
World Wide Web 3 (2000) 43–52 43

V-Market: A framework for agent e-commerce systems

Pedro S. Ripper, Marcus F. Fontoura, Ayrton Maia Neto and Carlos José P. de Lucena
Software Engineering Laboratory (LES), Computer Science Department, Pontifical Catholic University of Rio de Janeiro,

Rua Marquês de São Vicente, 225, 22453–900 Rio de Janeiro, Brazil
E-mail: {pedro, mafe, ayrton, lucena}@les.inf.puc-rio.br

Software agent technology is still an emerging technology, and as such, agent based software design is still in its infancy. Software
agents have just started to be used in the e-commerce domain, and they are already beginning to create a series of new possibilities for
this arena. Agents can be used to automate, as well as to enhance many stages of the traditional consumer-buying behavior process.
This paper proposes a software engineering approach to the design of agent mediated e-commerce systems, through the definition of an
object-oriented framework. The paper presents the underlying concepts, and the architecture of the environment, showing how it allows
developers to customize virtual marketplaces, and to define transaction categories on demand, incorporating many possible products and
services that can be traded online.

1. Introduction

Software agent technology is starting to create a series
of new possibilities for the area of electronic commerce
[Bradshaw 1997]. Agents can be used to automate, and
enhance many stages of the traditional consumer-buying
behavior process. Through the minimization of transaction
costs, elimination of geographic barriers and time issues,
many new markets, not viable before, are now being cre-
ated, traditional markets are becoming more efficient, and
the role of the middleman has been changing drastically
[Guttman et al. 1997].

This paper proposes a software engineering approach
to the design of agent mediated e-commerce systems,
through the definition and implementation of an object ori-
ented (OO) framework. This framework focuses mainly
on e-commerce applications based on virtual marketplaces.
A virtual marketplace is an Internet based system, in which
software agents interact and negotiate, on behalf of their
respective users, to buy, sell or find specific goods and ser-
vices [Leebaert 1998]. In this type of system, all users
can be potential buyers, sellers or both, depending on their
specific interests.

The main goal of V-Market is to facilitate the creation of
this type of applications, as well as to make them more ro-
bust and flexible. It is expected that this approach will
greatly enhance the process of experimentation, and re-
search on the new possibilities brought about by software
agents to the e-commerce application domain.

V-Market gives developers the ability to customize vir-
tual marketplaces, and define transaction categories on de-
mand, incorporating many possible products and services
that can be traded online. Its users can create new trans-
action types and items based on individual needs, defining
customized software agents adapted to the new products
and offered services. Software agents in V-Market pro-
actively broker and negotiate with interested buyers and
sellers represented by their respective agents. They can be

created with any set of desired behaviors, thereby enabling
the consumer to have a virtual presence in the marketplace
to further his or her interest, while freeing the consumer
from constant monitoring of market progress.

The next sections of this paper are organized as follows:
section 2 defines software agents through the presentation
of their properties; section 3 describes the concepts under-
lying agent-mediated e-commerce, and also describes re-
lated systems which have been studied for the definition of
V-Market; section 4 presents the OO framework, highlight-
ing its design and implementation issues; finally, section 5
presents our conclusions and future research directions.

2. Software agents

A software agent is neither a new concept nor a well-
defined one. Although not clearly defined, agents have
been used for quite some time in many different fields of
computer science, and depending on the field of study, its
definition may vary. For the purposes of this work, an
agent is defined as a piece of software (not dependent on its
implementation language) used to automate specific tasks
[Bradshaw 1997]. This piece of software also needs to be
proactive, to be capable of personalization, and to have a
certain level of autonomy. Other features, such as mobility
and collaboration, might be desirable for some applications,
but are not considered as prerequisites for this definition.

• Personalization: The ability of the agent to be cus-
tomized through information provided, explicitly or im-
plicitly, by its user. Examples of such personalization
are different parameters or domain restrictions for a
search agent, or a maximum price and a negotiation
strategy for a shopping agent.

• Proactive: Agents should not simply act in response to
external events. An agent should have a main goal,

 Baltzer Science Publishers BV



44 P.S. Ripper et al. / V-Market: A framework for agent e-commerce systems

and should take the initiative, whenever necessary, to
accomplish its goal.

• Autonomous or semi-autonomous: An autonomous
agent has the ability to complete its tasks without the
intervention of its users, which means that agents should
have a considerable degree of control over its own ac-
tions.

