
World Wide Web 2 (1999) 209–218 209

A Web-based multi-agent system for interpreting medical images

Yi Shang and Hongchi Shi
Department of Computer Engineering and Computer Science, University of Missouri-Columbia, Columbia, MO 65211, USA

E-mail: {shangy,shih}@missouri.edu

A difficult problem in medical image interpretation is that for every image type such as x-ray and every body organ such as heart,
there exist specific solutions that do not allow for generalization. Just collecting all the specific solutions will not achieve the vision
of a computerized physician. To address this problem, we develop an intelligent agent approach based on the concept of active fusion
and agent-oriented programming. The advantage of agent-oriented programming is that it combines the benefits of object-oriented
programming and expert system. Following this approach, we develop a Web-based multi-agent system for interpreting medical images.
The system is composed of two major types of intelligent agents: radiologist agents and patient representative agents. A radiologist
agent decomposes the image interpretation task into smaller subtasks, uses multiple agents to solve the subtasks, and combines the
solutions to the subtasks intelligently to solve the image interpretation problem. A patient representative agent takes questions from the
user (usually a patient) through a Web-based interface, asks for multiple opinions from radiologist agents in interpreting a given set
of images, and then integrates the opinions for the user. In addition, a patient representative agent can answer questions based on the
information in a medical information database. To maximize the satisfaction that patients receive, the patient representative agents must
be as informative and timely as communicating with a human. With an efficient pseudo-natural language processing, a knowledge base
in XML, and user communication through Microsoft Agent, the patient representative agents can answer questions effectively.

1. Introduction

A multi-agent system consists of several interacting
agents. In a heterogeneous multi-agent system, agents
usually have different roles and work on different tasks.
Through communication, collaboration, and coordination
mechanisms, they jointly solve a complex problem.

Agent-based computing is a promising paradigm for in-
formation processing and software development. Intelligent
agents have been studied intensively in areas of computer
science and artificial intelligence, and are being applied
in a wide variety of applications ranging from small sys-
tems such as information filters to large, open, and com-
plex systems such as air traffic control [Bradshaw 1997;
Ferber 1999; Jennings and Wooldridge 1998; Nwana and
Azarmi 1997; Sycara et al. 1996; Weib and Sandip 1996].
In software development of complex systems, divide-and-
conquer is a commonly used approach, and modularity and
abstraction are powerful methods for reducing complex-
ity. Multi-agent systems represent a general framework for
modular design. Complex problems are decomposed into
smaller and simpler components that are handled by the cor-
responding software agents. Agents are specialized in terms
of their representation and problem solving techniques and
provide a useful abstraction in addressing different aspects
of the complex problem. Furthermore, interdependencies
between modular system components can be properly man-
aged through cooperation of agents. In this way, a complex
problem is solved by a society of cooperating, autonomous
problem solvers.

Agent technology is well suited to software development
of open and complex computing systems [Ferber 1999;
Sycara et al. 1996; Weib 1997]. In an open system, the

system structure changes dynamically. Its components may
be not known in advance, may change over time, and may
be implemented by different people using different software
tools and techniques. A well-known example of the open
system is the Web, which can be viewed as a large, dis-
tributed information resource. Through automatic negotia-
tion and cooperation between software agents, multi-agent
systems provide a promising approach to harnessing the
enormous resources on the Web.

In this paper, we present a Web-based multi-agent sys-
tem developed for interpreting medical images. One major
problem in medical image understanding is that for every
image type, such as x-ray or MRI, and for every body or-
gan, such as heart or brain, there exist specific solutions
that do not allow for generalization. Just collecting all the
specific solutions will not achieve the vision of a com-
puterized physician. The drawback of the traditional ap-
proach to medical image understanding is the mixing of
the knowledge necessary to solve a given problem with a
hard-coded implementation. Object oriented programming
allows separation of objects that interact in a certain im-
plementation, but the knowledge is encapsulated in each
object. Agent-oriented programming combines the benefits
of object-oriented programming and expert system [Shoham
1993].

