called bib.xml and graphically represented in
Figure 1, are described.

<bib>
<book year="1997">

<title> A First Course in
Database Systems </title>

<author> Ullman </author>

A QUERY LANGUAGE FOR XML BASED ON GRAPH GRAMMARS 127

<author> Widom </author>
<publisher> Prentice-Hall </publisher>

</book>
<book year="1988">

<title> Principles of Database and
Knowledge-Base Systems </title>

<author> Ullman </author>
<publisher> Computer Science Press </publisher>

</book>
<book year="1999">

<title> Data on the Web </title>
<author> Abiteboul </author>
<author> Buneman </author>
<author> Suciu </author>
<publisher> Morgan Kaufmann </publisher>

</book>
</bib>

Figure 1. XML graph.

The structure of a XGL query consists of two parts: one querying and one constructing
XML data graphs. The querying part is defined by means of a simplified form of graph
grammar, which is made user-friendly by adding some syntactic simplifications to standard
graph grammars.

The constructing part is defined by a graph which describes the structure and the content
of the document which has to be created.

The querying and constructing parts are correlated by means of variables, which are
defined in the querying part (where it is specified what kind of information each variable
identifies) and then used in the constructing part (where variables refer to the extracted
information).

In the extraction of graphs, graph grammars are coupled with first-order formulas on
such variables, in order to express conditions on data and filter them. In particular, every

128 FLESCA ET AL.

production rule is associated to a (possibly empty) first-order formula which states under
which conditions (regarding the data contained in the source graph) the rule can be applied.

Also the constructing rule defining the output graph is associated to a first-order formula,
which filters the extracted information and defines how to reassemble it. It is worth nothing
that the first-order formulas used in the querying and constructing have different aims: in
the querying part the first-order formula is used to select part of the graph whereas in the
constructing part it is used to join elements of the graph.

In the representation of graphs of both the querying and constructing part, the language
provides shortcuts associated to nodes and arcs. In particular, in order to identify paths in
the source graph during the extraction phase, arcs may be labelled with regular expressions
defined on a vocabulary of tags. On the other side, nodes may be marked with the symbol
“+”: such a marked node (called grouping node) represents a (possibly empty) set of nodes
matching one or more nodes of the input graph.

Like most of the query languages for XML, XGL queries consist of a “WHERE” clause
defining the querying part (extraction of a subgraph) and a “CONSTRUCT” clause defining
the constructing part.

The following example presents four queries on the document of Figure 1. Here, each
graph grammar consists of only one production rule. We shall use, respectively, the sym-
bol S to denote the axiom (start symbol) of the graph grammar used to extract sub-graphs,
and the symbol T to denote the constructing rule which defines how to build the output
document. Thus, the form of all the queries presented in the following examples will be:

WHERE S IN "bib.xml"
CONSTRUCT T

Example 1.

1. Construct a document containing the titles of all books printed by Prentice-Hall from
1992 on. We first extract for each book the pairs $t/$n, where $t denotes the title
and $n the publisher of the book satisfying the condition that the year of the book is
after 1991 and the publisher is “Prentice-Hall” ($b.year > 1991 ∧ $n.value =
“Prentice-Hall”). The symbol “+” inside the node labelled with $b means that we
are interested in all books. In the matching with the input graph, the node is expanded
into a list of nodes to match a maximal number of nodes. The output graph is con-
structed by means of the constructing rule denoted by the symbol T on the right side of
Figure 2. Here we construct an XML document having a structure similar to that of the
input document, but where each book contains only the attribute year and the element
title. The symbol “+” inside the node ending the arc with label <book> means that
we are interested in all books and, therefore, the output graph may contain more arcs
with tag <book>. The variables $b and $t are used to pass data from the input graph to
the output graph. The condition arc($b, $t,<title>) states that we consider pairs
($b, $t) which in the extracted graph are connected by an arc with label <title>.

2. Construct a document containing for each book and for each author of the book, the
pairs (title, author). The query reported in Figure 3 extracts, for each book, the title
and the set of all authors. The symbol “+” inside the node ending the arc with tag

A QUERY LANGUAGE FOR XML BASED ON GRAPH GRAMMARS 129

Figure 2. XGL query 1.

Figure 3. XGL query 2.

<book> means that we are interested in all books, and the same symbol marking the
nodes at the end of the arc with tag <author> means that we want to collect, for
each book, all of its authors. Thus, a set of results is constructed and each result con-
tains a pair $t/$a, where $t denotes a title of book and $a an author. The condition
arc(X, $t,<title>) ∧ arc(X, $a,<author>) states that we are only interested
in pairs ($t, $a) identifying, respectively, the title and the author of the same book (X).

3. Construct a document containing, for each book, the title and the set of all authors. This
query can be expressed by a simple variation of the rule T in Figure 3. In particular,
by putting the symbol “+” inside the node ending the arc marked with <author>, we
collect for each book all of its authors.

4. Construct a document containing, for each author, the titles of the books written by
him. Also this query can be expressed by a simple variation of the rule T in Figure 3.

130 FLESCA ET AL.

In particular, by putting the symbol “+” inside the node ending the arc marked with
<title>, we collect for each author all the titles of the books he has written.

3. Preliminaries

3.1. Data graphs

Let be an alphabet of node labels and � an alphabet of edge labels. A graph over and
� is a tuple D = (N,E, λ) where N is a set of nodes, E ⊆ {(u, σ, v)|u, v ∈ N, σ ∈ �}
is a set of labelled edges and λ :N → is a node labelling function. We identify a subset
� ⊆ as the set of terminal node labels. A node x of a graph D is said to be terminal if
λ(x) ∈ � and we say that D is terminal if all its nodes are terminal. An arc from u to v

with label σ is denoted by u
σ→ v. The components of an edge e will be denoted by e[1],

e[2] and e[3], respectively.
A path over D is a sequence p = (v1, e1, v2, e2, . . . , vn) where vi ∈ N , ej ∈ E,

ei[1] = vi and ei[3] = vi+1. The label path of p, denoted label(p), is a subset of �∗
defined as e1[2] · · · en−1[2]. Given a regular expression r over � and a string w ∈ �∗,
we say that w spells a path p in D if w = label(p) and we say that p satisfies r if
label(p) ∈ L(r), i.e. the string spelled by p belongs to the language defined by r .

Given two data graphs A and B, we say that A is a subgraph of B iff (i) NA ⊆ NB ,
(ii) ∀x ∈ NA λA(x) = λB(x), and (iii) ∀x, y ∈ NA, (x, σ, y) ∈ EA only if (x, σ, y) ∈ EB .

3.2. NR graph grammars

Graph grammars generalize standard grammars and context-free graph grammars are
the natural generalization of context-free grammars: standard grammars generate strings
whereas graph grammars generate graphs [19]. Two main types of context-free graph
grammars have turned out to be the most natural, robust, and easy to handle: the Hyper-
edge Replacement (HR) grammars and Node Replacement (NR) grammars. In this paper
we consider NR context-free graph grammars.

Node Replacement grammars generate labelled, directed graphs. A production of a
graph grammar is of the form X → (D,C) where X is a nonterminal node label, D is a
graph and C is the set of connection instructions. A rewriting step of a graph H according
to such a production consists of removing a node u labelled X from H , adding D to H and
adding edges between D and H as specified by the connection instructions in C. The pair
(D,C) can be viewed as a new type of object, and the rewriting step can be viewed as the
substitution of the object (D,C) for the node u in the graph H . Intuitively, these objects
are quite natural: they are graphs ready to be embedded in an environment. Their formal
definition is as follows.