Although concepts such as intelligence, adaptability, mo-
bility and cooperation are, many times, closely related to
agents, we do not consider them prerequisites for defining
an agent, but orthogonal concepts of the agent definition.
These concepts are going to be seen as desirable features
depending upon the task to be performed by the agent.

• Intelligent/adaptive: An agent’s intelligence is directly
related to its developer’s ability to define its behavior.
Therefore, this property is quite subjective, and most
of the researchers prefer to call them semi-intelligence.
There are two schools of thought on the development of
the so called “smart” or “semi-intelligent agents”: One
is in favor of the creation of a complex set of predefined
rules that defines the agent’s behavior (specialist systems
like). The other favors a simpler set of rules in which
agents are capable of analyzing their actions and their
surrounding environment as a way of “learning” how to
be more efficient. This is sometimes identified as the
ability to be adaptive.

• Mobile: Agents can be classified as mobile or non-
mobile (sometimes referred as anchored agents). Non-
mobile agents reside either in a client or in a server ma-
chine, and do all their work on either one or the other. A
mobile agent, on the other hand, has the ability to “navi-
gate” through servers collecting information or perform-
ing other small actions in order to complete its task.

• Cooperative/interactive: Agents can act on their own,
or can cooperate and interact with others agents to com-
plete their tasks. Buying agents can interact with sell-
ing agents to try to close a deal (like in V-Market and
Kasbah [Chavez and Maes 1996; Guttman et al. 1997,
1998]). Alternatively, agents can exchange informa-
tion about their respective users in order to complete
their tasks in recommendation systems (such as Fire-
fly [Firefly Inc. 1996]). Although there is no standard
language or interface for this type of agents interaction,
some agent based languages and protocols have been
proposed, such as KQML (Knowledge Query Manip-
ulation Language) [Finin et al. 1997] and Ontolingua
[Gruber 1992]. These languages have been designed to
allow heterogeneous agents and systems to cooperate in
their tasks.

The above properties provide a common ground for under-
standing what agents are like, and how they can automate a
series of tasks, such as those for searching/filtering, buying
and selling products over the Internet. However, there are
some other factors that make them a compelling concept,
especially for the e-commerce domain:

• Information overload: Too much information available
is not useful for making decisions if this information
cannot be filtered on time. The time to absorb all the
information available when making decisions is very
scarce. On the Internet, there is a scarcity of demand,
and not of supply [Guttman et al. 1997].

• Information ignorance: Useful information relevant for
making decisions is quite often not used, because the
decision-maker is unaware of them.

• Closer to “perfect market”: In the digital world, trans-
actions can occur independently of the physical location
of the participating parties. In addition, other factors
that influence the market, such as transaction cost and
duration of transactions, can be greatly reduced by au-
tomation.

3. AmEC: Agent mediated e-commerce

Given the exponential increase on information resources
available on the Internet (World Wide Web), software
agents have been given a lot of attention lately. Agents have
the distinguishing ability to automate repetitive and time-
consuming tasks, including searching, buying and selling
products over the Internet. Most of the tasks involved in
the consumer buying behavior process [Guttman and Maes
1998b; Guttman et al. 1998; Moukas et al. 1998] can be
automated. Stages, such as identification of needs, product
brokering, merchant brokering, and negotiation, can now be
assisted or automated by many different agent-based sys-
tems. Merchants are currently struggling to explore new
channels to negotiate their products, looking for opportuni-
ties to maximize their profits and, at the same time, to sat-
isfy consumers. However, most of the electronic commerce
stores available on the web today still take the form of sta-
tic “catalogs” of products, in which customers select items
manually, and purchase them online. So far, this model has
fallen short on redefining the marketplace [Guttman et al.
1998; Terpsidis et al. 1997]. It is expected that software
agents will turn existing markets into more efficient ones,
and will change the role of the middleman, and make many
small niche markets viable [Chislenko 1998].

3.1. Consumer buying behavior model

The consumer-buying behavior model (CBB) [AmEC
1996] defines the decision processes which people undergo
when purchasing a product. Many different models try to
capture this behavior through the definition of a set of con-
secutive stages. They represent a simplification of a very
complex behavior, in which the stages are not discrete enti-
ties. Normally, stages can overlap, and even be concurrent
and iterative. However, even though limited and simplistic,
these models provide an important tool to elicit under which
circumstances agent mediated electronic commerce systems
apply to the consumer shopping experience [Guttman et al.
1997].



P.S. Ripper et al. / V-Market: A framework for agent e-commerce systems 45

Table 1
Online shopping systems vs. CBB model.