In our Web-based multi-agent system, there are two ma-
jor types of intelligent agents: patient representative agents
and radiologist agents. The patient representative agent
performs two primary tasks: asking opinions about a med-
ical image from radiologist agents and querying a medical
information database. For a given medical image, a pa-
tient representative agent asks for multiple opinions from
radiologist agents that have previously registered with the

 Baltzer Science Publishers BV

210 Y. Shang, H. Shi / A Web-based multi-agent system for interpreting medical images

agent system facilitator. The integration of the opinions is
done by the patient representative agent or by the patient
himself. The radiologist agent decomposes the recognition
process into separate stages solved by multiple intelligent
sub-agents. These sub-agents coordinated by the radiol-
ogist agent interact with each other. The interaction be-
tween the radiologist agent and its sub-agents is based on
the concept of active fusion [Gonzales and Woods 1993;
Kopp-Borotschnig and Pinz 1996; Pinz et al. 1999; Prantl
et al. 1996]. The goals of the patient representative agents
include (a) understanding natural language, (b) learning on
their own by interacting with the radiologist agents, gath-
ering information, and creating their own knowledge base,
and (c) responding to patient inquiries in a way that the
customer will have little or no idea that they are not really
communicating to a real person.

In our preliminary implementation, the radiologist agents
have image processing and recognition knowledge, while
the patient representative agents have capabilities of pseudo-
natural language processing. The database of knowledge is
stored in XML, and the communication between the user
and the patient representative agents is through Microsoft
Agent. The radiologist agents are implemented using the
CIAgent agent-programming environment.

This paper is organized as follows. In section 2, we
discuss the major components of the multi-agent system for
interpretation of medical images. In section 3, we present
the design of radiologist agents. In section 4, we present
the design of patient representative agents. In section 5,
we discuss some implementation issues of the multi-agent
system. Finally, in section 6, we conclude the paper and
point out some future work.

2. Overview of the multi-agent system

The multi-agent system is composed of two types of
agents: patient representative agents and radiologist agents.
The patient representative agents take images from the user
(usually a patient) for interpretation, and the radiologist
agents interpret them. The patient representative agents also
answer patient questions based on a medical information
database.

Intelligent radiologist agents encapsulate different im-
age analysis algorithms. In addition to the general anatomy
knowledge that applies to all imaging modalities, the agents
also need to know the specific physics of every modality
in order to properly interpret a given image. For exam-
ple, in MRI images the bone is black and the soft tissue
is white, while it is just the opposite in the case of x-ray
images. Thus, the agents should be able to incorporate
domain knowledge required for different imaging modali-
ties. The radiologist agents are constructed using the image
recognition agent model presented in the next section. They
have knowledge and some learning capabilities, and may
also use exterior algorithms either from libraries or from
other agents. The agent system integrates medical image

Figure 1. An operation scenario of the multi-agent system for medial
image interpretation.

processing knowledge from various sources to make an au-
tomatic diagnostic decision or assist a radiologist physician
in making a diagnostic decision.

The operation of the multi-agent system is illustrated in
figure 1. To make an automated radiological exam in the
hospital, the patient first takes the x-ray image and gives it
to a patient representative agent. The patient representative
agent asks the facilitator to recommend radiologist agents
that know how to interpret chest x-ray images. After find-
ing three agents, the patient representative agent passes the
patient image to all of them. Every radiologist agent re-
turns the processed version of the image together with its
diagnostic decision. The patient representative agent either
integrates the answers to make a final diagnostic decision
or presents them directly to the patient.

3. Radiologist agents

3.1. Traditional image recognition

Traditional image recognition methods incorporate im-
age specific knowledge into recognition algorithms [Gon-
zales and Woods 1993]. The result is a program that can
only be used for the specific image type that it is created
for. The algorithms implemented have reusability to some
degree but the knowledge incorporated in the solution can-
not be reused or easily changed. Often, the knowledge
is incorporated into the algorithms so they cannot be de-
coupled. To better understand the situation, we examine the
traditional image recognition approach shown in figure 2.