Let be an alphabet of node labels and � an alphabet of edge labels. A graph with
embedding is a pair K = (H,C) where H is a graph over and � and C ⊆ × � ×
�×N ×{in, out} is the connection relation of K . Each element (γ, σ1, σ2, v, d) ∈ C is a

A QUERY LANGUAGE FOR XML BASED ON GRAPH GRAMMARS 131

connection instruction of K and is generally written as (γ, σ1/σ2, v, d). The components
of a graph with embedding K will be denoted as NK,EK, λK and CK .

Intuitively, for a graph with embedding K , the meaning of a connection instruction
(γ, σ1/σ2, v, out) is as follows: if there was a σ1-labelled edge from a node u which
has been substituted by K to a γ -labelled node w, then the embedding mechanism de-
fines a σ2-labelled edge from v to w. Similarly, the meaning of a connection instruction
(γ, σ1/σ2, v, in) is as follows: if there was a σ1-labelled edge from a γ -labelled node w

to a node u which has been substituted by K , then the embedding mechanism defines a
σ2-labelled edge from w to v. The feature which replaces edge labels is called dynamic
edge labelling.

Let H be a graph over and �, K be a graph with embedding over the same alphabets,
and let v ∈ NH . The substitution of K for v in H is denoted by H [v/K].

In the following, connection rules of the form (γ, σ/σ, v, a) (i.e. rules which do not
relabel edges) are simply written as (γ, σ, v, a).

Definition 1. A node replacement (NR) grammar is a tuple G = (,�,�,P, S) where
 is the alphabet of node labels, � ⊆ is the alphabet of terminal node labels, � is the
alphabet of edge labels, P is the finite set of productions, and S ∈ − � is the initial
nonterminal symbol (axiom). A production is of the form X→ (D,C) where X ∈ −�

and (D,C) is a graph with embedding over the alphabets and �.

Example 2. The grammar G defined by the productions shown in Figure 4 describes a
language containing chains. Connection rules can be incorporated into the left and right
parts of production rules.

Figure 5 illustrates a chain derivation by means of G productions.

Figure 4. A graph grammar producing chains.

Figure 5. A graph grammar equivalent to that of Figure 4.

132 FLESCA ET AL.

Figure 6. Derivation of a chain.

The graph appearing in the right side of a production can be empty and a production of
the form X→ (∅,∅) will be simply denoted as X→ ε.

Let G = (,�,�,P, S) be an NR grammar. Let H and H ′ be two graphs, let v ∈ NH

and let p :X → (D,C) be a production of G. Then, we say that H ′ is directly derived
from H (and write H ⇒v,p H ′, or just H ⇒ H ′), if λH (v) = X and H ′ = H [v/(D,C)].
Moreover, we say that H ′ is derived from H if there is a finite sequence H ⇒ H1 ⇒
· · · ⇒ H ′.

A graph grammar G defines a class of graphs which have common structural properties.
The set of graphs generated by G is called graph language and denoted as L(G).

4. Querying data graphs

We start by defining a simple graph model on an alphabet with three different types of
symbol labelling nodes: constants, variables and nonterminal symbols. A variable can take
any value and, therefore, it can be associated to any constant. In the following, constants
are represented by strings starting with digits or lowercase letters (e.g., b1), variable names
are denoted by strings preceded by a dollar (e.g., $b1) and nonterminal symbols are denoted
by strings starting with uppercase letters (e.g., X). Given an alphabet of node labels we
will denote with c, v and nt the subsets of which contain, respectively, constant
symbols, variable symbols and nonterminal symbols. A graph over the two alphabets
 = c ∪ v ∪ nt and � will be called query graph. A query graph whose nodes are
labelled only with constant symbols (i.e. = c) will be called data graph. A query
graph which does not contain any nonterminal nodes (i.e. nt = ∅) is called terminal
query graph.

Thus, data graphs only contain constants and are used to represent the input database;
terminal query graphs are used to denote graphs which can be “mapped” on data graphs
(by associating variables appearing in the terminal query graph to the constants labelling
nodes of the data graph, or by associating nodes of the terminal query graph labelled with a
constant to nodes of the data graph labelled with the same constant). General query graphs
are used to represent the intermediate steps of the derivation of the query graphs obtained
applying graph grammars.

Given a query graph α, we shall denote with Terminal(α) the subgraph derived from α

by deleting nodes marked with nonterminal symbols and arcs connected to deleted nodes.

Example 3. The graph grammar G consisting of the productions of Figure 7 defines a
language consisting of trees. Figure 8 illustrates a tree derivation by means of G produc-

A QUERY LANGUAGE FOR XML BASED ON GRAPH GRAMMARS 133

Figure 7. Graph grammar defining trees.

Figure 8. Graph derivation.

tions. Note that the root nodes of the trees in the language defined by this grammar have a
specific data label (n1), the internal nodes have label $i and the leaf nodes have label $l.

Since in this context we are not interested in generating new graphs, but only in identi-
fying subgraphs of a given data graph, we shall not consider the whole language generated
by a grammar, but only a subset containing graphs which identify some portion of the input
data graph. To this purpose we define a mapping from terminal query graphs (obtained at
the end of a graph grammar derivation) to subgraphs of a given data graph.

Definition 2. Let α = (N,E, λ) be a terminal query graph over and �, and D =
(ND,ED, λD) a data graph over c and �. A mapping ϕ from α to D is a total function
mapping, respectively, nodes in N to nodes in ND and edges in E to edges in ED such that
(i) for each node n ∈ N either λ(n) = λ(ϕ(n)) or λ(n) is a variable label, (ii) for each arc
(u, σ, v) ∈ E there is an arc (ϕ(u), σ, ϕ(v)) ∈ ED , and (iii) there are no two nodes u and
v such that λ(u) = λ(v) and ϕ(u) = ϕ(v) (i.e. two nodes with the same label cannot by
associated to the same node in D).

Definition 3. Let D be a data graph. A mapping pair on D is a pair (α, ϕ) where α is a
query graph and ϕ is a data mapping from Terminal(α) to D.

Observe that Terminal(α) is a terminal query graph (i.e. a graph whose node labels can
be either constants or variables). Moreover, a mapping pair (α, ϕ) is said to be terminal if
α is a terminal query graph. Like an embedded graph, a mapping pair can be seen as a new
type of object consisting of a query graph (derived from a graph grammar) mapped over a
given data graph. The derivation of query graphs from parsing grammars can be extended

134 FLESCA ET AL.

to mapping pairs. Let D be a data graph, G a graph grammar and (α, ϕ) a mapping pair
over D. We say that a mapping pair (β,ψ) is directly derived from (α, ϕ) through a
production ρ of PG (and write (α, ϕ) ⇒ρ (β,ψ)) if and only if α ⇒ρ β and ψ extends
ϕ (i.e. ϕ ⊆ ψ). Moreover, we say that a mapping pair (αn, ϕn) is derived from a mapping
pair (α0, ϕ0) over a data graph D if (α0, ϕ0)⇒ρ1 (α1, ϕ1)⇒ρ2 · · · ⇒ρn (αn, ϕn). Given a
graph grammar G and a data graph D, 1(G,D) defines the set of terminal mapping pairs
derived from (S,∅) where ∅ denotes an empty mapping.