Persona Firefly Bargain Excite’s Kasbah Auction Bot Auction Web T@T

1. Need identification
2. Product brokering X X X X
3. Merchant brokering X X X X X X
4. Negotiation X X X X
5. Payment and delivery
6. Service and evaluation

Each of these models has its own characteristic and pe-
culiarities, but they normally agree on a set of fundamental
stages to represent the consumer buying process. The stages
defined by the CBB model are:

• Needs identification: Sometimes also called Problem
Recognition, this stage represents the awareness of the
consumer’s need.

• Product brokering: In this stage, the consumer decides
what to buy. He or she evaluates a series of different
products, and tries to identify which one would satisfy
his/hers needs.

• Merchant brokering: At this stage, the consumer already
knows what he or she wants, and decides whom to buy
the product from. The decision is based on a set of
criteria, such as price warranty, availability, reputation,
and so on.

• Negotiation: This stage determines how the transaction
is going to occur. Many of the traditional models do not
identify this stage explicitly, but the separation of this
process into a new stage is very useful for determining
agents’ roles.

• Purchase and delivery: This stage can sometimes signal
the end of the negotiation stage. Things, such as the
payment process and delivery, occur here.

• Product services and evaluation: This stage includes
product services, customer services, and an evaluation
of the satisfaction with the product itself, and with the
buying experience as a whole.

Most of the agent systems available so far concentrate
on automating or assisting mainly three stages: Product
brokering, Merchant brokering, and negotiation, as shown
in table 1. These systems generally focus on only one of
these stages, but it is becoming more common for systems
to incorporate more than one stage (such as Kasbah [Chavez
and Maes 1996], T@T [Tete-a-Tete 1997]). This second
generation of agents systems tries to resemble more closely
the real buying experience, in which the stage transitions
are not completely discrete.

3.1.1. Agent mediated product brokering
As presented above, Product brokering is the stage in

which the consumer decides what to buy. There are a va-
riety of agent systems that assists consumers deciding how
each product fits best his/hers needs, such as Personalogic

[Personalogic 1997], Firefly [Firefly Inc. 1996], and Tete-
a-Tete (T@T) [Tete-a-Tete 1997].

There are many possible approaches to accomplish this
task. Personalogic [Personalogic 1997] is a tool that al-
lows customers to narrow down on products that best fit
their needs by guiding them through a large product feature
space. The system then filters out unwanted products within
a given domain by letting the customers specify constraints
about the product’s features. Currently, Personalogic is of-
fered as a service from merchant to customers, but it can
also be used to suggest products from different vendors.

The approach for Product brokering used by Firefly
[Firefly Inc. 1996] consists in filtering a product based on
“word of mouth”, instead of by constraints about its fea-
tures. It uses a recommendation engine called automated
collaborative filtering (ACM). ACM works comparing cus-
tomers’ product ratings. The first step taken by ACM is
to find users with similar tastes for a specific type of prod-
uct. Then, Firefly recommends new items, based on ratings
given by other users with similar tastes. This approach has
been used to recommend commodities, such as books and
music, in which there is a substantial subjective factor in
their description.

3.1.2. Agent mediated merchant brokering
At this phase, the customer compares different merchant

alternatives for a specific product (chosen in the previous
stage). In this category, Andersen Consulting’s Bargain-
Finder was one of the first shopping agents to look for mer-
chants on a price basis. Given a specific product, Bargain-
Finder queries its price from several different merchants
using the HTTP protocol.

Another system for merchant brokering is Jango [Chavez
et al. 1997a]. It represents a more advanced version of
BargainFinder that integrates both Product and Merchant
brokering in a single stage. Users can specify a series of
constrains for specific features of a product category. Jango
returns, then, product offers from different merchants that
match the established criteria.

One last example of merchant brokering is Media-Lab’s
Kasbah [1996]. Kasbah is a multi-agent system for con-
sumer to consumer electronic commerce. Every user that
wants to buy or sell an item creates an agent with some
strategic directions and sends it to a centralized virtual mar-
ketplace. In this marketplace, agents interact with each
other trying to find potential buyers and sellers for their
respective products. The goal of the agent is to make the



46 P.S. Ripper et al. / V-Market: A framework for agent e-commerce systems

Figure 1. Kasbah’s selling agents control parameters.

best possible deal in accordance to a set of user specified
constraints.

3.1.3. Agent mediated negotiation
Negotiation is the process of determining the terms of

a transaction (e.g., price). The main advantage of dynam-
ically negotiating price for products or services is that the
merchant is free from the burden of predefining the value
of the products/services. Rather than that, this responsibil-
ity is transferred to the market itself. Therefore, limited
resources tend to be allocated more fairly [AmEC 1996].

