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XOCOMM is a communication infrastructure for web applications based on the HTTP protocol. It provides an HTTP server
and client access. Furthermore it is the basic communication service for the ACTIWEB web object and mobile code system. The
HTTP server component of XOCOMM is used to implement ACTIWEB places. The places use the HTTP client access to provide
the communication means for their agents. We present the design and architecture of XOCOMM on several crucial excerpts of the
design. These are closely related to their implementation in the object-oriented scripting language XOTCL. We discuss how a dy-
namic and reflective environment, high-level language constructs, and concepts like design patterns influence the design and architec-
ture.

1. Introduction

In the current practice the WWW is mostly used by ex-
changing HTML pages and associated files with the HTTP
protocol and by displaying them in a web browser. This
simple principle has provided a dominating position for
internet-based information systems. Reasons are, that hu-
man beings can understand the presented information di-
rectly, that new information can be provided easily and
that information pieces are easily connectable through links.
But this simple architecture has several drawbacks for in-
formation system development: it lacks support for inter-
active or collaborative multi-user applications and is not
really capable to exploit the benefits of distributed applica-
tions.

Two forms of interaction are usually used to meet such
application’s interaction requirements: Server-side (like the
CGI interface, servlets) and client-side execution (like Java
applets, scripts in diverse scripting languages). Both ap-
proaches lack the ability to exchange information directly,
which may be gained through middleware approaches, like
CORBA or Java RMI. This paper presents a simple and
intuitive communication infrastructure, which achieves the
benefits of today’s web usage forms, does neither suffer
from the stated problems nor from the complexity of mid-
dleware systems, and is based on the native means of the
web.

Distribution can be achieved through remote procedure
call (RPC) or remote programming (RP) [White 1995].
RPC implements distribution by calling procedures on a
remote computer. Approaches, like CORBA or Java RMI,
call methods of distributed objects instead of procedures,
but the general principle is the same. RP (or code mo-
bility) implements distribution via enabling not only to
call but also to provide the procedure executed on a re-

mote computer. RP’s benefits are a higher performance,
because of local execution of computations, and a higher
configurability, flexibility and extensibility [Fuggetta et al.
1998], since the providing of code enables configuration
of the server with behavior instead of just procedure argu-
ments.

This paper describes the XOCOMM communication in-
frastructure and we will present its design and architec-
ture. Our design decisions base on the assumption that the
implementation is done in a dynamic and reflective envi-
ronment. We will describe how this assumption influences
the resulting object-oriented framework, the used design
patterns, and the component concept. We will discuss var-
ious excerpts, which we consider as crucial spots for ex-
tensibility in detail. Finally we summarize the results in
section 6.

2. Concepts and basic architecture

In this section we discuss the underlying concepts of
the design and the implementation. We emphasize benefits
of object-orientation in the design of complex systems and
discuss certain liabilities. We afterwards present some so-
lutions in the concepts of the language XOTCL [Neumann
and Zdun 2000b], which was used for implementation of
XOCOMM. Further concepts, like pattern-based design, are
sketched afterwards. Finally the base-line architecture of
ACTIWEB is presented as a general application of XOCOMM,
imposing several functional requirements, like support for
local invocations, remote invocations via RPC, and migra-
tion/cloning via RP. We will present an infrastructure en-
abling flexible extension with such/other technologies and
their requirements.
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2.1. Object-orientation and its problems

Object-orientation is based on principles of information
hiding and abstraction through encapsulation/specialization
through inheritance. These principles mean a significant
step towards reduction of complexity of software architec-
tures. Object-orientation helps to decompose complex ap-
plications into manageable conceptual entities of the mod-
eled world (objects of certain types). Objects are character-
ized through their behavior, but are structured around the
data (i.e., their state). Design and implementation tech-
niques derived from this simple, but powerful, concept
should enable the minimization of development times, ease
software maintenance, encourage and ease software reuse,
and help to solve several other general problems. But many
approaches have certain obstacles and limitations.

E.g., Hatton [1998] points out that non-localities, as
in the inheritance-/polymorphism-model in languages, like
C++, do not match current models of the human brain very
well. Non-localities break up the advantages of encapsu-
lation that enables us to develop and study an object in
isolation. Because of sole manipulation in the short term
memory, the objects become easier understandable. Non-
localities enforce manipulation in the long-term memory,
making it more difficult to gain an overview and insight
into a software architecture. In [Neumann and Zdun 1999b]
we point out that language constructs on a high abstrac-
tion level and a unique string interface, instead of poly-
morphism, do avoid several such problems.

Most object-oriented languages and design approaches
focus on single classes, which are able to describe the prop-
erties and the behavior of their instances in detail, but they
normally do not entail powerful features to express how
objects and classes are composed. Reflective techniques
and a dynamic object/class system allow the objects and
classes to flexibly adapt their interfaces to different clients·
requirements. An elementary approach to implement such
techniques are meta-object protocols, as in [Kiczales et al.
1991]. They divide a system into a base-level and a meta-
level for controlling the object-/class-system.

We propose the usage of higher-level constructs (such as
design patterns) in the design and implementation of com-
plex systems, which define the inter-relationships of com-
ponents in order to provide an architectural view of the sys-
tem. The programming language XOTCL provides language
support for such higher-level constructs. Note, that we pro-
pose to use these constructs in the first design steps, even
if there is no explicit language support for these constructs
in the implementation language available. We emphasize
that the architectural aspects should be explicit entities of
the design language, since the used notation determines the
expressibility of the language.

In a second step the design can be refined to a design
implementable in the targeted language. Furthermore, often
more high-level solutions can be brought into programming
languages by hand, e.g., by enhancing the C language with a
library that implements object-oriented concepts. Therefore

we will use the language XOTCL in this paper rather as a
design language than as an implementation language.