A terminal mapping pair applied to a data graph D allows us to identify a subgraph of D
having the property defined by the grammar. Each node of the extracted subgraph can be
associated to more than one node of the query graph, if these nodes have different labels
(roles). Different labels are used to distinguish different classes of nodes (e.g., in a tree
internal nodes and leaf nodes may have different labels).

Example 4. Consider the parsing grammar of Example 2, the derivation shown in Exam-
ple 2 and the data graph shown in Figure 9.

The query graphs produced respectively at the third and last steps of the derivation can
be mapped on D as shown in Figure 10.

Note that the production defining the axiom (start symbol of the graph grammar) con-
tains an arc whose source node is marked with the constant label n1. This means that all
derived query graphs are trees whose root node is marked with n1. Therefore, every tree
generated by such grammar can be mapped only to a tree whose root node has label n1. In
the above mapping λ(1) = λ(ϕ(1)) = n1 whereas all other nodes in the query graph have
associated a variable. Although not represented in the figure, the arcs in the query graph

Figure 9. A data graph.

Figure 10. Mapping of query graphs to a data graph.

A QUERY LANGUAGE FOR XML BASED ON GRAPH GRAMMARS 135

are mapped to arcs in the data graph; for instance, the arc e = (1, a, 2) and the arc ϕ(e)

have the same label a (i.e. ϕ(e) = (ϕ(1), a, ϕ(2))).

Parsing grammars. We now introduce a new type of graph grammars, called parsing
grammars, which are specialized in extracting information from data graphs. Parsing
grammars have the following characteristics:

• the set of production rules is linearly ordered (in order to drive the derivation process
and reduce the nondeterminism);
• a rule can only be applied if a certain condition on the extracted data is satisfied.

Definition 4. A Parsing (Graph) Grammar is a tuple PG = (,�,P, S), where � is the
alphabet of edge labels, is the alphabet of node labels (∩ � = ∅) and S ∈ nt is the
axiom. P is a linearly ordered set of productions of the form X→ (α,C,2), where

(1) X ∈ nt is a nonterminal symbol,
(2) α is a query graph over and �,
(3) C is a set of connection rules, i.e. a set of tuples (γ, σ, v, d) where d ∈ {in, out},

γ ∈ , σ ∈ � and v is a node,
(4) 2 is a first-order formula on �,c, v without quantifiers,
(5) for each symbol X ∈ nt there is a production X→ ε in P ,
(6) for each pair of productions ρi :X → (α,C,2) with α not empty and ρj :X → ε is

ρi < ρj ,
(7) for each production ρ :X → (α,C,2) with α not empty, D contains at least one

terminal node.

Thus, a parsing grammar is a restricted form of graph grammar. The restrictions have
been introduced to reduce the nondeterminism (items (5)–(7) in Definition 4). The formula
2 states under which condition the rule can be applied.

Parsing grammars generate terminal query graphs without allowing edge relabelling.
The formal semantics of production rules can be done by extending the definition of the
derivation of mapping pairs.

Let (β, ϕ) be a mapping pair, ρ :X→ (α,C,2) a parsing grammar production rule and
ρ′ :X → (α,C) the corresponding “standard” rule. We say that a mapping pair (γ,ψ)

directly derives from (β, ϕ) through ρ (written (β, ϕ) ⇒ρ (γ,ψ)) if (β, ϕ) ⇒ρ′ (γ,ψ)

and 2 is true w.r.t. the pair (α,ψ).1 The formula 2 is true w.r.t. (α,ψ) if by replacing the
variables in 2 with the constants associated with ψ the resulting formula is satisfied.

The order of the productions of a parsing grammar PG defines an order on the mapping
pairs derived from PG. Given a data graph D, a parsing grammar PG, and two productions
ρ and ν of PG such that ρ < ν, we say that a derivation d1 of a pair (α1, ϕ1) from a
pair (α, ϕ) precedes a derivation d2 of a pair (α2, ϕ2) from (α, ϕ) (written d1 ≺ d2), if
(1) d1 = (α, ϕ) ⇒ρ (αi, ϕi) ⇒∗ (α1, ϕ1), d2 = (α, ϕ) ⇒ν (αj , ϕj) ⇒∗ (α2, ϕ2), or
(2) there are three derivations d , d3 and d4 such that d1 = dd3 and d2 = dd4 and d3 ≺ d4.

We can now use the relation ≺ to define a partial order on the set of derived mapping
pairs 1(PG,D). Given two mapping pairs M1,M2 ∈ 1(PG,D), we say that M1 <PG M2

136 FLESCA ET AL.

if for each derivation d2 = (S,∅) ⇒∗ M2, there exists a derivation d1 = (S,∅) ⇒∗ M1
such that d1 ≺ d2. The order introduced on the productions of PG makes 1(PG,D)

partially ordered. A mapping pair M ∈ 1(PG,D) is said to be minimal if there is no
mapping pair M ′ ∈ 1(PG,D) such that M ′ <PG M .

Theorem 1 [23]. Let PG be a parsing grammar and D a data graph. The nondeterministic
selection of a minimal mapping pair in 1(PG,D) can be computed in polynomial time.

Clearly, any mapping pair in 1(PG,D) (not necessarily a minimal one) selected nonde-
terministically can also be computed in polynomial time.

The above theorem states that the extraction of a subgraph in the class of graphs defined
by the parsing grammar can be done efficiently.

5. Graph grammars for XML data

In this section we present a data model for representing XML documents by means of
graphs, and then specialize parsing grammars to extract data from XML graphs.

An XML document can be represented as an ordered, labelled and oriented graph where:

• the containment relation between two elements is represented by an arc labelled with
the tag of the subelement;
• references are represented by arcs connecting the referencing element to the referenced

one, and such arcs are labelled with the name of the reference attribute;
• each node contains the set of the attributes of the corresponding element;
• if an element contains text and does not contain any subelements, the text is assimilated

to the value of an attribute value;
• if an element contains both subelements and text strings, each string is assimilated to the

attribute string = “string-value” of a subelement <text>.

The representation that we adopt in this paper can be easily understood by examining
the document and the corresponding graph of Example 5.

Example 5. Figure 11 shows an XML document containing IDREFs. The associated
graph contains arcs of different types which could both be navigated.

Observe that the dotted arcs denote attributes whereas solid arcs denote elements.

In the following definition we formally identify the structure of an XML Graph.

Definition 5. LetA be a set of attribute names, T a set of tag names, and V a set of attribute
values. An unordered XML graph is a labelled oriented graph G = 〈N,Er ∪ Et , f, r〉
where:

• N is the set of nodes,
• Er ⊆ {(u, σ, v)|u, v ∈ N and σ ∈ A} is a set of reference arcs,

A QUERY LANGUAGE FOR XML BASED ON GRAPH GRAMMARS 137

Figure 11. Example of XML graph.

• Et ⊆ {(u, σ, v)|u, v ∈ N and σ ∈ T } is a set of tag arcs,
• f :N → 2A×V is the function associating a set of attribute/value pairs to each node,
• 〈N,Et〉 is a tree with root r .

An ordered XML graph is a quintuple G = 〈N,Er ∪Et, f, g, r〉 where N,Er, Et, f and r

are defined as above and g : Et → Z+ is a function associating an unique ordinal number
to each arc in Et.