One of the main problems with negotiation is that it of-
ten requires all parties to share the same physical location,
which is especially true for most of the traditional auctions.
In addition, negotiation can be too complex or frustrating
for the average consumer, since some negotiation protocols
take place over an extended period, eliminating its useful-
ness to time-constrained users. Besides all that, transaction
costs in negotiations may be too high for either the con-
sumers or the merchants most of the time.

However, fortunately most of the issues and limitations
described above disappear in the digital world. Things,
such as geographical location, are not that important any-
more in this new paradigm. Agents systems can assist the
customers on the negotiation terms, and on the process of a
transaction, making them fast, easy, and extremely cheap.

Both AuctionBot from University of Michigan and Ebay
[Ebay Inc. 1995] are Internet classified auction servers.
Users can create online auctions to sell a desired item by
specifying some parameters. Examples of parameters nor-
mally used include auction start and end times, minimum
bid, and reserved price. Once the auction is created, the

seller’s negotiation process is completely automated by the
system, which uses the auction protocol and parameters
chosen by its creator.

Kasbah [Chavez and Maes 1996] automates both the
merchant brokering, and negotiation stages. The agents
created to buy and sell items under the virtual marketplace
are provided with different parameters, including negotia-
tion strategies: Anxious, cool headed, and frugal (corre-
sponding to a linear, quadratic, and exponential function
for increasing/decreasing its bid for a product over time).
Figure 1 illustrates these parameters.

3.2. Virtual marketplaces

Derek Leebaert defined virtual marketplaces as follows:
“The marketplace is the place of exchange between buyers
and sellers. Once one rode a mule to get there; now one
rides the Internet. An electronic marketplace can span two
rooms in the same building or two continents” [Leebaert
1998].

For the purposes of this work, this definition will be
restricted a little further. From V-Market’s perspective,
virtual marketplaces are Internet based systems that allow
software agents to interact and negotiate, on behalf of their
respective users, to buy, sell, or find specific goods. How-
ever, these systems must have some additional features:

• Customer to customer: All users can be potential buy-
ers, sellers or both, depending on their specific interests,
which means it is a market for customers to customers,
in which there are no predefined product offer or mer-
chant entities.



P.S. Ripper et al. / V-Market: A framework for agent e-commerce systems 47

• Centralized: It is a semantically centralized system,
which means that although the systems can be inter-
nally distributed (run on more than one machine), to the
outside user, it is a unique centralized marketplace, in
which all participants meet to broker and negotiate their
belongings.

This allows the use of a centralized homogeneous on-
tology for the items being traded on the marketplace, al-
lowing more advanced brokering and negotiating strategies
that would not be possible with a heterogeneous ontology.
Also, centralizing the marketplace allows the existence of a
single “owner/administrator” of the marketplace, who is re-
sponsible for specifying the rules that all users must follow
under the marketplace. Things, such as the type of agents,
negotiation strategies, and protocol, will be all standardized,
greatly facilitating the integrity, and control of the market-
place. This allows the underlying structure of the market-
place to be more forgiven over integrity and security issues,
and more flexible, allowing high levels of customizations.

Kasbah [Chavez and Maes 1996] is a perfect example
of a system based on a virtual marketplace. Its users go
to the marketplace (represented through a web site) to find,
buy or sell their items. This is done through the creation
of agents that can be seen as “smart ads” that will not only
broker corresponding ads, but also negotiate the item.

V-Market is an object-oriented framework for the virtual
marketplace domain that follows the above definitions. All
systems instantiated by V-Market are semantically central-
ized, and there is no intrinsic distinction between buyers
and sellers. One last restriction added is that all broker-
ing and negotiation process happens asynchronously, which
means that users create their agents with their respective
control parameters and item description at a specific time
and the brokering and negotiation process starts at that mo-
ment, but continues over time, completely independent of
the users’ presence, not requiring any type of real-time in-
teraction.

4. V-Market: design and implementation

Based on a throughout study, and on an implementa-
tion of different agent mediated e-commerce systems, es-
pecially those previously described [AmEC 1996; Chavez
and Maes 1996; Tete-a-Tete 1997], we have developed an
object-oriented framework for the development of appli-
cations based on virtual marketplaces. It is intended to
facilitate the development of such applications, enabling its
users to focus on the higher level aspects of agent media-
tion. The framework has been developed using the mod-
eling approach proposed in [Fontoura 1999], in which the
variation points are explicitly represented in the design di-
agrams.