The design of a solution with the traditional approach is
more an art than a science. In every step, the right algo-
rithm needs to be found and optimized locally. Errors made
in an early step such as segmentation must be dealt with in
later steps such as recognition. A typical example is chro-
mosome recognition where an over-segmentation produces
too many fragments that need to be recombined in order to
be recognized, while an under-segmentation might render
the given object unrecognizable. Generally speaking, the
problems of the traditional approach to image recognition
include (a) the knowledge being hard-coded into the algo-
rithms, making every solution unique, (b) every step (e.g.,
segmentation) being optimized locally without considering
the context, and (c) errors made in the earlier steps making
the whole problem harder.

Y. Shang, H. Shi / A Web-based multi-agent system for interpreting medical images 211

Figure 2. Traditional image recognition approach.

Figure 3. Components of active fusion in image understanding of a 3-D
vision system.

3.2. Active fusion approach

To solve some of the problems of the traditional im-
age recognition approach, researchers introduced the con-
cept of active fusion based on information fusion the-
ory [Kopp-Borotschnig and Pinz 1996; Pinz et al. 1999;
Prantl et al. 1996]. Information fusion deals with the in-
tegration of information from several different sources,
aiming at improving the quality of results. Active fu-
sion extends the paradigm of information fusion. It is
not only concerned with the methodology of how to
combine information, but also introduces mechanisms
in order to select the information sources to be com-
bined.

The active fusion approach has been applied to 3-D vi-
sion and to multi-sensor data systems [Prantl et al. 1996].
Figure 3 shows the framework of active fusion in image un-
derstanding of a 3-D vision system. In this system, the ac-
tive fusion component constitutes an expert system/control
mechanism, which has knowledge about the data sources,
the processing requirements, and the effective selection and
combination of multi-source data. In the figure, the dotted
lines represent data flow and the solid lines represent con-
trol flow. The range of actions available to the active fusion
component includes selection of viewpoints and activation

of image analysis modules (e.g., segmentation and group-
ing).

3.3. Agent framework based on active fusion

The active fusion approach can be effectively imple-
mented in an agent framework. Figure 4 shows an agent
framework that consists of one master image recognition
agent performing fusion control and multiple slave agents.

One goal of the framework is to allow the human ex-
pert to input the knowledge in the image recognition agent
without the need for coding the whole set of algorithms
again. The master agent interacts with the environment
and controls the action of its sub-agents (slaves). In this
framework, the autonomous master and slave agents inter-
act with each other using KQML-like agent communication
language. They are able to learn and are persistent. For
example, after the segmentation slave agent segments the
image, the master (fusion control) agent passes orders to
the feature extraction slave agent to label and characterize
the objects in the image. If any segmentation problem is
suspected, the feature extraction agent can ask the master
agent to call the segmentation slave agent in a given con-
text for a given region. When the features for every object
are available, the recognition slave agent is invoked. If
the master agent suspects that the recognition is not perfect
based on its knowledge, it can ask any slave agent to do
more work given the new context in which some objects
are already recognized, and then it can fuse the new infor-
mation provided by the slave agent into the known world.
Specifically, the constructs of the agents are as follows:

• Master agent

– task: active fusion controler

– intelligence: fuzzy rules, decision tree

– message to slaves: (directive, object, context)

• Segmentation slave agent

– task: segmentation (morphological, clustering)

– intelligence: none

– message to master: (object, context)

• Feature extraction and image recognition slave agents

– task: feature extraction, image recognition

– intelligence: fuzzy rules, neural nets

– message to master: (objects, context)

The master agent sends messages containing the context of
the world, the instruction, and the object that the slaves
act upon. The slave responds with the same context and
the new state of the object (image). The master and slave
agents have varying amount of knowledge and learning ca-
pabilities.