2.2. Pattern-based design

Complexity of software systems often makes the de-
sign decisions difficult. The main intent of design pat-
terns [Gamma et al. 1995] is to preserve good design
ideas. Object-oriented software design patterns describe sit-
uations in which several classes cooperate on a certain prob-
lem [Soukup 1995]. The concrete structure (as in an exam-
ple implementation or in OMT diagrams) is not the main
contribution of a pattern. In contrast, we think, patterns are
mainly characterized by their intent, the forces/motivations
of the design decision and the benefits/liabilities of the so-
lution. A pattern cannot be reduced to a (reusable) structure
that can be customized solely through parameterization, be-
cause it has to fit into its context (design/implementation
language, application domain, related patterns in the pattern
language, etc.).

Since every context is different, making a pattern fit into
a context takes hand-crafting in order to find the best pos-
sible design solution in the context. Several instantiations
of one and the same pattern have (from a structural point
of view) only their parts and their relationships at a fairly
abstract level in common. Any sensible application of the
pattern idea requires to customize the pattern to its con-
text. Pattern implementations as in [Buschmann et al. 1996;
Gamma et al. 1995] often suffer from problems due to the
targeted language [Bosch 1998; Soukup 1995]. It is de-
sirable to find pattern variants in other environments, that
implement the pattern in a better way or even language sup-
port it. By language support we mean to program a com-
mon implementation of a pattern variant once and reuse it
later by adapting the pattern to the new context. Common
problems in pattern implementation are the traceability of
the pattern [Soukup 1995], the reusability of a pattern im-
plementation [Bosch 1998], the implementation overhead
of trivial methods in several patterns [Bosch 1998], and the
self-problem [Lieberman 1986], which denotes the loss of
the self-reference when a message is forwarded to another
object. Pattern-parts resemble roles (as in [Kristensen and
Østerbye 1996]) rather than classes. Roles can be flexibly
attached/detached to a single object. One and the same
object can play a pattern role in several different patterns.
In [Neumann and Zdun 1999b, c] we present the language
constructs filter and per-object mixins (see section 2.3) for
implementation of pattern-roles on the class- and on the
object-level.

2.3. The object-oriented scripting language extended
object TCL (XOTCL)

The underlying language of our design is XOTCL [Neu-
mann and Zdun 2000b] (pronounced exotickle), which is a
value-added replacement of OTCL [Wetherall and Lindblad
1995]. In this section we describe its concepts briefly, be-
cause we consider them also as usable conceptual constructs
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(used at least in the first design phases, but in the ideal
case throughout design and implementation). Both XOTCL

and OTCL are object-oriented flavors of the scripting lan-
guage TCL (Tool Command Language [Ousterhout 1990)].
TCL offers a dynamic type system with automatic conver-
sion, is extensible through components, and is equipped
with read/write introspection. These functionalities ease
the glueing process in a component framework.

In XOTCL every object is associated with a class over the
class relationship. A class is a special object providing
methods to create and destroy instances, and a repository of
methods for its instances. Furthermore, a class provides a
superclass relationship that supports single and multiple
inheritance. All inter-object and inter-class relationships are
fully dynamic and can be changed at arbitrary times. Since
a class is a special (managing) kind of object it is managed
itself by a special class called “meta-class”. The XOTCL

extensions focus on management of complexity/adaptability
in large object-oriented systems:

• Dynamic Object Aggregations language-support the
part-of relationship [Neumann and Zdun 2000a].

• Nested Classes reduce the interference of independently
developed program structures.

• Assertions reduce the interface and the reliability prob-
lems caused by dynamic typing.

• Meta-Data enhance self-documentation of objects and
classes.

• Per-Object Mixins are classes that are dynamically at-
tached/detached object-specifically to an object. They
intercept every message to the object and can handle
the message before/after the original receiver. They are
ordered in a chain and inherit from super-classes [Neu-
mann and Zdun 1999a].

• Filters are special instance methods which are dynam-
ically registered/deregistered for a class C. Every time
an instance of C or of any of its sub-classes receives
a message, the filter is invoked automatically and inter-
cepts this message. They are also chained and inher-
ited [Neumann and Zdun 1999b].

Per-object mixins are a interception technique on the
object-level, filters are an interception technique adapting
all instances of a class hierarchy. In this paper we as-
sume that the environment contains high-level language
constructs of this/equal expression power (or that they are
extracted from the design in a second step). E.g., some lay-
ers in LayOM [Bosch 1998] are of comparable expressive-
ness as certain filter applications, while roles, as in [Kris-
tensen and Østerbye 1996], are comparable to per-object
mixins.

2.4. Component frameworks

Scripting languages, like TCL [Ousterhout 1990] dif-
fer significantly from so-called system programming lan-
guages [Ousterhout 1998], like C, C++ or Java, where the

whole system is developed in only one language. Scripting
languages follow an approach, which distinguishes two lev-
els: reusable components (written in various languages, like
C, TCL or XOTCL) and “glueing code” that combines com-
ponents in the scripting language to a “component frame-
work” [Ousterhout 1998].

We see a component as an entity, which provides ser-
vices to its clients and which makes them accessible through
the interfaces to the operations of the classes within the
component framework. A component uses eventually other
components to realize its services. Components are ordered
in a directed acyclic “uses”-graph. Components declare the
components that they use. Components are composable into
larger components. Such components are suitable to build
object-oriented structures on a level, that is higher than the
level of classes. So-called “legacy”-components can be in-
tegrated and can achieve an object-oriented representation,
e.g., using the wrapper facade pattern [Schmidt 1999], like
the C components of XOCOMM.

2.5. Base-line architecture of ACTIWEB

ACTIWEB is a mobile code and an active web object sys-
tem, which uses XOCOMM as its communication infrastruc-
ture. Basis for the architecture is XOTCL, which itself is a
TCL-compliant component written in C (see section 2.3). On
top of the XOTCL layer a set of basic services (also compo-
nents) are implemented. Generally compatible components
can be substituted, e.g., XOCOMM can be exchanged against
another HTTP implementation (or, e.g., through CORBA).
In figure 1 the base components are ordered in layers (as
in the layers architectural pattern [Buschmann et al. 1996])
that defines the usage relation without drawing the edges.
XOCOMM provides an object-oriented implementation of an
HTTP server and HTTP access. All communication in AC-
TIWEB relies on this service. Places, the basic execution en-
vironments of ACTIWEB, contain exactly one HTTP server
identified by host and port. ACTIWEB objects (e.g., agents)
have access to other (remote) ACTIWEB objects via HTTP
Access.