The framework proposed is greatly inspired on Media
Lab’s Kasbah [Chavez and Maes 1996] and concentrates
mainly on the ability to create applications based on vir-
tual marketplaces, in which buying and selling agents in-

teract. Its implementation makes use of lower level agent
services provided by some of the agent toolkits mentioned
earlier, and builds upon these tools to create a higher level
design solution for this specific application domain. The
applications are created from V-Market through instantia-
tion.

4.1. Design model

One of the most common problems in framework de-
sign is to find a balance between generality and ease of use.
Normally, the more generic and flexible a framework is, the
harder it is to use, and most of all, the harder it is to build.
After participating on the development of some agent based
e-commerce systems, such as Kasbah [Chavez and Maes
1996], Tete-a-tete [Tete-a-Tete 1997], and the AMEC in-
frastructure [AmEC 1996], it was possible to identify some
specific points in the design of these applications that are
critical to their flexibility. These specific variation points
(or hot-spots [Fontoura 1999]) allow the instantiation of a
wide range of different applications without requiring any
fundamental change in the framework design.

V-Market allows the creation of marketplace applica-
tions, which are the framework instances. These instances
are created through the adaptation of each framework hot-
spot. The most important hot-spots in the V-Market archi-
tecture are summarized below.

Multiple item support, and structured item ontology. One
of the main problems faced with the current implementation
of Kasbah [Chavez and Maes 1996] is that it is completely
tied to the two types of goods that it now supports (books
and CDs). To add a new type of product, it is necessary
to make a major change to the system’s structure. The
current implementation of the buying and selling agents
and the persistence scheme are extremely tied to the specific
description of each item.

V-Market addresses these issues by allowing for new
types of goods to be easily added to the virtual market-
place. In order to make it possible, the goods’ definitions
should be generic enough to support not only commodity
type goods, such as books and CDs, but also intangible type
of goods, such as knowledge about a specific subject, skills,
or services. Also, a standard item description/structure must
be developed, so that agents do not need to be redesigned
for every new item added to the marketplace.

Each item in the framework must be able to store and
compare its attributes. Figure 2 illustrates this hot-spot us-
ing the UML-extended design language proposed in [Fon-
toura 1999]. The keywords {variable, dynamic} indicate
hot-spot methods that may have implementation defined
during runtime. In this case, it means that methods write()
and compare() have to be defined by the user that adapts
V-Market, and that this definition may take place during
runtime.

Multiple negotiation dimensions and strategies. Kasbah
[Chavez and Maes 1996] allows only one negotiation di-



48 P.S. Ripper et al. / V-Market: A framework for agent e-commerce systems

Figure 2. Item hot-spot.

mension (price), and three negotiation strategies for this
specific dimension: Anxious, greedy/frugal, cool-headed.
These negotiation strategies are basically price decay func-
tions over time in the case of selling agent, or price increase
functions in the case of buying agents (figure 1).

Although these negotiation strategies are quite simple,
and do not necessarily obtain the best deals in a given vir-
tual marketplace, they have been chosen because after some
experiments, it has been identified that users normally do
not fully trust their agents if they do not completely un-
derstand what their rationale is. Therefore, these strategies
have been simplified for the sake of user understanding and
trust.

Once these trust barriers are overcome, it will be impor-
tant to experiment with different and more complex strate-
gies. Some of them might even take market statistics to
optimize each deal. In order to make it possible, the agent
negotiation needs to be specified as a separate entity in the
agent component, making it easier to “plug” different ne-
gotiation strategies, even at runtime. This type of approach
also allows the creation of negotiation processes for sys-
tems that negotiate over more than one dimension1, as well
as to create many different strategies for them.

Multiple communication protocols. Kasbah [Chavez and
Maes 1996] agent communication protocol is fairly simple.
Both buying and selling agents can make buying or selling
offers basically composed of a price offer for a specific item
and the answer for this offer. The answer can be of two
types: Positive, in which case the deal is closed, or nega-
tive, in which case the agents keep looking for other agents
and adapting their prices over time. This type of protocol
is well suited for simple negotiation, but for more than one
dimension and more complex strategies this protocol would
probably not work, or at least it would be very inefficient. It
is desirable to support a scaleable communication protocol,
in which agents could support more complex protocols, and
in which more elaborated proposals and counter-proposals
would be possible.