The new approach to image recognition is based on
agent-oriented programming and the concept of active fu-
sion. It combines the benefits of expert system and object-
oriented technology [Espeset 1996], allowing separation of

212 Y. Shang, H. Shi / A Web-based multi-agent system for interpreting medical images

Figure 4. An agent framework for image recognition based on the active fusion concept.

the algorithm from the knowledge, facilitating the global
optimization of all the parts of the algorithm, and enabling
the recovery from the errors made in earlier steps using
knowledge from later steps.

4. Patient representative agent

A patient representative agent sits in the middle of the
user and the radiologist agents. It provides a user-friendly,
easy-to-use interface to the user based on human-computer
interaction techniques. Over the years, many enhancements
make on-line intelligent agents more human-like. The first
agents handle simple question/answer problems by looking
up the question from a large database and supplying the
reply by pulling the appropriate field. They severely lack
the ability to reply with some type of answer if the question
is not in the database. They do not take advantage of the
given knowledge to form an answer. Everything has to be
hard-coded beforehand by the programmer.

More advanced intelligent agents understand some of
the context of a sentence. They reply with information
that does not exactly match the question in the database,
but has the same meaning and the reply would be valid.
This greatly improves the ability of the intelligent agents
to come up with an answer. But the agents are still limited
to only replying whatever the content in the answer field
contained.

The latest intelligent agents start to understand what the
question is asking, query the database for the proper answer,
and reformulate in a natural language a reply [Jennings and
Wooldridge 1998; Microsoft 1999]. The main advantage is
that the knowledge base holds searchable information with
more generalization over hard-coding the input/output rela-
tionship. These intelligent agents can use natural language
recognition to understand what the user is asking to cre-
ate their results. The fact that the answers are no longer
hard-coded word for word makes it easy for the intelligent
agent to extract the data and present it with different tenses,
quantity (plural or singular), or possessiveness.

4.1. Functional components of a patient representative
agent

To maximize the satisfaction that patients receive the pa-
tient representative agent must be as informative and timely
as communicating with a human. With natural language
processing, a large knowledge database, and the interaction

with the radiologist agents, the patient representative agent
can answer questions effectively.

The major functional components of the patient repre-
sentative agent include communication between the user
and the computer, interaction with the radiologist agents,
natural language understanding, and knowledge representa-
tion and retrieval. Various existing technologies and soft-
ware packages can be used in the implementation. Thus,
the final design usually consists of a hybrid of several dif-
ferent programming languages combined into one entity.
Prevalent Internet and Web technologies such as Java and
XML are selected in our design because they enable fast
prototyping and promote better portability and wider adop-
tion. Particularly, Java and XML are highly complemen-
tary technologies of choice in leading, open system solu-
tions. Java provides platform-independence for applica-
tions, while XML provides that for data.

4.2. Natural language parser

In natural language understanding, a patient representa-
tive agent should understand the user’s input and generate
appropriate output that will be used to retrieve answers. The
natural language parser should run autonomously, without
the user’s help. Understanding what the user typed in and
reducing it into a few key terms is the hardest part. This re-
quires extensive programming and a good knowledge of the
English language. Synonyms in the natural language add
another problem. People lose interest if they keep hear-
ing the same word repeatedly, but in reality, even with a
different spelling a synonym is still the same word. The
parser needs to realize this and automatically remove the
unessential words from a sentence and break it down into
its main parts. The same applies when the agent returns the
result. It is a good idea to vary the result ever so slightly
for each reply. Working the algorithm backwards, adding
more words, and exchanging the reduced small word with
more colorful ones will keep the user interested.