Figure 1. ACTIWEB: basic architecture.
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Figure 2. XOCOMM component architecture.

A metadata service provides an object-oriented imple-
mentation of an XML- (called XOXML) and a RDF-parser/-
interpreter (called XORDF). RDF-Metadata are used in AC-
TIWEB as a unique data representation. XOSTORE is a gen-
eral persistence service for XOTCL, which makes objects
and their data transparently persistent. A registry service
XOREG, enables registration of ACTIWEB objects, e.g., to find
an object through the specification of certain properties.
XOMOS uses these services to implement a mobile object
system. XOAWO makes web documents active objects (and
programmable) and it gives agents various web represen-
tations, like HTML. On top, an application layer uses the
whole system. This paper focuses on XOCOMM, but we use
ACTIWEB to show the connection of XOCOMM with other
components. The sub-components of XOCOMM are depicted
in figure 2 and described in the later sections.

3. HTTP access

The Access class provides client-side communication
access. The class defines some basic parameters, like the
blocking parameter which specifies whether a communi-
cation request is blocking or not. url specifies the used
URL. Its simplified class definition is:

Class Access -parameters {{blocking 0} url ...}

3.1. Request creation

In order to use the Access class, requests of various
types, e.g., Ftp, Http, Files, etc., have to be created. A cen-
tral place should control all creations, in order to easily
trace request creations and to keep overview of all the
various created requests (e.g., when a request is canceled,
all dependent sub-requests have to be canceled as well).
A factory method [Gamma et al. 1995] would serve these
purposes, by abstracting the creation process into a creat-
ing method, which is specialized in sub-classes to concrete
creation products.

But we have more requirements. A request cannot al-
ways be classified once and then remains unchanged. E.g.,
if the request is redirected to another server via HTTP redi-
rect, the request has to be classified again. In such a sce-

Figure 3. Class-object-specific factory method with re-classing from ac-
cess.

nario the factory method solution requires that a new re-
quest of the new type has to be created. Then the old
request object’s data has to be copied and it has to be de-
stroyed. In order to refer to the same entity of the real
world (one and the same request) two objects have to be
created. This is an inconsistency to the object-oriented par-
adigm due to the fact that in non-dynamical class-systems
a dynamic change to the new request type is not possible.
Furthermore, with dynamic classes components, handling
additional request types, can be loaded on demand and new
types can be easily and flexibly added.

For these reasons and since we implemented the de-
sign in a dynamic and object-specific language we used
a class-object-specific factory method createRequest.
This method is an object-specific method of the Access

class-object. It initially creates a new request of the type
Access. Afterwards it calls the classify method, which
classifies the new request from Access to the proper sub-
type by re-classing (see figure 3). classify may be called
at arbitrary times again to re-class from the sub-type to an-
other sub-type, as in the HTTP redirect example, where an
HTTP request might be re-classed to FTP. Here, we adapted
the idea of a factory method to the context of a dynamic
language and to the application of request creation. An ex-
ample of an access creation creates a new HTTP request,
and informs the actual object (denoted by self):

Access createRequest \
-url http://www.somehost.com \
-informObject [self]

3.2. Flyweights for request/connection sharing

The reuse and sharing of resources is an important as-
pect of an efficient implementation, what is also the intent
the flyweight pattern [Gamma et al. 1995], where a pool of
created resources is kept for later reuse. The pool can be
changed dynamically at runtime. The reuse can be achieved
by a centralized creation method that checks this pool be-
fore every creation.
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Figure 4. Callback interface and reactive event handling.

One application of this pattern in XOCOMM is request
joining. Often an HTML page contains several references,
for example, to the same bullet image. For these images
the HTML parser triggers multiple requests to the same
resource. It is preferable to trigger only one request and to
provide a mechanism for subsequent requests to participate
from the results of this single transfer. All running requests
are stored in a pool of requests, which is checked for a
specified URL before creation. If a request for the same
resource is running and joining is activated, the creation
method returns the already running request. Otherwise a
new request is created and returned. After the request has
finished it is removed from the pool.

Another similar application of flyweights is the im-
plementation of persistent connections, as defined in
HTTP/1.1. A single connection to a host is shared by mul-
tiple requests. The HTTP commands are pipelined on this
connection. A pool of open connections is maintained. The
connections are held open until a timeout expires (or a
server requests to close the connection explicitly). After
closing, the connection leaves the flyweight pool. A third
example is the request re-classing (as in the previous sec-
tion), if it re-classes a request to a file request for the local
cache, which forms also a pool of reusable requests.

3.3. Access callback interface

Using the informObjects method a client can specify
a set of objects which are dependend of state changes of
a specific request. A callback interface is implemented as
an observer pattern [Gamma et al. 1995], where clients
(observers) are notified using the push model [Buschmann
et al. 1996] with five different types of notification. The
request objects (subjects) store a list of references to their
observers, specified through informObjects. The state
changes are induced by corresponding network events.

A central method doCallbacks is called every time
a network event occurs with the proper callback message
as argument. The method forms a central hook for spe-
cializing callback invocations (as notify in the observer
of [Gamma et al. 1995]). Every object of class Access in-
forms the (possibly empty) list of informObjects during
its lifecycle with the following abstract callback interface:

AccessCB abstract instproc startCb request
# Triggered when the request is created
# and its name is determined.

AccessCB abstract instproc notifyCb request
# Triggered when the content type of data
# is determined.

AccessCB abstract instproc incCb request
# Triggered when new data is available
# incrementally.

AccessCB abstract instproc endCb request
# Triggered when the request has ended
# successfully.

AccessCB abstract instproc cancelCb request
# Triggered when the request has ended
# not successfully.