In the previous sections, we showed that parsing grammars can be used to extract in-
formation from a source data graph. Now we “specialize” parsing grammars to extract
information from XML graphs.

The only difference with respect to the querying of graphs introduced in the previous
section is that each node in an XML graph has a set of attributes and a value. Attributes and
values can be identified by using a “dot” notation as shown in the examples of Section 2.
Thus, the attribute year of the element book identified by the variable $b, is denoted by
$b.year. The text contained in the element $b is denoted by $b.value.

The following example shows how XML subgraphs can be extracted from XML docu-
ments.

Example 6. A parsing grammar extracting from the document described in Section 1 the
titles of the books published after 1991 by Prentice-Hall (equivalent to the XGL parsing
grammar of Example 1) is reported in Figure 12.

The characterization of graphs given in Section 4 can be easily extended to XML-like
graphs. Thus, XML data graphs are XML graphs whose labels are constants, XML query
graphs may have both constants and variables as terminal labels, and may contain non
terminal labels. For instance, the graphs used by production rules (see Figure 12) are XML
query graphs.

The derivation process of an XML parsing grammar applied to a source XML data graph
XD leads to a terminal mapping pair (α, ϕ) where ϕ associates each variable of α to a set
of nodes of XD.

138 FLESCA ET AL.

Figure 12. XML parsing grammar.

6. XGL: A graphical language for XML

XML parsing grammars can be used for extracting data from XML documents. Here, we
further extend graph grammars for extracting data making them more user-friendly, and in-
troduce simple construction rules to restructure information into new documents. Thus, we
present the language XGL which is a graphical language derived from the grammars intro-
duced in the previous section by adding new features to simplify the process of extracting
subgraphs and to construct the output graph.

An XGL query is of the form2

WHERE S1 IN F1, . . . , Sn IN Fn

CONSTRUCT T [($u1→ $v1, . . . , $uk → $vk)] [AS F0]

where F0, . . . , Fn are file names, S1, . . . , Sn are axiom symbols corresponding to XGL
parsing grammars, T is an XGL constructing rule and $uj → $vj means that the variable
$uj appearing in the WHERE clause is renamed as $vj in the CONSTRUCT clause.

Thus, the WHERE clause is used to extract and mark information from the specified XML
documents, whereas the CONSTRUCT clause specifies how to reorganize the extracted
information in the XML document which results.

In the following, given an XGL query Q and a set of XML documents D1, . . . ,Dk ,
Q(D1, . . . ,Dk) denotes the set of all documents which can be constructed by applying Q

to D1, . . . ,Dk .

6.1. XGL parsing grammars

Definition 6. An XGL parsing grammar is an XML parsing grammar where:

(1) nodes may be marked with the symbol “+”; these nodes, called grouping nodes, denote
sets of nodes labelled with the same symbol;

(2) arcs may be labelled with general regular expressions denoting not empty strings.

A QUERY LANGUAGE FOR XML BASED ON GRAPH GRAMMARS 139

Moreover, if the regular expression associated to a given arc contains the union symbol “ |”
or the closure symbols “=” and “+”, the ending node must be a grouping node labelled
with a terminal symbol.

Observe that the restriction on arcs with regular expressions has been introduced to
avoid ambiguity in the result. General regular expressions denoting not empty strings may
be rewritten into regular expressions without ε and = symbols. Therefore, in the following
we assume that our regular expression denoting not empty paths does not contain both
symbols ε and =.

The formal semantics of XGL parsing grammars can be done in terms of XML parsing
grammars by defining how production rules containing shortcuts (grouping nodes and arcs
labelled with regular expressions) are rewritten into XML production rules. We first show
how production rules with regular expressions are rewritten, and next consider the rewriting
of production rules with grouping nodes.

Each rule ρ containing shortcuts is rewritten into one or two standard rules denoted,
respectively, by r and r1, r2. For the sake of simplicity, in our rewriting rules we do not
consider the contexts associated with the rules, and assume that each node labelled with X

in r1, . . . , rk has the same context of the node marked with X in ρ.

6.1.1. Rewriting of productions with regular expressions. A production rule with a
regular expression is rewritten into a set of equivalent rules as follows:

• Concatenation. The rewriting of a production rule containing an arc labelled with the
concatenation p.q is reported in Figure 13 where the rule ρ is replaced by the rule r .
Observe that there are two different rewritings, respectively, for arcs ending with simple
nodes and grouping nodes.
• Union. The rewriting of a production rule containing an arc labelled with the union p | q

is shown in Figure 14 where the rule ρ is replaced by the rule r .

Figure 13. Rewriting arcs with concatenation.

140 FLESCA ET AL.

Figure 14. Rewriting arcs with union.

Figure 15. Rewriting arcs with closure.

Figure 16. Rewriting grouping nodes.

• Closure. The rewriting of a production rule containing an arc labelled with the positive
closure l+ is shown in Figure 15 where the rule ρ is replaced by the two rules r1 and r2.

6.1.2. Rewriting of productions with grouping nodes. The rewriting of a production
rule containing grouping nodes is shown in Figure 16 where the rule ρ is replaced by the
two rules r1 and r2 and T is a new nonterminal symbol.

Example 7. The rewriting of the parsing grammar in the first query of Example 1 (Fig-
ure 2) is reported in Example 6 (Figure 12). The rewriting of the parsing grammar in the
second query of Example 1 (Figure 3) is given in Figure 17.

6.2. XGL constructing rules

In the previous section we have shown that XGL parsing grammars can be used to extract
information from an XML data graph, allowing us to specify the structure of the subgraph
containing such information.

A QUERY LANGUAGE FOR XML BASED ON GRAPH GRAMMARS 141

Figure 17. Rewriting of the XGL parsing grammar of Example 1 (query 2).

In this section we now show that in a similar way, using the graph containing the ex-
tracted information, it is possible to build a new document. The process of creating a new
XML graph is carried out by defining a tree structure containing information from the ex-
tracted graph which satisfies a given condition. The new graph is defined by means of an
XGL constructing rule whereas the condition is defined by means of a first-order formula.

Syntax. The first-order formula is based on the ternary predicates arc and path storing,
respectively, information about arcs and paths in the extracted graph. The arguments of the
predicates arc and path may be constants, variables representing node labels (denoted by
lowercase strings preceded by $) and general variables representing node identifiers, and
edge labels (denoted by strings starting with an uppercase letter).

For instance, the fact arc(X, $t,< title>) states that there is an arc labelled <

title> from a generic node to a node labelled $t . Analogously, the fact path(X, $t,<
title>∗) states that there is a path whose first arc is labelled <title> from a generic
node to a node labelled $t .

Definition 7. Let D be an XML data graph, (β, ϕ) a terminal mapping pair on D. An
XGL constructing rule has the form T → (α,2), where α is an XML query graph, and 2

is a FO formula on {arc, path} evaluated on D.

It is worth noting that instead of FO it is possible to use alternative languages such as
SQL, logic languages or graphical notations.3

142 FLESCA ET AL.

Semantics. We now present the semantics of constructing rules. At the end of the parsing
process we have produced a mapping pair (β, ϕ) over an XML data graph D, where each
variable symbol $v in β is associated to a (possibly empty) set of nodes in D. The associa-
tion between variables and nodes is represented by means of a ternary relation Node where
a tuple (id, val, $v) states that a node in β labelled with $v is associated (by ϕ) to the node
with identifier id and value val in D.4 Moreover, we assume that the graph D is stored by
means of the ternary predicate Arc which is different from the predicate arc used in the FO
formula: Arc corresponds to the set ED (i.e. Arc(id1, id2, l) is true iff (id1, l, id2) ∈ ED).
Analogously, the predicate Path denotes the transitive closure of Arc, and corresponds to
the predicate path which defines the transitive closure of arc.