The two ends of the spectrum in language parsing are
table lookup, which is simple, but usually returns poor re-
sults, and natural language understanding, which is very
complicated and returns high quality results. We consider
a trade-off between quality and complexity in the design,
and develop an efficient pseudo-natural language parser that
aims to reduce input sentence to minimal content through
the following methods:

• split the sentence up into three main parts – subject,
verb, and predicate;

Y. Shang, H. Shi / A Web-based multi-agent system for interpreting medical images 213

• maintain a database of known verbs to split the sentence;

• search the unknown subject and predicate for keywords,
assuming the verb is known; and

• return categorized content of the parsed sentence in a
usable format.

The implementation of a pseudo-natural language parser
benefits from a modification of the natural language pars-
ing. Instead of understanding the meaning of the sentence,
the parser reduces the sentence and splits it up into several
major components. It is possible to do this effectively, be-
cause the knowledge base only contains information about
a certain subject. The major components, including the
subject, verb, and predicate, are then pattern matched to
find the best output. One major disadvantage is that long
sentences that do not follow a predefined structure may not
be parsed correctly.

4.3. Knowledge representation

In knowledge representation and retrieval, XML is se-
lected due to its flexibility and expressiveness [Bray 1999;
Connolly 1999; IBM 1999; xml.com 1999]. The design
issues include:

• a special language based on XML is developed for easy
search,

• a separate parser is developed to sift through content
and locate answer, and

• an XML database provides a more structured access to
data over traditional means such as SQL.

In our design, the XML knowledge base contains a struc-
tured pseudo-language breakdown of the sentence. The
XML parsing function takes in a string and begins to ex-
pand the nodes as necessary. First, it starts by expanding
which type of sentence the user inputs. Then it expands
again based on the verb the user supplies. It does this
same type of process repeatedly to narrow down on a so-
lution. By doing this, it allows the program to search the
tree faster than searching an entire database.

The knowledge representation should support more ad-
vanced queries. A simple implementation uses an “all or
nothing” encoded string of XQL to extract the results from
the XML database. While this is sufficient to show that it
is possible, the power behind it is quite limited. Again, the
program needs to search all possibilities of the sentence to
ensure an accurate reply. It begins by doing an “AND” on
all the variables and slowly, one by one, choosing the least
important word each time, add “OR” to the query. Even-
tually the agent will find the next best result, or it will run
out of options and not know what to return. Returning the
answer “I don’t know” to the user should be avoided, but
in reality, we must face that our knowledge base is not ever
going to be infinite.

The agent should have the ability to learn from its user
and other information sources. One way to generate the
knowledge base is to manually code the Q&A relationships.

A better alternative is to have the agent ask the user what it
should reply if the knowledge is not in the database. This
way, a teacher asks the agent questions and whenever it
does not know, the teacher provides a solution. The agent
can learn in parallel by talking to several teachers at the
same time. Another way to train the agent on information is
to have it extract the information from the medical database
automatically. This is done by creating a second agent that
solely reads the content of the database, understands them
for the most part, creates Q&A type data, and feeds it to
the agent [Sycara et al. 1996; Weib and Sandip 1996].

4.4. User interaction

In order to be effective, the agent has to communicate
well with the outside world. In our design, Microsoft Agent
is used in the communication between the user and the
computer. Specially, the consideration is as follows:

• communication to user is done through a separate entity,

• Microsoft Agent allows for voice recognition and other
advanced features, and

• communication with Microsoft Agent should be done
through JScript or VBScript.

The Java procedure that computes the best answer returns
the result back to the HTML page through the JScript func-
tion call. The data can then be dumped to the screen as
plain text or enhanced with Microsoft Agent [Microsoft
1999]. Consumers generally prefer that the technology be
masked behind something they can understand and relate.
Microsoft Agents are animated characters that simulate how
a person communicates. They create an easy way to retrieve
data from the user via keyboard or using the built-in voice
recognition software. By using existing technologies such
as Microsoft Agent, it cuts out a lot of programming that
would normally be required.