Figure 3 models the last two hot-spots, in which the
doThing(), createProposal(), sendProposal(), processPro-
posal(), and processAnswer() methods are used to define
the communication protocol. Whenever creating a pro-

1 An example of two-dimension negotiation may be a negotiation involv-
ing price and quality of a book, in a used book marketplace.

Figure 3. Negotiation strategies and communication protocols.

posal, a negotiation strategy must be selected. All of them
are marked as dynamic, indicating that they may be instan-
tiated during runtime.

4.2. V-Market implementation

Once the hot-spots have been precisely described in the
design diagrams, they need to be implemented using current
OO technology. This subsection discusses the V-Market
implementation issues.

V-Market is composed of two main subsystems: a front-
end and a back-end. The front-end is nor really a part of the
core framework (belongs to the applications created from
V-Market, and has to be defined by the framework user), but
it is extremely necessary in order to allow the creation of
a fully functional, complete instance. This front-end is ba-
sically responsible for the user interface, which in the case
of V-Market’s current implementation is composed of a set
of server-side scripts that dynamically generate V-Market’s
web-site. This architecture is illustrated in figure 4.

The back-end subsystem is a one hundred percent Java
program that can be either on the same or on a separate ma-
chine as the front-end. The back-end is basically the virtual
marketplace, and everything within it. It uses two different
database technologies for its persistence requirements (re-
lational, to store the item definitions, and object-oriented,
to store the agents).

The front-end communicates with the Java back-end
through the use of a Java object (Messager) wrapped into a
COM object [Rogers 1997]. This COM object serves as a
unique interface to the back-end that can be addressed from
within the server side script’s code (JavaScript). All re-
quests made through this Messager object are forwarded to
a proxy object that dispatches the messages to the V-Market
appropriate message handler.



P.S. Ripper et al. / V-Market: A framework for agent e-commerce systems 49

Figure 4. V-Market high-level architecture.

V-Market execution is highly concurrent, and it is com-
posed of two families of execution threads. The first family
is dedicated to executing clients’ requests. These threads
listen to messages sent by the front-end, and dispatch them
to their respective message handlers that will then execute
in individual threads. The other family of threads is re-
sponsible for the continuous execution of the marketplace
itself. These threads are controlled by a concurrent agent
scheduling process that assigns a fair amount of processing
time to each agent.

The item hot-spot is the most important one, and should
be instantiated easily. The solution adopted to implement
it was based on meta-object protocols (MOPs) [Kiczales
1991]. MOPs allow meta-level concepts to be dynamically
defined in terms of base-level ones. Thus, the use of MOPs
is a good alternative for modeling variation points that re-
quire runtime instantiation.

In this example, a MOP was developed to allow the
runtime definition of new items. This solution is shown in
figure 5, in which one Item is defined as a list of MetaItem
objects.

To enhance the instantiation of this hot-spot, an extra

Figure 5. Item MOP.

tool has been defined. It parses an XML description of
the new instances and generates the HTML files that will
interface with the end user and creates the new items using
the MOP methods. Figure 6 illustrates the DTD used to
instantiate the items.

The other two hot-spots have been modeled through the
Strategy and State design patterns [Gamma et al. 1995],
as shown in figure 7. New negotiation strategies and the
protocol methods are defined in subclasses of Strategy, and
State, respectively. The {incomplete, restricted} keywords,
defined in [Fontoura 1999], indicate the places where new
subclasses need to be added, in order complete the instan-
tiation.



50 P.S. Ripper et al. / V-Market: A framework for agent e-commerce systems

Figure 6. Item DTD.

Figure 7. Using Strategy and State to implement hot-spots.

4.3. Other architectural issues

Although the hot-spots described above are the most im-
portant points to be addressed by the framework, and are
the essence of its flexibility, there are still some other issues
that had to be addressed in the current V-Market implemen-
tation:

Persistence and scalability. The current implementation
of Kasbah supports a very limited number of agents (no
more than 1000). This limitation is due, mainly, to the fact
that the system is completely centralized, and all agents in-
teract with each other. Even agents that deal with distinct
items interact with each other, making agent scheduling a
process of complexity O(n2), where n is the number of
agents in the marketplace, take, in this way, an enormous
amount of time to process the entire marketplace. Also,
the current database structure requires that, for each trans-

action, the whole database must be locked, creating a big
bottleneck into the system. These are serious issues that
were addressed by V-Market, by having a better structuring
of the executing threads, and of the database schema used.