Figure 4 shows the callback-based design. Access ob-
jects (the subjects) can be attached/detached by inform-

Objects. The concrete subjects of the observer are the
various specialized access types (see section 3.4), in the
figure: HTTP. All observers must implement the AccessCB
interface, like the sinks in section 3.6.

This special observer variant, that is able to handle vari-
ous different (synchronized) event types, is also a client side
variant of the reactor pattern [Schmidt et al. 2000]. The
callbacks are event handlers that handle events by utiliz-
ing the synchronous event demultiplexing of the TCL event
system. The Access class has the role of a reactor that
dispatches events to the responsible handler.

The Connection class wraps the TCL commands for
event handling and opening/closing of a socket connection.
On the client side it is a connector in an acceptor/connector
pattern [Schmidt et al. 2000], that creates a request on a
specified port. The class is a wrapper facade [Schmidt
1999] that gives the TCL commands a consistent object-
oriented interface. The connection itself is observed by the
Access classes in a second observer pattern.

3.4. Special access types

The access classes provide communication access for
several web-based applications, like the ACTIWEB system
and the extensible web browser Cineast [Köppen et al.
1997]. Several different types of access are necessary to
satisfy these applications’ communication needs. All sub-
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Table 1
The interface of the HTTP class.

method Specifies the HTTP method, like GET, PUT, POST, which is used.
httpVersion Specifies the HTTP version, which is used for a request. Default is 1.1.
contentType Specifies the MIME type of the content of the sent data.
data Specifies the data for PUT.

Figure 5. Access class hierarchy.

classes of the Access class, to which the requests are flex-
ibly classed (as described in section 3.1) are presented in
figure 5.

A file access class is base class for all forms of access
to the local disk. A request is classed to its sub-class File
if the specified URL starts with file://. CacheAccess

is used, if the caching is turned on and a URL is vali-
dated by the persistent cache. For revisitation of an URL
(e.g., using the back button of the browser) the ReAccess

class is used. The class NetAccess is base class for vari-
ous net accesses. Its sub-class Http implements the client
side of HTTP/1.0 or /1.1 (see section 3.5). A sub-class
Https implements a secure HTTP Access. It encapsulates
a C component with object-oriented methods for a secure
socket layer (SSL), which is a shared library and is dynam-
ically loaded on demand. All these classes are part of the
Access component. There are four components which im-
plement further Access sub-classes. The Dav component
implements a distributed authoring and versioning protocol
(WebDav). The Ftp component implements the file trans-
fer protocol. The Imap component implements the IMAP
protocol for access to mail servers. The Ldap component
implements the LDAP protocol for accessing online direc-
tory services.

3.5. HTTP access type

The Http class implements the client side of the HTTP
protocol. The additional interface parameter methods for
creating requests of HTTP type are summarized in table 1.
The different HTTP methods are handled by same-named
operations of the Http class, like GET, POST, PUT, HEAD,
etc. All these HTTP method handlers call a central (hook)
operation open which is responsible for establishing a con-
nection. Additions, like proxy filters or SSL hooks, can
easily be placed into this method without a necessity to
change all HTTP method handlers. The HTTP method
handlers form templates for the algorithm how they invoke

Figure 6. States changes of event processing.

open. The open operation is a standard implementation,
which can be extended in a sub-class or through an inter-
ceptor, like filters or per-object mixins. The HTTP method
handlers can be seen as template methods [Gamma et al.
1995] calling a standard implementation per default (hook
operation in [Gamma et al. 1995]) making both operations
exchangeable and extensible.

The process of handling a request is not handled by the
open method alone. For non-blocking requests, different
event handlers must be registered to handle the incoming
data accordingly. These event handler methods are called
repetitiously until the state of the request changes. Then
the next event handler is registered using event method
of the Connection class. This event processing (see fig-
ure 6) is started in the open method, which succeeds in
a writable connection. First the HTTP server is asked
if it accepts the connection. If no error occurs the next
readable event triggers that the start of the header is
checked by headerStart. Afterwards the header method
determines the next actions according to the header content.
E.g., if the transfer is encoded a handling for decoding is
initiated. Normally the next readable event is the method
readData which reads the data until it can finish the con-
nection.

3.6. Sinks

In order to receive data from requests generated by the
Access class, clients must implement the AccessCB in-
terface. In several situations a general means to receive
a data-stream incrementally is needed. In order to make
data-stream handling flexibly extensible and changeable, we
derive a general sink class from AccessCB. Sink objects
decouple the data-stream handling from the requests.

The whole-part pattern [Buschmann et al. 1996] is a spe-
cial form of aggregation, where clients see the aggregating
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Figure 7. Sink classes.

Figure 8. Re-classing of a file sink to a shadow file sink.

object (the “whole”) as an opaque object. The aggregated
parts are of arbitrary type and are only accessed through the
whole. In XOTCL the whole-part pattern is language sup-
ported through dynamic object aggregations [Neumann and
Zdun 2000a]. The presented sinks are aggregated by their
Access object and are only accessed through the Access

object. They are parts in a whole-part pattern. We extend
the general sink with several different sinks for special data-
stream handling as in figure 7.

The MemorySink just writes every incoming data into
the memory. The FileSink lets the client specify a file
name and if the file name is specified the data is written
into that file. If the sink learns after its instantiation, that
the client has not provided a filename, it must change its
behavior completely. Again, this is a case for dynamic class
relationship. If the first data arrives and the file name is
absent, the instance cannot act as a file sink and changes its
type to ShadowFileSink. This class lets the sink act as a
proxy [Gamma et al. 1995] that delegates its work to some
other file sink (see figure 8). Note, that in contrast to a role,
which adds additional extrinsic properties to an object, this
change affects the intrinsic properties of the object. Re-
classing is used to express these new intrinsic properties.
A special file sink is the CacheFileSink which makes an
entry in the persistent cache entry (for some of its metadata
such as the content type, modification date, etc) in addition
to the writing of the file.