5. Implementation issues

There exists a number of agent environments that
the multi-agent system can be built upon. Among
them, we considered three: the intelligent agent builder
(CIAgent) [Bigus and Bigus 1998], the Aglet environ-
ment [Lange and Oshima 1998], and a CORBA [Pope 1998]
based implemetation of the image analysis modules that are
designed using an expert system framework. The Aglet en-
vironment has the advantage of supporting mobile agents
and open system design. Specialized agents from another
Internet “Hospital” can easily get involved in the opera-
tion and can come to give a “second opinion.” It also al-
lows a comparison of the performance of different agents,
something similar to the residency exam. The CORBA
model has the same advantages but it generates more net-
work traffic. The implementation of agents in the CIAgent
environment is more localized, and the resulting agent sys-
tem is relatively small, simple, and easy to modify. We

214 Y. Shang, H. Shi / A Web-based multi-agent system for interpreting medical images

choose CIAgent to implement the radiologist and patient
representative agents on the server side. All programs are
coded in Java. On the client side, Microsoft Agent is used
in the user interface. The implementation of the patient
representative agents is broken down into three parts: the
pseudo-natural language parser, the XML knowledge base,
and the communication between the computer and the user.

5.1. Pseudo-natural language parsing

The underlying algorithm of pseudo-natural language
parsing is as follows:

1. Decide which type of sentence the user typed in by look-
ing at punctuation and tell tale signs.

2. Parse the sentence into three distinct sections: subject,
verb, and predicate by splitting it on a set of known
verbs.

3. Extract the keywords of the subject and the predicate
and discard meaningless words.

4. Decide which words are describing words and mark
them up separately.

5. Format the new shortened sentence in a tagged way that
the next lookup procedure can understand.

The pseudo-natural language parser is written in Java.
The user types in input from the keyboard and the input is
sent from the HTML page to the Java code via a call from
a JScript function. The function uses a set of known words
to parse the sentence into its fundamental structure. Since
a pseudo-natural language does not need all the words of a
sentence it removes all the meaningless words and retains
the main keywords of the subject, the predicate, and the
type of sentence. Upon processing the string, it posts the
results back to the HTML page via another JScript call.

Example.
Where can I quickly locate more information about your
growing hospital?

1. The punctuation and the word “Where” at the beginning
lets the program know that it is a question and that it is
of type “where”.

2. The sentence is then split up into a modified subject,
verb, and predicate format:

Subject: Where can I
Verb: locate
Predicate: quickly locate more information about your
growing hospital

3. Keywords are extracted and obvious words that show
direction are removed. Words like “I” and “You” are
known because the conversation is assumed to be be-
tween only two people – the computer and the human.
“I” is the human and “you” is the computer. A thesaurus

is applied and similar words are reduced to one.

Subject: Where can I—————–
Verb: find
Predicate: fast locate more—————- information about your—————
growing hospital

4. Decide which words are describing words and mark
them up as needed. In this sentence fast is an adverb for
locating. Growing is an adjective describing the hospi-
tal. These words are set aside for the next step.

5. Markup is done in XML tagged format:

<SENTENCE>
<QUESTION TYPE= “WHERE”>

<VERB>find
<ATTRIBUTE>fast</ATTRIBUTE>

</VERB>
<PREDICATE>

<KEYWORD>information</KEYWORD>
<KEYWORD>hospital

<ATTRIBUTE>growing</ATTRIBUTE>
</KEYWORD>

</PREDICATE>
</QUESTION>

</SENTENCE>

A sample portion of the XML grammar is defined as fol-
lows:

<?XML version= "1.0"?>
<!DOCTYPE SENTENCE [
<!ELEMENT SENTENCE (QUESTION | STATEMENT |

EXCLAIMATION | COMMAND)>
<!ELEMENT QUESTION (SUBJECT,VERB,PREDICATE)>
<!ELEMENT SUBJECT (KEYWORD*)>
<!ELEMENT VERB (#PCDATA,ATTRIBUTE*)>
<!ELEMENT PREDICATE (KEYWORD*)>
<!ELEMENT KEYWORD (#PCDATA,ATTRIBUTE*)>
<!ELEMENT ATTRIBUTE (#PCDATA)>
<!ELEMENT STATEMENT (SUBJECT,VERB,