The query graph α, in a constructing rule (α,2), defines the structural properties of
the output XML document, while the first-order formula 2 expresses a condition defining
which nodes in the data graph extracted in the WHERE clause will be used in the construc-
tion of the output graph.

Observe that in the FO formula 2, the predicates arc and path take as arguments (i) vari-
ables representing node identifiers and edge labels, denoted by capital letters (e.g., X),
(ii) variables representing node labels, denoted using the symbol $ (e.g., $x), and (iii) con-
stants. To explain the semantics of the construction rule we first rewrite the condition 2,
translating the predicates arc and path in an equivalent formula containing only the predi-
cates Arc and Path in order to obtain a formula2′ which is directly verifiable on D. Before
introducing the formal rewriting we present an example.

Example 8. Consider the construction rule of the second query in Example 1. The condi-
tion

arc(X, $t,<title>)∧ arc(X, $a,<author>)

is rewritten as

Node(Ida,Va, $a) ∧ Node(Idt,Vt, $t) ∧ Arc(X,Idt,<title>)

∧Arc(X,Ida,<author>)

The variables $a and $t in the graph are replaced, respectively, by Va and Vt.

The formal rewriting of construction rule T → (α,2) into a rule T → (α′,2′) is as
follows:

(1) α′ is derived from α by replacing every occurrence of $x with Vx .
(2) Define 2′′ as the first-order formula derived from 2 by replacing (i) all occurrences

of the predicate arc with Arc, (ii) all occurrences of the predicate path with Path and
(iii) every variable $x with Idx .

(3) 2′ =∧
$x in 2
$x in α

Node(Idx, Vx, $x) ∧2′′.

Using the rewritten constructing rule we obtain the output graph by expanding the group-
ing nodes and replacing variables with constants satisfying the condition 2′. The expan-
sion of a grouping node appearing in an XGL constructing rule can be explained as similar

A QUERY LANGUAGE FOR XML BASED ON GRAPH GRAMMARS 143

to the expansion of a grouping node in the application of a parsing grammar production.
When, in a parsing grammar rule, a node n is marked with the symbol “+” all the (maxi-
mal) subtrees rooted in n and matching the specified structure have to be extracted.

Analogously, the presence of a grouping node m in the query graph specified in a con-
structing rule implies that the subtree rooted in m must be replicated for all the possible
instances of the variables labelling the node in the subtree.

The formal semantics of the construction rule is given expressing, by means of logical
rules with complex terms and nested sets, the structure of the output graph. Complex terms
and nested sets are used to describe the nesting of elements and grouping elements. (An
informal semantics of logic languages with sets is provided in the Appendix; for the formal
semantics we address readers to [7].) Before introducing the semantics of construction
rules we present an example.

Example 9. Consider the second query of Example 1. The logic rule defining the output
graph is the following:

Tree(xml(results(⊥,�result(⊥,title(T),author(A))�)))

← Theta(T,A)

where⊥ is the null value denoting that the element <results> does not have attributes
and only contains a set of subelements <result>. The condition 2 is defined by the
following rule:

Theta(T,A)← Node(IdA,A, $a) ∧ Node(IdT,T, $t)
∧arc(X,IdA,<author>)∧ arc(X,IdT,<title>)

Analogously, the logic rule defining the output graph for the fourth query of Example 1 is
as follows:

Tree(xml(results(⊥,�result(⊥,�title(T)�,author(A))�)))

← Theta(T,A)

The logic program associated to a rewritten XGL constructing rule (α′,2′) consists of
a logical program defining two predicates Tree and Theta. The predicate Tree defines the
structure of the resulting document, whereas Theta is the translation of the FO formula 2′
into a logic program.

The predicate Tree is defined by a rule of the form Tree(xml(TR(α′))← Theta(V1,
. . . ,Vn), where V1, . . . , Vn are the variables appearing in α, and TR(α′) denotes the trans-
lation of α′ into a nested structure defined as follows:

• if α′ is a leaf node with label n, TR(α′) denotes the label of n;
• if the root of α′ is a nonleaf node n, T1, . . . , Tq are the subtrees connected to n

whose root is not a grouping node and T ′1, . . . , T ′r are the subtrees connected to n

whose root is a grouping node, then TR(α′) denotes: X,l1(TR(T1)), . . . ,lq(TR(Tq)),
� l′1(TR(T′1)) �, . . . ,� l′r(TR(T′r)) � where X is the label of root(α′) and
l1, . . . , lq , l

′
1, . . . , l

′
r are the labels of the arcs connecting T1, . . . , Tq, T

′
1, . . . , T

′
r to n.

144 FLESCA ET AL.

Figure 18. Graph of a construction rule.

Observe that if a node of α′ is labelled with a variable V , V also appears as an argument
of the atom Theta(V1, . . . , Vn), even if it does not appear in the original condition 2.

Example 10. Consider the constructing rule of Figure 18 where the condition 2 has not
been reported. The associated logic rule is as follows:

Tree(xml(⊥,�result(⊥, book(B,title(T),�edition(E)�),

�author(⊥,name(N),�phone(P)�)��))← Theta(B,T,E,N,P)

Observe that the first-order formula specified in the constructing rule has a different
purpose from that specified in the extracting rule: the former consists of join predicates
(for associating the extracted data to the nodes of the graph corresponding to the document
to be constructed), the latter of selection predicates for filtering information from the source
documents.

The following theorem characterizes the complexity of answering to an XGL query.

Proposition 1. Let Q be an XGL query and D1, . . . ,Dk a set of XML documents. The
computation of a document in Q(D1, . . . ,Dk), selected nondeterministically, can be done
in polynomial time (w.r.t. the size of the documents).

Proof: The computation of a document in Q(D1, . . . ,Dk) consists of three steps: (i) ex-
tracting k subgraphs from the graphs corresponding to the documents D1, . . . ,Dk (ac-
cording to the extracting rules of the WHERE clause of Q), (ii) renaming variables, and
(iii) constructing a new document according to the CONSTRUCT clause. From Theorem 1,
we have that the first step can be done in polynomial time, since it corresponds to find-
ing k minimal mapping pairs (one for each data graph corresponding to the documents
D1, . . . ,Dk). The second step can be done in constant time, since we can assume that the
number of variables used in the extracting rules is constant w.r.t. the size of the specified
documents. The third step corresponds to the evaluation of a datalog rule, that is feasible
in polynomial time [4]. �

A QUERY LANGUAGE FOR XML BASED ON GRAPH GRAMMARS 145

6.3. XGL versus other XML query languages

In this section we rely on some examples to give a flavor of the differences and similarities
among our language and other proposals (XQuery, XML-QL and XML-GL). With respect
to other declarative languages, XGL seems to be more intuitive and natural. Indeed, as
shown by the following example, in some cases textual languages are not easy to use for
expressing queries over graph-like data.