Support for logging mechanisms. One of the main pur-
poses of this framework is to facilitate the process of cre-
ating application based on virtual marketplaces, as well as
to make these applications more flexible. But the ultimate
goal is to provide a tool that allows researchers to focus
on the higher level aspects of agent mediation. Thus, it is
fundamental that the applications created by this framework
have its execution tracked very closely, so that a detailed
analysis of execution can be made, and conclusions can be
taken about different agent mediation roles. For this pur-
pose, V-Market supports many types of data logging, such
as the number of agents, at any given time, strategies used



P.S. Ripper et al. / V-Market: A framework for agent e-commerce systems 51

by any given agent, and number of transactions closed by
each agent.

Support for reputation mechanisms. Reputation is one of
the biggest issues in e-commerce, and it becomes even a
bigger issue when we are dealing with virtual marketplaces,
in which every user is a potential seller or buyer of goods.
There are many ways of implementing these mechanisms,
and much research is going on right now on this subject.
Most of the proposed solutions use some sort of reputa-
tion rating associated with each user of the virtual mar-
ketplace. These ratings are normally calculated based on
his/her transaction history. Examples of these systems are
Media Lab’s Histos and Ebay proprietary reputation mech-
anism [Ebay Inc. 1995].

Hence, it is important for this framework to be flexible
enough to be extended by such systems, once they become
available. This was accomplished by leaving placeholders
to extend user components with extra information about
their reputation, and giving agents the ability to access part
of this information, when making negotiation decisions.

Support for user profiling. One of the main strengths of
software agents is their customization capability. Soft-
ware agents should change their behavior depending on
user preferences. In this way, many agent-based sys-
tems capture some user preference, and create user pro-
files based on them. Agents should use this information
to customize themselves, and better serve their users. Al-
though V-Market currently does not directly implement any
user profiling facilities, the “user” component was designed
with these capabilities in mind, allowing future extensions,
or integration with third parties with user profiling systems,
such as the Firefly’s passport [Finin et al. 1997].

User interface (UI) independence. Both Kasbah [Chavez
and Maes 1996] and T@T [Tete-a-Tete 1997] are divided
into two main sub-systems: one back-end, in which the
virtual marketplace resides and the agents execute, and one
front-end, which is responsible for the user interface por-
tion.

In Kasbah, the front-end is basically a set of CGI files
responsible for dynamically generating HTML pages where
most of the input and output of the system takes place.
Unfortunately, there is still code responsible for the UI in
the back-end, making the system’s UI highly coupled with
the back-end. Also, all the pages are completely hard-
coded, and generated by C code, making it very hard to
update any page look-and-feel. T@T, on the other hand,
has an applet-based UI.

Analyzing these two systems, it became clear that our
proposed V-Market framework should make a clear distinc-
tion between the UI components and the rest of the system.
The UI portion should reside exclusively in a front-end
subsystem (be it HTML, pager, email, or applet-based),
leaving all the others virtual marketplace components on
the back-end subsystem, which makes it easier to change

Figure 8. V-Market CD instance.

the UI components technology being used independently
of the back-end subsystem. This type of flexibility allows
the system to have more than one interface, such as a pager
interface for monitoring agent performance, and a more de-
tailed HTML interface to change agent control parameters.

The proposed solution for this problem was based,
mainly, on two common design patterns normally used
in these situations: Observer and Facade [Gamma et al.
1995], which were used to minimize the coupling between
the front-end and back-end, define a strong interface for
accessing the back-end functionality.

5. Conclusions and future work

This paper described the principles underlying V-Market,
as well as the problems and flexibility requirements ad-
dressed by the V-Market framework. The architecture
and implementation solutions adopted were also described.
We have used the design solution proposed in [Fontoura
1999] to assist the explicit definition of the framework hot-
spots. A more complete description of V-Market architec-
ture, as well as the implementation approaches chosen, can
be found in Ripper’s [1999] M.Sc. Thesis.

Currently, we are evaluating V-Market by testing two
framework instances: Books and CDs marketplaces (fig-
ure 8). Through this experience, we want to test the frame-
work usability and performance restrictions. We are now
planning to extend the system to allow mobile agents, and
to allow the easy incorporation of new front-end architec-
tures, such as pagers and smart cards. We believe that
V-Market is a powerful experimentation and research tool,
which allows the fast development of new robust market-
place applications in a fairly simple way.



52 P.S. Ripper et al. / V-Market: A framework for agent e-commerce systems

References

Bradshaw, J. (1997), Software Agents, The MIT Press, Cambridge, MA.
Chavez, A., D. Dreilinger, R. Guttman, and P. Maes (1997a), “A Real-

Life Experiment in Creating an Agent Marketplace,” In Proceedings
of the Second International Conference on the Practical Application of
Intelligent Agents and Multi-Agent Technology (PAAM ’97), London,
UK.