The TimeSink class measures time periods of receiv-
ing data for a particular sink. It is a so-called supple-
mental class (see [Neumann and Zdun 1999a]) which can
be added to every sink class. A delegation to a timer
would not represent the timed sink as one entity of the

Figure 9. Time sink as mixin.

design/implementation. (Multiple) inheritance requires to
derive a set of unnecessary intersection classes, one for
each combination of a sink with the supplemental class
TimeSink and makes dynamical adding/removing of tim-
ing hard to accomplish.

A design using per-object mixins is a better solution. It
adds timing like a role or extrinsic property of the sink
object, does entail decomposition into classes, but does
not split the conceptual entity into two objects of the de-
sign/implementation. We use a per-object decorator pat-
tern [Neumann and Zdun 1999c], since the time sink dec-
orates other sinks with timing. In the usual case sinks are
instantiated and if needed the instances get the per-object
mixin TimeSink dynamically attached/dettached to obtain
timed sinks. E.g., a MemorySink instance sink1 acquires
the timing property after creation (see figure 9):

MemorySink sink1 -mixin TimeSink

4. HTTP server

In this section we describe the extensible design of an
HTTP/1.1 compliant HTTP server in the Httpd class. The
class has a set of parameters, like port, root directory,
and logging directory. Furthermore a name of a class can
be specified which is an HTTP worker. Essentially, the
class Httpd configures the server instance and listens on
the specified port, while the worker instances handle the
incoming requests in an asynchronous fashion. The con-
structor of Httpd creates the socket an starts logging, while
the destructor destroy stops listening, destroys the socket
and terminates logging.

Class Httpd -parameters {{port 80} root /}
{logdir ∼/.log} {httpdWrk Httpd::Wrk}}

Httpd instproc init args {...}
Httpd instproc destroy args {...}
Httpd instproc accept {socket ipaddr port} {...}

The HTTP server provides the client with a MIME con-
tent type of resources, which it has to be guessed from
several indicators (such as file extensions) of the files in its
document pool. A class MimeTypes of the Mime com-
ponent handles this task. In order to allow clients to
customize the mime type guessing transparently, we can
define a per-object decorator [Neumann and Zdun 1999c]
MimeTypeLoaderwhich reads in a user-defined customiza-
tion file:

MimeTypes Mime -mixin MimeTypeLoader
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Figure 10. HTTP worker.

4.1. Accepting connections

The method accept accepts a new connection and sets
up a new worker. It instantiates a worker with an auto-
matically generated name as aggregate of the server object.
This worker object is of the class specified by the refer-
ence stored in the parameter httpdWrk. By changing this
parameter, the worker of any connection can be changed
at runtime to another worker class. accept is a method
that constructs new worker objects, but it is extensible for
clients that can specify the used worker type.

The intent of this design is the same as in the fac-
tory method pattern [Gamma et al. 1995]. But the fac-
tory method achieves extensibility through sub-classing.
The used sub-class decides which class is implemented
and afterwards used. In languages in which classes are
also objects (and can be referenced), the solution of a
class-referencing factory method, where a parameter spec-
ifies the concrete product, which is instantiated, is a
superior variant of the pattern, because the sub-classes
are solely used to specify the concrete product type.
This means they are an unnecessary implementation over-
head.

4.2. HTTP worker

The necessary excerpt for the abstract worker interface
to respond to HTTP requests is the following:

Class Worker
Worker abstract instproc header {}
Worker abstract instproc receive-body {}
Worker abstract instproc respond {}
Worker abstract instproc respond-GET {}
Worker abstract instproc respond-PUT {}
Worker abstract instproc respond-POST {}

header reads and evaluates the header. receive-body

reads and evaluates the body of a request. respond gen-
erally responds to a request. In the simplest implemen-
tation it just calls the proper respond method according
to the desired HTTP-method, i.e., GET, PUT, POST, etc.
method handling. An inner class of the class Httpd, called
Httpd::Wrk implements all these methods with a stan-
dard implementation according to HTTP/1.0 and /1.1 (see

figure 10). Socket, port and IP address are specifiable as
parameters.

Class Httpd::Wrk -parameters {socket port ip}

The workers are aggregated by the server using the
whole-part pattern [Buschmann et al. 1996]. They are event
handlers in a similar reactive event dispatching mechanism
as on the client side. Here, we also use a reactor [Schmidt
et al. 2000] to dispatch the connection events, but the
Connection class dispatches the events itself and calls the
appropriate handler. Since the connection awaits incoming
requests on the server side, the connection gets the addi-
tional role of being an acceptor in an acceptor/connector
pattern [Schmidt et al. 2000], that listens on the port and
establishes a socket connection for incoming requests.

4.3. Access control and authentication

The definition of HTTP/1.1 [Fielding et al. 1999]
contains some means for access control of web pages,
called basic authentication scheme. This simple challenge-
response authentication mechanism lets the server challenge
a client request and clients can provide authentication in-
formation. When the client requests a protected resource
(without the necessary credentials) the server may respond
with a 401 (unauthorized) response containing the name of
a realm defining the users which are authorized to access it
with the specified method. The client queries the user for
his name and password. If it is provided, the client resub-
mits the request with the user name and password encoded
in the credentials (using the base64 encoding). The server
receives the request again, obtains the user name and pass-
word from the credentials, and compares it to the set of
user name and password pairs denoted by the realm. On
success the access to the resource is granted.

The basic authentication scheme is not considered to
be a secure method of user authentication, since the user
name and password are passed over the network in an un-
encrypted form. Digest Access Authentication, defined in
RFC 2617 [Franks et al. 1999], provides another challenge-
response scheme, that does never send the password unen-
crypted, which is the most serious flaw of basic authenti-
cation. The following architecture for the presented server
enables usage of both schemes and is flexibly adaptable to
new schemes.
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Figure 11. Access control architecture.