Example 11. The fourth query of Example 1 (constructing a document which contains for
each author the titles of the books he has written) can be expressed in XML-QL as follows:

CONSTRUCT <results> {
WHERE

<bib>
<author> $a </author>

</bib>
CONSTRUCT

<result>
<author> $a </author>
{

WHERE
<bib>

<book>
<title> $t </title>
<author> $a </author>

</book>
</bib> IN "bib.xml"
CONSTRUCT <title> $t </title>

}
</result>

} </results>

The same query in XQuery is taken from [37] and is shown below:

FOR $a IN distinct-value($bib/book/author/data())
RETURN

<biblio>
<author>{ $a }</author>
{ FOR $b IN $bib/book,

$a2 IN $b/author/data()
WHERE $a = $a2
RETURN $b/title

}
</biblio>

The same query can be expressed in XGL using the parsing grammar and the construct-
ing rule reported, respectively, on the left side and on the right side of Figure 19:

WHERE S IN "bib.xml"
CONSTRUCT T

146 FLESCA ET AL.

Figure 19. Fourth query of Example 1.

Example 12. Suppose we want to display, for each publisher, the authors and the titles of
the books edited by the same publisher. This query can be expressed in XQuery as follows:

FOR $p IN document(bib.xml)//publisher
RETURN

<result>
<publisher> $p/text() </publisher>
{

FOR $b IN document(bib.xml)//book[/publisher=$p]
RETURN $b/title

}
{ FOR $a IN distinct-value(document(bib.xml)//

author[$p=/../publisher]/data())
RETURN $a

}
</result>

The above query is quite complex, since an author may have written more than one book
with the same publisher and so we have to avoid that the list of authors contains duplicates.

We can write the same query in XGL (S and T are those of Figure 20):

WHERE S IN "bib.xml"
CONSTRUCT T

With respect to XML-GL, our graphical notation is based on the use of graph gram-
mar production rules. In the following example we define a query and express it both in
XML-GL and XGL.

Example 13. We consider here a query taken from [11]. We are given an XML document
addrbook.xml containing a collection of people where each person has an address and

A QUERY LANGUAGE FOR XML BASED ON GRAPH GRAMMARS 147

Figure 20. The query of Example 12 written in XGL.

Figure 21. A query in XML-GL.

inside the address the city is specified. The problem consists of constructing a document
which contains, for each city, the people living in the city.

The query can be expressed in XML-GL as shown in Figure 21, and in XGL as shown
in Figure 22:

WHERE S IN "addrbook.xml"
CONSTRUCT T

7. Conclusions

In this paper we have presented a graphical language for XML data. We have introduced
parsing graph grammars and constructing rules which allow users to query and construct
graph-like data in an easy, powerful and flexible way. Moreover, since most of the recursive
queries on graph-like databases are of the form “find all nodes reachable from a given
node” (path queries) or find the list of nodes which are directly (or indirectly) connected
to a given node, we have introduced shortcuts which allow users to write, in most cases,

148 FLESCA ET AL.

Figure 22. The same query of Figure 21 in XGL.

(recursive) queries “without recursion” by means of a very limited number of productions
(all examples presented here use only one production).

The XGL language is currently under implementation: its features have been improved
by introducing aggregates and negation; the semantics has been extended to deal with
ordered XML graphs.

Appendix A. Sets in logic languages

Several proposals for handling sets in logic languages have been made in the literature [3,7,
29]. We refer to the proposal of [7] that is particularly relevant not only from a theoretical
point of view, but also because it has been practically used in many applications.

A simple term is either a constant or a variable. A term can be either a simple term, a
complex term or a set term. A complex term is of the form f (t1, . . . , tn) where f is a term
constructor (i.e. a function symbol not used recursively) and tj (1 � j � n) is a term.
A set term S is a term of the form {s1, . . . , sn}, where sj (1 � j � n) is a term and the
sequence in which the elements are listed is not immaterial.

We point out that the enumeration of the elements of a set term can be given either
directly or by giving the conditions for collecting their elements (grouping variables).
Grouping variables may occur in the head of clauses with the following format

p(x1, . . . , xh,�Y�)← B1, . . . , Bn,

where B1, . . . , Bn are the goals of the rules, p is the head predicate symbol with parity
h + 1, 〈Y 〉 is a grouping variable, and x1, . . . , xh are the other arguments (terms or other
grouping variables). The term 〈Y 〉 will be eventually assigned the set {Yθ | θ is a substi-
tution for r such that B1θ, . . . , Bnθ are true}. Thus, a grouping variable is similar to the
construct GROUP BY of SQL or the built-in predicate setof of PROLOG.

A QUERY LANGUAGE FOR XML BASED ON GRAPH GRAMMARS 149

Example 14. Consider the Supply relation below:

Supplier Part Quantity

s1 p1 10
s1 p1 20
s1 p2 10
s1 p2 30
s2 p1 5
s2 p1 8

The following rule:

part_set(S,�P�)← supplier(S,P,Qty)

collects all the parts supplied by the suppliers s1 and s2 in two sets, i.e.,
part_set(s1,{p1,p2}) and part_set(s2,{p1}). The rule

part_set(S,�part(P,�Qty�)�)← supplier(S,P,Qty)

computes the tuples
part_set(s1, { part(p1,{10,20}), part(p2, {10,30}) })

and
part_set(s2, { part(p1,{5,8}) }).

Appendix B. Further examples

Example 15. Consider the use case in [38, Section 1.9]. Suppose that the file
census.xml contains an element <person> for each person recorded in a recent cen-
sus. For each person element, the person’s name, job, and spouse (if any) are recorded
as attributes. The spouse attribute is an IDREF-type attribute that matches the ID-type
name attribute of the spouse element.

The parent–child relationship among persons is recorded by containment in the ele-
ment hierarchy: the element that represents a child is contained within the element that
represents the child’s father or mother. A child is recorded under either its father or its
mother (but not both): in the following, the term “children of X” includes “children of the
spouse of X.” Each person in the census has zero, one, or two parents. An input document
census.xml and its DTD are shown below:

<census>
<person name="Bill" job="Teacher">
<person name="Joe" job="Painter" spouse="Martha">

<person name="Sam" job="Nurse">
<person name="Fred" job="Senator" spouse="Jane">
</person>

150 FLESCA ET AL.

</person>
<person name="Karen" job="Doctor" spouse="Steve">
</person>

</person>
<person name="Mary" job="Pilot">

<person name="Susan" job="Pilot" spouse="Dave">
</person>

</person>
</person>
<person name="Frank" job="Writer">
<person name="Martha" job="Programmer" spouse="Joe">

<person name="Dave" job="Athlete" spouse="Susan">
</person>

</person>
<person name="John" job="Artist">

<person name="Helen" job="Athlete">
</person>
<person name="Steve" job="Accountant" spouse="Karen">
<person name="Jane" job="Doctor" spouse="Fred">
</person>

</person>
</person>

</person>
</census>

<!DOCTYPE census [
<!ELEMENT census (person*)>
<!ELEMENT person (person*)>
<!ATTLIST person

name ID #REQUIRED
spouse IDREF #IMPLIED
job CDATA #IMPLIED >

]>

Now consider query Q5 of Section 1.9 in [38]: list the names of parents and children
who have the same jobs, and their jobs. Here it is the query in XQuery:

<result>
{

FOR $p IN document("census.xml")//person,
$c IN $p/person[job = $p/job]

RETURN
<match parent={ $p/name } child={ $c/name }

job={ $c/job } />
}

A QUERY LANGUAGE FOR XML BASED ON GRAPH GRAMMARS 151

{
FOR $p IN document("census.xml")//person,

$c IN $p/@spouse->person/person[job = $p/job]
RETURN

<match parent={ $p/name } child={ $c/name }
job={ $c/job } />

}
</result>

The same query in XGL is the following:

WHERE S IN "census.xml"
CONSTRUCT T [$p->$p1,$p->$p2]

Figure 23. Parents and children with the same job.