Chavez, A., A. Moukas and P. Maes (1997b), “Challenger: A Multi-
agent System for Distributed Resource Allocation: A Closed CPU-
Time Market,” In Proceedings of the International Conference on Au-
tonomous Agents, Marina Del Ray, California, ACM Press.

Chavez, A. and P. Maes (1996), “Kasbah: An Agent Marketplace for Buy-
ing and Selling Goods.” In Proceedings of the First International Con-
ference on the Practical Application of Intelligent Agents and Multi-
Agent Technology (PAAM ’96), London, UK.

Chislenko, A. (1998), “Hypereconomy,” Dow Jones’ Markets Magazine,
April.

Ebay Inc. (1995), “Personal Online Trading Community,”
http://www.ebay.com.

Finin, T., Y. Labrou, and J. Mayfield (1997), “KQML as an Agent Com-
munication Language,” In Software Agents, ed. J. Bradshaw, The MIT
Press, Cambridge, MA.

Firefly Inc. (1996), “Firefly Network Inc.,”
http://www.firefly.com.

Fontoura, M. (1999), “A Systematic Approach for Framework Develop-
ment,” Ph.D. Dissertation, Computer Science Department, Pontifical
Catholic University of Rio de Janeiro (PUC-Rio), Brazil.

Gamma, E., R. Helm, R.E. Johnson, and J. Vlissides (1995), Design
Patterns, Elements of Reusable Object-Oriented Software, Addison-
Wesley, Reading, MA.

Goldfarb, C. and P. Prescod (1998), The XML Handbook, Prentice-Hall.
Gruber, T. (1992), “Ontolingua: A Mechanism to Support Portable Ontolo-

gies,” Technical Report KSL-91-66, Knowledge Systems Laboratory,
Stanford University, CA.

Guttman, R. and P. Maes (1998a), “Cooperative vs. Competitive Multi-
Agent Negotiations in Retail Electronic Commerce,” In Proceedings of
the Second International Workshop on Cooperative Information Agents

(CIA ’98), Paris, France.
Guttman, R. and P. Maes (1998b), “Agent-mediated Integrative Negotia-

tion for Retail Electronic Commerce,” In Proceedings of the Workshop
on Agent Mediated Electronic Trading (AMET ’98).

Guttman, R., P. Maes, A. Chavez, and D. Dreilinger (1997), “Results from
a Multi-Agent Electronic Marketplace Experiment,” In Proceedings of
Modeling Autonomous Agents in a Multi-Agent World (MAAMAW ’97),
Ronneby, Sweden.

Guttman, R., A. Moukas, and P. Maes (1998), “Agent-mediated Electronic
Commerce: A Survey,” Knowledge Engineering Review.

Kiczales, G., J. des Rivieres, and D. Bobrow (1991), The Art of Meta-
object Protocol, The MIT Press, Cambridge, MA.

Leebaert, D. (1998), The Future of the Electronic Marketplace, The MIT
Press, Cambridge, MA.

Media Lab Software Agents Group (1996), “AmEC Infrastructure
Project,”
http://ecommerce.media.mit.edu/Infrastructure/
infra.html.

Moukas, A., R. Guttman, and P. Maes (1998), “Agent-mediated Electronic
Commerce: An MIT Media Laboratory Perspective,” In Proceedings
of the First International Conference on Electronic Commerce (ICEC
’98), Seoul, Korea.

Personalogic (1997), “Personalogic,”
http://www.personalogic.com.

Pree, W. (1995), Design Patterns for Object-Oriented Software Develop-
ment, Addison-Wesley, Reading, MA.

Ripper, P. (1999), “V-Market: A Framework for Agent Mediated E-
Commerce Systems based on Virtual Marketplaces,” MS Thesis, Com-
puter Science Department, PUC-Rio, Brazil.

Rogers, D. (1997), Inside COM: Microsoft’s Component Object Model,
Microsoft Press.

Terpsidis, J., A. Moukas, B. Pergioudakis, G. Doukidis, and P. Maes
(1997), “The Potential of Electronic Commerce in Re-engineering
Consumer-Retailer Relationships,” In Proceedings of the European
Conference on MM & E-Commerce, Florence, Italy.

Tete-a-Tete (1997), “Fixing Online Shopping,”
http://ecommerce.media.mit.edu/Tete-a-Tete/.