PREDICATE)>
<!ELEMENT QUESTION (SUBJECT,VERB,PREDICATE)>
<!ELEMENT EXCLAIMATION (SUBJECT,VERB,

PREDICATE)>
<!ELEMENT COMMAND (SUBJECT,VERB,PREDICATE)>
<!ATTLIST QUESTION #FIXED TYPE (who | what |

where | when | why | how)>
]>

The reason for choosing XML to define the grammar
of the string is that parsing a string with no markup is
extremely difficult. Without the defined grammar it is hard
to tell where the keywords start, how many there are, and
to what they belong. With this grammar, the procedure
reading in this string to perform the look up knows exactly
where all the information is located.

Y. Shang, H. Shi / A Web-based multi-agent system for interpreting medical images 215

5.2. Knowledge database

There are not many choices to choose from when decid-
ing on a database format. We use either a standard database
structure that is queried by SQL, or design a new format
specifically suited to this project. We use XML to represent
the knowledge in the implementation.

The sample portion of the defined grammar for the pre-
vious example can be slightly modified to represent a subset
of English:

<?XML version= "1.0"?>

<!DOCTYPE ENGLISH [

<!ELEMENT ENGLISH SENTENCE+>

<!ELEMENT SENTENCE (QUESTION | STATEMENT |

EXCLAIMATION | COMMAND)>

<!ELEMENT QUESTION (SUBJECT,VERB,PREDICATE)>

<!ELEMENT SUBJECT (KEYWORD*)>

<!ELEMENT VERB (#PCDATA,ATTRIBUTE*)>

<!ELEMENT PREDICATE (KEYWORD*)>

<!ELEMENT KEYWORD (#PCDATA,ATTRIBUTE*)>

<!ELEMENT ATTRIBUTE (#PCDATA)>

<!ELEMENT STATEMENT (SUBJECT,VERB,

PREDICATE)>

<!ELEMENT QUESTION (SUBJECT,VERB,PREDICATE)>

<!ELEMENT EXCLAIMATION (SUBJECT,VERB,

PREDICATE)>

<!ELEMENT COMMAND (SUBJECT,VERB,PREDICATE)>

<!ATTLIST QUESTION #FIXED TYPE (who | what |

where | when | why | how)>

]>

This grammar is stored in a database as a normal text file.
Extracting data is not as easy as it would be in SQL. How-
ever, there are similar commands.

XML pattern matching is a valuable way to extract in-
formation from a document. For instance, if the XML doc-
ument contained the information:

<ENGLISH>
<SENTENCE>

<QUESTION TYPE= “WHERE”>
<SUBJECT> </SUBJECT>
<VERB>find</VERB>
<PREDICATE>

<KEYWORD>information</KEYWORD>
<KEYWORD>hospital</KEYWORD>

</PREDICATE>
</QUESTION>
<ANSWER>

You can find it on the web page of course!
</ANSWER>

</SENTENCE>
</ENGLISH>

Statements such as this one:

//SENTENCE[QUESTION[VERB[text()=’find’]
and PREDICATE[KEYWORD[value()=
’hospital’]]
and PREDICATE[KEYWORD[value()=
’information’]]]]

recall the contents of that entry. The entry can then be sent
through an XSL style sheet and the corresponding answer
can be displayed on the screen or routed through Microsoft
Agent.