Example 16. We want to extract the list of name-pairs of grand-parents and grandchil-
dren from the document census.xml of the previous example (see query Q7 in [38,
Section 1.9]. The query can be expressed in XQuery as follows:

<results>
{

FOR $b IN document("census.xml")//person,
$c IN $b/person | $b/@spouse->person/person,
$g IN $c/person | $c/@spouse->person/person

RETURN
<grandparent name={ $b/name }

grandchild={ $g/name } />
}

</results>

The same query can be written in XGL as follows:

WHERE S IN "census.xml"
CONSTRUCT T [$p->$p1,$p->$p2]

152 FLESCA ET AL.

Figure 24. Pairs grandparent–grandchild.

Figure 25. An XML document and the corresponding (ordered) XML graph.

Appendix C. Introducing order

In this section we introduce the possibility of querying and creating ordered XML docu-
ments by means of XGL. Such a feature is significant, since the order among elements in
a document is generally an important information.

In the previous sections we disregarded the order of the input and output documents for
the sake of simplicity. Here we informally introduce the features of the language related to
the management of order.

We assume that the arcs (and the nodes) of an XML graph are ordered according to the
structure of the corresponding document. That is, given two elements e1, e2, e1 > e2 iff
the starting tag of e1 appears before the starting tag of e2 in the document.

For instance, the XML document census.xml on the left side of Figure 25 corre-
sponds to the ordered graph on the right side.

The number inside each node represents the position of the corresponding element in
the source document.

A QUERY LANGUAGE FOR XML BASED ON GRAPH GRAMMARS 153

Figure 26. Three XGL parsing grammars.

S1 S2 S3

Node(3,‘Reds’,$t) Node(3,‘Reds’,$t) Node(3,‘Reds’,$t)

Node(4,‘John’,$p) Node(4,‘John’,$p) Node(4,‘John’,$p)

Node(5,‘Bill’,$p) Node(5,‘Bill’,$p) Node(7,‘Blacks’,$t)

Node(6,‘Cathy’,$p) Node(6,‘Cathy’,$p) Node(8,‘Peter’,$p)

Node(7,‘Blacks’,$t) Node(10,‘Clouds’,$t)

Node(8,‘Peter’,$p) Node(11,‘Sue’,$p)

Node(9,‘Jean’,$p)

Node(10,‘Clouds’,$t)

Node(11,‘Sue’,$p)

Node(12,‘Mark’,$p)

Node(13,‘Ed’,$p)

Figure 27. Lists of tuples extracted by S1, S2 and S3.

As to the extraction of information from an ordered XML graph, we point out that the
definition of data mapping can be trivially extended to deal with ordered documents, and
for this reason will be not discussed here. We only observe that the main consequence of
the introduction of order is that the tuples in the relation Node are ordered w.r.t. the position
of the corresponding nodes.

For instance, consider the results of the extraction phases performed, respectively, by
applying the followingXGL parsing grammars on the XML document shown in Figure 25.

The grammar S1 extracts all the teams and all the players from the document, S2 extracts
the first team and its players, whereas S3 extracts all the teams and, for each team, the first
of its players. The ordered sets of tuples corresponding to the terminal mapping pairs
obtained at the end of the three extraction processes are represented in the columns of the
table in Figure 27.

The order on the set of tuples corresponding to the terminal mapping pair obtained at
the end of the extraction process induces a partial order in the set of tuples satisfying 2.
We point out that the constructing rule returns an ordered Tree, i.e. a grouping variable

154 FLESCA ET AL.

Figure 28. An XGL constructing rule.

S1 S2 S3

<players> <players> <players>

<player> John </player> <player> John </player> <player> John </player>

<player> Bill </player> <player> Bill </player> <player> Peter </player>

<player> Cathy </player> <player> Cathy </player> <player> Sue </player>

<player> Peter </player> </players> </players>

<player> Jean </player>

<player> Sue </player>

<player> Mark </player>

<player> Ed </player>

</players>

Figure 29. Document created by T after applying S1, S2 and S3.

corresponds to a list instead of a set. Such a list is ordered according to the partial order
defined on 2.

For instance, consider the XGL constructing rule T in Figure 28, which returns the
ordered list of the players generated in the extraction phase. The table in Figure 29 shows
the generated documents when T is applied, respectively, after S1,S2 and S3.

Note that the constructing rule T of Figure 28 in all of the three cases returns the com-
plete sequence of the extracted players in the same order as they appear in the document.

However, in many cases we may want to change the order of the elements w.r.t. the
source document, or return only some elements depending on their position. To this aim,
we have introduced the clauses ORDER BY and RANGE.

The clause ORDER BY takes three arguments:

(1) the root of subtree which has to be reordered;
(2) the list of the nodes contained in such a subtree whose values determine the order of

the elements in the generated graph;
(3) the ordering direction (ascending or descending).

The clause RANGE takes two arguments:

A QUERY LANGUAGE FOR XML BASED ON GRAPH GRAMMARS 155

Figure 30. Three XGL constructing rules.

T1 T2 T3

<results> <results> <results>

<team> Blacks <team> Reds <team> Reds

<player> Jean </player> <player> Bill </player> <player> Bill </player>

<player> Peter </player> </team> <player> Cathy </player>

</team> <team> Clouds <player> John </player>

<team> Clouds <player> Ed </player> </team>

<player> Ed </player> </team> <team> Blacks

<player> Mark </player> <team> Blacks <player> Jean </player>

<player> Sue </player> <player> Jean </player> <player> Peter </player>

</team> </team> </team>

<team> Reds </results> </results>

<player> Bill </player>

<player> Cathy </player>

<player> John </player>

</team>

</results>

Figure 31. Document created by T1, T2 and T3 after applying S1.

(1) a node;
(2) the range defining the position in the source document of the elements which can be

associated to the specified node.

Consider, for instance, the three constructing rules in Figure 30. Rule T1 returns all the
extracted teams ordered by their name and, for each team, the list of its players ordered by
their name. Rule T2 returns all the extracted teams ordered by the player of theirs which
has the “minimum” name: that is, the team Clouds precedes the team Blacks since

156 FLESCA ET AL.

the first Clouds’s player (Ed) precedes lexicographically the first of Blacks’s player
(Jean). Finally, rule T3 returns the teams which appear in the first two positions in the
document, and for each team the list of players ordered by their names.

Table in Figure 31 reports the documents obtained by extracting information by means
of S1 and then restructuring the data by means of T1, T2 and T3.

Notes

1. The mapping ψ replaces variables in α with constants in the input data graph.
2. A this level we use the same syntax of XML-QL [18].
3. In the prototype of the language under development we use FO

agg
R formulas. FO

agg
R denotes first order logic

over the signature of the real field with aggregation operators [26].
4. Formally, since variables in the extracted graph may be renamed, we should use an additional predicate storing

the mapping between variables in the extracted graph and (renamed) variables in the output graph.