The respond method of each worker should be (trans-
parently) enhanced with an access control decoration if
needed. Each decorator may be applied only once, but
several different kinds of decorators are composable, e.g.
some resources may be protected by basic and some by
digest access control at the same time. We implement the
decorators as per-object decorators (using per-object mix-
ins as in [Neumann and Zdun 1999c]). These are ordered
in a chain of responsibility [Gamma et al. 1995] on the
server and on the worker. The first decorator that matches
the resource is used. The standard respond method is
the fallback method when the resource is not protected.
Following the architecture of the Httpd class we distin-
guish between the extension of per-server concerns (such
as configuration of the Httpd instance) and of per-request
concerns (the workers). The per-server concerns of access
control are defined in the class AccessControl:
Class AccessControl
AccessControl abstract instproc \

protectedResource \
{fn method varAuthMethod varRealm}

AccessControl abstract instproc \
credentialsNotOk \
{credentials authMethod realm}

AccessControl abstract instproc addRealmFile \
{realm authFile}

AccessControl abstract instproc addRealmEntry \
{realm passwds}

AccessControl abstract instproc protectDir \
{realm path methods}

The various decorators, like BasicAccessControl,
are mixed-in and managed by the configuration part of
the server. The methods for defining the protected re-
sources and the realms are added to the interface (such
as protectedResource etc.).

The server instance maintains a list of extensions
workerMixins which is used to refer to the mixin-classes
for the worker which essentially overload the standard in-
stproc respond. When basic access control is configured
it registers its worker to the list of worker mixins.

Class BasicAccessControl -superclass AccessControl
BasicAccessControl instproc init args {

next
lappend [self]::workerMixins [self class]::Wrk

}

The instance method respond of the decorator-specific
worker intercepts the message and determines if the deco-
rator matches or not.

Class AccessControl::Wrk
Class BasicAccessControl -superclass AccessControl
BasicAccessControl instproc respond {} {...}

When the mixin intercepts the respond call it checks via the
instproc protectedResource whether it should check the
credentials. If these are not ok (checked by the method
credentialsNotOk), the reply code is set to 401 and
respond returns directly. Otherwise the next decorator is
checked, until the respond method of the worker is reached.

The worker mixins are registered automatically for each
incoming request in the class-referencing factory method
accept of Httpd. This central hook for creation has made
it easy to provide the additional functionality on all work-
ers dynamically and transparently. Both mixin types and
order are dynamically changeable (see figure 11). E.g., the
following protects the root dir of a server httpd1 with the
realm users.

Httpd httpd1 \
-mixin BasicAccessControl \
-addRealmEntry users {guest pw1} \
-protectDir users "" {}

Note that access control (and other extensions of the
server) are completely configurable. The basic server has
absolutely no knowledge about the extensions, the code is
not cluttered by any if-then-else or similar constructs that
check the existence of extensions. This improves readabil-
ity, locality and performance. Figure 11 shows the general
extension architecture for HTTP place/worker and how ac-
cess control is attached.

5. HTTP place

This section describes the architecture of the HTTP place
of ACTIWEB and how it uses the XOCOMM infrastructure.
A central property of places is that on every port on a
host no or exactly one place is located in order to give
places a unique identification through host and port num-
ber. In each ACTIWEB process exactly one place is running.
This constraint is ensured by a specializable singleton pat-
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tern [Gamma et al. 1995]. This pattern asserts that from a
class one or no instance is derived. It also provides a cen-
tral point to access this instance. In XOTCL the singleton
pattern is language supported.

Singleton Place -superclass Invoker

A place has also the role of a whole in a whole-part pat-
tern [Buschmann et al. 1996]. The place aggregates objects
for agent management, RDF creation, central registration,
error management, script creation, and persistence. Fur-
thermore the place aggregates an HTTP server, which gets
a nested class Place::HttpdWrk as its associated HTTP
Worker. This way the place can intercept all incoming
HTTP messages and redirect them as object-oriented calls.
In order to make object identification unique in the web, we
use the web standard URL to identify objects, which are
encoded/decoded using URL encoding, described in RFC
1738 [Berners-Lee et al. 1994], by a callCoder object
which is part of the place as well.

5.1. Invoker

The worker must transform HTTP messages into invo-
cations of object-oriented calls. Normally it delegates to
the place singleton in order to let the place do the actual
invocation. The place inherits from the abstract interface
AbstractInvoker through its super-class Invoker:

Class AbstractInvoker
AbstractInvoker abstract instproc invoke \
{obj method arguments}

AbstractInvoker abstract instproc eval \
{obj method arguments}

AbstractInvoker abstract instproc \
callError {msg obj args}

Class Invoker -superclass AbstractInvoker \
-parameters {{place [self]}}

The Invoker defines a default invocation behavior in
invoke (which especially checks if the object is exported
object of the place and if the object allows HTTP messages
to call the particular method). If the invocation is valid,
it is executed by eval, otherwise an error is created, us-
ing the aggregated error manager. Again the central point

of dispatch for invocations allows us to change invocation
processes easily.

Since places are singletons new places cannot be instan-
tiated just to provide a new invocation variant. But often
several variants have to exist in parallel. E.g., various user
interfaces require a proxy [Gamma et al. 1995] that del-
egates to the proper user interface, as explained in [Zdun
1999]. Another example is a secure invoker, which has only
to be used for calls from foreign networks. In such cases, a
direct instance of the special invoker class may be instan-
tiated and the place parameter (which is a self-reference
in the default case, that the Invoker is used as the place’s
super-class) can be set to the place singleton. Then this
new invoker object can be used for special invocations par-
allely to the place singleton. The additional invoker can
also be attached using the same extension scheme as for
access control (see figure 11).

5.2. HTTP worker of the place

The special HTTP worker of the place is a nested class,
defined inside of the place class. Its superclass is the worker
class defined inside of the Httpd class, because the worker
should act as a normal HTTP worker, except that it inter-
cepts all calls to the GET and the PUT method.

Class Place::HttpdWrk -superclass Httpd::Wrk
Place::HttpdWrk instproc parseParams \
{o m a call} {...}

Place::HttpdWrk instproc respond-GET {} {...}
Place::HttpdWrk instproc respond-PUT {} {...}

In the overloaded respond-GET method an RPC mech-
anism is implemented on top of the HTTP GET method.
parseParams determines if the call is a valid object-
oriented call and extracts the called object, method, and
arguments. The place singleton’s method invoke is called
with the extracted information and the invocations result is
sent back. The method respond-PUT functions quite sim-
ilar, but the HTTP PUT method is used to implement an
RP mechanism. Agents can be sent as PUT-data (encoded
in RDF) in order to migrate and clone themselves to other
places. The resulting architecture is presented in figure 12.