References

[1] S. Abiteboul, “Semistructured data,” in Proc. International Conference on Database Theory, Delphi,
Greece, 1997, pp. 1–18.

[2] S. Abiteboul, P. Buneman, and D. Suciu, Data on the Web: From Relations to Semistructured Data and
XML, Morgan Kauffman, San Francisco, CA, 1999.

[3] S. Abiteboul and S. Grumbach, “COL: A logic-based language for complex objects,” in Proc. Int. Conf. on
Extending Database Technology, Venice, Italy, 1988, pp. 271–293.

[4] S. Abiteboul, R. Hull, and V. Vianu, Foundations of Databases, Addison-Wesley, Boston, MA, 1994.
[5] S. Abiteboul and V. Vianu, “Regular path queries with constraints,” in Proc. PODS, Tucson, Arizona, 1997,

pp. 122–133.
[6] S. Abiteboul, D. Quass, J. McHugh, J. Widom, and J. L. Wiener, “The Lorel query language for semistruc-

tured data,” Journal of Digital Libraries 1(1), 1997, 68–88.
[7] C. Beeri, S. Naqvi, O. Shmueli, and S. Tsur, “Set constructors in a logic database language,” Journal of

Logic Programming 10(1/2/3&4), 1991, 181–232.
[8] A. Bonifati and S. Ceri, “Comparative analysis of five XML query languages,” SIGMOD Record 29(1),

2000, 68–79.
[9] P. Buneman,“Semistructured data,” in Proc. PODS, Tucson, AZ, 1997.

[10] P. Buneman, W. Fan, and S. Weinstein, “Path constraints in semistructured and structured databases,” in
Proc. PODS, Austin, TX, 1988, pp. 129–138.

[11] S. Ceri, S. Comai, E. Damiani, P. Fraternali, S. Paraboschi, and L. Tanca, “XML-GL: A graphical language
for querying and restructuring XML documents,” Computer Networks 31(11–16), 1999, 1171–1187.

[12] S. Ceri, S. Comai, E. Damiani, P. Fraternali, and L. Tanca, “Complex queries in XML-GL,” in ACM Symp.
on Applied Computing, Vol. 2, 2000, pp. 888–893.

[13] S. Ceri, P. Fraternali, and S. Paraboschi, “XML: Current developments and future challenges for the data-
base community,” in Proc. Int. Conf. on Extending Database Technology, Como, Italy, 2000, pp. 3–17.

[14] V. Christophides, S. Cluet, and G. Moerkotte, “Evaluating queries with generalized path expressions,” in
Proc. of the ACM SIGMOD Conf. on Management of Data, Montreal, Canada, 1996, pp. 413–422.

[15] M. Consens and A. Mendelzon, “GraphLog: A visual formalism for real life recursion,” in Proc. PODS,
Nashville, TN, 1990, pp. 404–416.

[16] E. Damiani and L. Tanca, “Blind queries to XML data,” in Proc. Int. Conf. on Database and Expert Systems
Applications, London/Greenwich, UK, 2000, pp. 345–356.

[17] D. Chamberlin, D. Florescu, J. Robie, J. Siméon, and M. Stefanescu, “XQuery: A query language for
XML,” 2000, http://www.w3.org/TR/2001/WD-xquery-20010215

A QUERY LANGUAGE FOR XML BASED ON GRAPH GRAMMARS 157

[18] A. Deutsch, M. F. Fernandez, D. Florescu, D. A. Levy, and D. Suciu, “A query language for XML,” Com-
puter Networks 31(11–16), 1999, 1155–1169.

[19] J. Engelfriet, “Context-free graph grammars,” in Handbook of Formal Languages, Vol. 3, Beyond Words,
G. Rozenberg and A. Salomaa, Eds., Springer-Verlag, London, UK, 1997, pp. 125–213.

[20] M. F. Fernandez, D. Florescu, J. Kang, A. Y. Levy, and D. Suciu, “STRUDEL: A web-site management
system,” in Proc. ACM SIGMOD Conf. on Management of Data, Tucson, AZ, 1997, pp. 549–552.

[21] M. F. Fernandez, J. Simeon, and P. Wadler, “An algebra for XML query,” in Int. Conf. on Found. of Software
Technology and Theoretical Computer Science, New Delhi, India, 2000, pp. 11–45.

[22] S. Flesca, F. Furfaro, and S. Greco, “Graph grammars for querying graph-like data,” in Workshop on Graph
Transformation and Visual Modeling Techniques (GT-VMT), Crete, Greece, 2001.

[23] S. Flesca, F. Furfaro, and S. Greco, “A graph grammars based framework for querying graph-like data,”
ISI-CNR Technical Report 8, Cosenza, Italy, 2002, submitted for publication.

[24] S. Flesca and S. Greco, “Querying graph databases,” in Proc. Int. Conf. on Extending Database Technology,
Konstanz, Germany, 2000, pp. 510–524.

[25] S. Flesca and S. Greco, “Partially ordered regular languages for graph queries,” in Proc. Int. Colloquium on
Automata, Languages and Programming, Prague, Czech Republic, 1999, pp. 321–330.

[26] S. Grumbach, M. Rafanelli, and L. Tininini, “Querying Aggregate Data,” in Proc. PODS, Philadephia, PA,
1999, pp. 174–184.

[27] Z. G. Ives and Y. Lu, “XML query languages in practice: An evaluation,” in Proc. Web-Age Information
Management, Shanghai, China, 2000, pp. 29–40.

[28] D. Konopnicki and O. Shmueli, “W3QS: A query system for the World-Wide-Web,” in Proc. Int. Conf. on
Very Large Data Bases, Zürich, Switzerland, 1995, pp. 54–65.

[29] G. M. Kuper, “Logic programming with sets,” Journal of Computer and System Science 41, 1990, 44–64.
[30] L. Lakshmanan, F. Sadri, and I. Subramanian, “A declarative language for querying and restructuring the

web,” in Proc. Int. Workshop on Research Issues in Data Engineering, New Orleans, LA, 1996, pp. 12–21.
[31] G. Mecca, P. Atzeni, A. Masci, P. Merialdo, and G. Sindoni, “The Araneus web-base management system,”

in Proc. of SIGMOD Conference, Seattle, WA, 1998, pp. 544–546.
[32] A. Mendelzon, G. Mihaila, and T. Milo, “Querying the World Wide Web,” Journal of Digital Libraries 1(1),

1997, 54–67.
[33] B. Oliboni and L. Tanca, “Querying XML specified WWW sites: Links and recursion in XML-GL,” in

Proc. Int. Conf. Computational Logic, London, UK, 2000, pp. 1167–1181.
[34] J. Paredaens, P. Peelman, and L. Tanca, “G-Log: A declarative graphical query language,” in Proc. Int.

Conf. on Deductive and Object-Oriented Databases, Munich, Germany, 1991, pp. 108–128.
[35] D. Suciu, “Semistructured Data and XML,” in Proc. Int. Conf. on Foundations of Data Organization and

Algorithms, Kobe, Japan, 1998.
[36] XML query requirements, W3C working draft, http://www.w3.org/TR/xmlquery-req
[37] XQuery formal semantics, W3C working draft, http://www.w3.org/TR/query-semantics
[38] XQuery use cases, W3C working draft, http://www.w3.org/TR/xmlquery-use-cases