Figure 12. Connection to the place.
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6. Overall framework architecture

In the preceding sections we discussed a flexible, adap-
tive, and dynamic design and architecture of XOCOMM. We
have described (in many details) crucial part of the design
and have illustrated our particular solutions using the con-
cepts and techniques discussed in section 2. In this section
we try to bring the results together. Figure 13 combines the
various presented (base) classes to an static, architectural
overview.

XOCOMM is an object-oriented framework and was pre-
sented as a case study. We used many design patterns and
pattern variants (summarized in table 2 in order of appear-
ance) to explain our design decisions. Since XOCOMM is in
use and under development for a long time it was subject
to considerable evolution. New requirements, like chang-

ing web standards or the usage in ACTIWEB, are constantly
appearing. The design and the architecture have to cope
with these changes. Finding central places in the architec-
ture, where hooks for extensions may be flexibly and trans-
parently placed, is a central aspect of designing software
systems. The aim is to cope with changes even before one
can foresee them. One way to reach that aim is to centralize
parts of the architecture into hook methods or objects, that
are known from the experience as constantly changing, like
creation processes, event processing, or accesses to shared
resources.

Unfortunately one cannot predict all changing parts,
therefore, a division into stable and unstable parts of the
architecture can always be only preliminary. In order to
even cope with unexpected changes, reflection, dynamics,

Figure 13. Architecture overview.

Table 2
Overview of used patterns.

Pattern Pattern usage in XOCOMM/ACTIWEB

Wrapper facade [Schmidt 1999] Legacy integration.
Object wrapper for TCL socket/event handling.

Layers [Buschmann et al. 1996] Basic architectural structure.
Factory method [Gamma et al. 1995] Class-object-specific variant for request creation.

Class-referencing variant for HTTP worker creation.
Flyweight [Gamma et al. 1995] Sharing cached requests.

Request joining.
Persistent connections.

Observer [Gamma et al. 1995] Callback notification.
Connection observation.

Reactor [Schmidt et al. 2000] Dispatches client side request events.
Dispatches server side request events.

Acceptor/connector [Schmidt et al. 2000] Connection establishment.
Template method [Gamma et al. 1995] GET, PUT, . . . as templates for event processing invocation.
Per-object decorator [Neumann and Zdun 1999c] Addition of a time sink.

Mime type loading.
Decoration with access control.

Proxy [Gamma et al. 1995] Shadow file sink.
Additional invokers.

Whole-part [Buschmann et al. 1996] Access objects aggregate sinks.
Place aggregates HTTP server, agent management, etc.
Server aggregates workers.

Chain of responsibility [Gamma et al. 1995] Access controller chain.
Singleton [Gamma et al. 1995] Place as specializable singleton.
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and powerful means of adaptation (like filters or per-object
mixins) have proved to provide great benefits. Another
reason for adaptation facilities is software evolution trans-
parency, e.g., through automatically redirecting calls for
implementations of new client requirements to new com-
ponents.

Clients should not have to interfere with used (third-
party) components. Often when a new requirement, that is
a pure addition, is introduced, conventional designs would
place the addition in the extended class itself or would del-
egate to an object handling the addition. In both solutions
the extended class would have to be changed, in order to
bring in the new functionality. High-level language con-
struct and concepts for adaptations, let an object be (trans-
parently) enhanced with extensions, without interference
with (third-party) components. If a client is even not capa-
ble of changing a component to the requirements, client-
side adaptation is even more useful for easy component
combination.

Usage of open standards means to cope with the evo-
lution of open standards. An open standard lets software
systems cooperate with other systems compliant to the
standard. Open systems using a standard have to imple-
ment changes in the standard as soon as possible. ACTI-
WEB bases on open web standards, like HTTP as com-
munication protocol, URL encoding, URLs for distributed
object identification, XML/RDF for knowledge exchange.
A central reason for using web standards is to make ap-
plications heterogeneous. E.g., ACTIWEB can communicate
with any other system directly, that is written in a lan-
guage in which an HTTP access and/or server is imple-
mented.

Management of several versions of components in a
software system (or a whole product-line architecture) is
a complex and difficult task. Avoiding superfluous versions
eases software maintenance, i.e., through placing an addi-
tion in a dynamically addable/removable component rather
than producing one version with and one without the addi-
tion.

Our design was founded on the assumption that the
described high-level constructs/concepts are provided by
the targeted programming language. We have shown

that the concepts have a considerable impact on the de-
sign/architecture, but always a similar conventional imple-
mentation was at hand, which could be extracted from the
design (eventually even by tool support). Nevertheless, the
programming language and the design method should be
of comparable expression power and both should use the
most expressive means (instead of reducing programming
language and design method to their common denomina-
tor).

7. Performance

Efficiency was for long time an argument against lan-
guages with a dynamic type system. Nowadays CPUs
are fast enough to execute even complex applications with
sufficient speed [Ousterhout 1998]. We can confirm these
results with several applications, including our XOCOMM-
HTTP server. We compared in detail the XOCOMM-HTTP
server (OO scripting language, design pattern based imple-
mentation, single process) with Apache 1.3.6 (implemented
in C, architecture based on multiple worker processes). In
our benchmark configuration we tested the simultanoues
usage of the server by 1–20 client sessions. Each client
session was running either on a separate Intel PPro ma-
chine with 200 MHz and a 10 MBit Ethernet, or on the
same machine as the server (local client configuration). For
the server hardware we used machines with 100 MHz Eth-
ernet cards (one single processor Intel Celeron PC with
466 MHz, and one dual PPro machine with 200 MHz). The
operating system of all machines is Linux with a 2.2.5 ker-
nel. Each client session consists of 16 HTTP/1.0 GET re-
quests (6 × 0.5 KB, 7 × 5 KB, 1 × 50 KB, 1 × 500 KB,
1× 5 MB) and 60 HTTP/1.1 GET requests (10× 50 KB,
50× 5 KB), which totals to about 6.5 MB of data (verified
by the client).

Our results (figure 14) show that both the XOTCL web
server and Apache can easy saturate a 10 MB local network
on an off-the-shelf PC (466 MHz Celeron). The bottle-neck
in this configuration is the 10 Mb Ethernet (see left graphic),
the 20 clients transfer a total of ∼130 MB in ∼63 seconds

Figure 14. Comparison of the XOCOMM-HTTP Server vs. Apache 1.3.6.
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(20 × 76 = 1520 requests). The lines of both servers are
practically identical.1

The middle chart shows that on CPU of the slower
200 MHz PPro cannot fully saturate the 10 MB network,
and that the architecture of Apache with multiple worker
processes running on different CPUs leads to an perfor-
mance advantage of up to 30%. Note, that the total time of
the 20 clients is similar (∼65 seconds) to the single CPU
machine with the faster processor (bounded by the network
bandwidth).

The right chart shows the server comparison running in
a non-networked configuration, where clients and servers
are running on the same machine. Here we get the maxi-
mum inter-process communication bandwidth, and we ob-
tain more information about the speed penalty of the im-
plementation in the scripting language. We see in this
benchmark that typically the performance difference be-
tween Apache and the XOCOMM-HTTP server is in the range
of 5–20%.

8. Related work

WebBroker [Tigue and Lavinder 1998] also uses the
web standard HTTP for communication. It is, in contrast
to our approach, interface-based. Similar to CORBA, it
needs proxy (stub) and skeleton object in order to commu-
nicate (solely) through RPC, with all its disadvantages (see
section 1) in comparison with RP. The benefits of the ap-
proach are the unique addressing through URLs, the object-
orientation (with XML encoding), the simplicity in contrast
to approaches like CORBA, and the platform independence.
All these advantages are also valid for our approach.

WIDL [Wales 1999] is another approach using web stan-
dards for RPC communication. WIDL objects use XML for
data representation and can be accessed via URLs from any
platform with an HTTP implementation. Benefits, like effi-
ciency, language-/platform-independability, and the ability
to exchange arbitrarily complex data structures, are valid
for this (and our) approach. It cannot exploit the benefits
of RP.

ZOPE [Latteier 1999] is an object-oriented development
environment for web sites, based on the scripting language
Python. It also contains a web server and an object-oriented
data-base, like ACTIWEB. All mentioned approaches have
several similarities to ACTIWEB, but they lack components,
like a mobile code system, a registry, or a unique data
representation. In XOCOMM we provided many hooks to en-
able flexible adding of such components. The overall goal
is to provide an extensible infrastructure for one general
framework for the development of distributed, information-
oriented applications (as in [Kotz and Gray 1999]).

1 We verified these results with a different setup, where the 5 MB request
was removed and each client sessions transfers 75 requests instead (a
total of ∼1.5 MB of data). The performance difference in this setup
is again on average less the 4%. In total ∼30 MB are transfered by
the 20 clients in total in ∼ 16 seconds (20 × 76 = 1520 requests,
95 requests/sec).

Telescript [White 1995] is an object-oriented program-
ming language, which pioneers in the area of mobile code.
Several concepts, like agents and places are very similarly
used in our approach. D’Agent (formerly Agent TCL) [Gray
1996] is a mobile agent system, which supports several pro-
gramming languages, like TCL, Java, and Scheme. These,
and several other mobile code approaches, are not founded
on open web standards (and are therefore not an ideal ar-
chitecture for web applications).

In [Dömel 1996] agents produce HTML output through
a document generator and are therefore enabled for web
access. This approach only solves the partial problem of
web representations of agents. But interestingly, with Tele-
script mixins a micro-architectural approach, similar to per-
object mixins, is used to bring in the additional functional-
ity. In [Lingnau et al. 1995] an HTTP-based infrastructure
for mobile agents is described. It also consists of a special-
ized HTTP server and language-specific extensions (and
therefore also enables heterogeneity of the programming
language). It only concentrates on this partial problem of
a general communication infrastructure, but in this part the
results are similar to our work.

The reference architecture, described in [Ciancarini et al.
1998] also gains web access through special agents, trans-
lating application results to a web representation. The main
difference to our approach is that is uses a coordination
technology, here Pagespace, to manage interaction of (dis-
tributed) agents. Tuples are written into a coordination en-
vironment (tuple-space). This tuple-space can be read by
all participants. The tuple-space approach has the advan-
tage of heterogeneity as well, since it enables coordination
independent of the programming language. We tried to
build an architecture that does not impose the coordination
technologies, is open for several different technologies, and
achieves heterogeneity through web standards.

9. Conclusion

In this paper we have presented a general communica-
tion architecture as a case study for an extensible object-
oriented framework. We have discussed various excerpts
of the architecture which we consider as crucial spots for
extensibility in detail and explained the design decisions
on basis of the concrete domain problem (an HTTP ac-
cess/server). Our architecture is founded on usage of open
standards, on constructs and concepts, like design patterns,
extensibility hooks, components, etc., but also on the as-
sumption that a dynamic, reflective, and adaptive environ-
ment is available in design and implementation. The design
has used constructs and concepts of the language XOTCL,
though constructs of equal expression power could have
been used as well. For implementation in another lan-
guage, the design can be refined to a more complex de-
sign in a second step. On the example of the ACTIWEB

places we have shown how to connect other components,
that have requirements intruding into XOCOMM’s scope, to
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XOCOMM. Since XOCOMM has not changed in order to cope
with ACTIWEB’s additional requirements, we consider the
ease of the extensions, of connecting components, and of
adaptations as a proof for our opinion that the above de-
scribed constructs and concepts are good companions on
the way to more understandable and more extensible de-
signs and architectures. XOTCL and XOCOMM are available
from: http://nestroy.wi-inf.uni-essen.de/xotcl.
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