5.3. Communicating with the user

Writing one’s own text-to-speech engine or natural lan-
guage understanding can be a daunting task. Microsoft
Agent does some of the basic tasks for the programmer.
The programmer can then use this animated character to
talk to the target audience. The code for adding a character
to a Web page is as follows:

<OBJECT ID= "AgentX" width=0 height=0
CLASSID= "CLSID:D45FD31B-5C6E-11D1

-9EC1-00C04FD7081F"
CODEBASE= "#VERSION=2,0,0,0">

</OBJECT>

To make the character speak and move, the simple com-
mands are as follows:

function Play() {
AgentX.Characters.Load("Merlin",
"Merlin.acs");
Merlin = AgentX.Characters.Character
("Merlin");
Merlin.Show();
Merlin.Play("Explain");
Merlin.Speak("You can find it on the
web page of course!");

}

To make the Web page dynamic, the string where Mer-
lin speaks is replaced by a variable. That variable is the
contents of the field “Answer” so when the user posts a
question the string is parsed, looked up, and outputted all
on the same HTML page.

DHTML is HTML with more advanced features such as
changing content on the fly without having to reload the
page. It drastically reduces the load on the server, because
unlike SQL queries that run on the server the XML queries
run on the local client. Users must download the entire
XML document to start searching through it. When the
document becomes very large, it may be impractical to have
each user download the file. In this scenario, it would be
better to leave the file on the server.

216 Y. Shang, H. Shi / A Web-based multi-agent system for interpreting medical images

Figure 5. An image presented by the patient representative agent and its processed image from a radiologist agent.

JScript is an easy way to send messages to other com-
ponents. Instead of running a Java applet full screen in
the Web browser, the programmer can use JScript to pass
messages back and forth to the Java applet and let DHTML
do the redrawing and updating of the screen. JScript also
handles the XQL queries and the send/recv information to
Microsoft Agent.

5.4. A running example of the multi-agent system

Figures 5 and 6 show a running example of the system,
in which the patient representative agent integrates the re-
sults returned by three radiologist agents. We implement ra-
diologist agents and slave agents with basic functionalities.
The radiologist agents know some basic image processing
algorithms. First, the radiologist agent registers with the fa-
cilitator as knowing how to process certain images such as
x-ray in the example. Assume that the patient representa-
tive agent obtains an x-ray image and wants to know where
the lungs are in this image. The patient representative agent
sends a “recommend-one” directive to the facilitator to find
radiologist agents that are able to detect the lungs in the
image. As a response to its request, the facilitator sends to
the patient representative agent a “tell” directive with the
address of each radiologist agent that knows how to do the
job. There are three of them in this example. Using this
information, the patient representative agent sends the im-
age to each of the radiologist agents together with an “ask”
directive. The image is packaged in an “offer” object that

contains an image ID, the image file, and the name of the
desired algorithm. The radiologist agents process the im-
age using the requested procedure and send back the results
using a “done” directive, shown in figure 5.

The patient representative agent uses the answers from
the radiologist agents for further integration. After receiv-
ing all the response images from the radiologist agents, the
patient representative agent uses the responses and a set of
rules to find out the answer to the initial question: “Where
are the lungs in this image?” The simple rule used in the
example is: The region is a lung region if it is indicated
so by all the radiologist agents. By going through all the
images returned by radiologist agents pixel by pixel, the
patient representative agent generates the result in the up-
per part of figure 6, which is an image with regions most
likely to be lungs.

6. Conclusions

One major problem in medical image understanding is
that there exist many specific algorithms and implementa-
tions that are hard to locate, use, and integrate. Agent-based
computing has great potential in addressing this problem by
using distributed resources and reducing the programming
effort. In this paper, we present a new approach based on
agent-oriented programming and the concept of active fu-
sion for medical image understanding. We develop a multi-
agent system that consists of patient representative agents

Y. Shang, H. Shi / A Web-based multi-agent system for interpreting medical images 217

Figure 6. The final answer (the image) determined by the patient representative agent from the images (e.g., the bottom one) returned by all the
radiologist agents.

for result integration and radiologist agents for image recog-
nition. The radiologist agents decompose the recognition
task based on the concept of active fusion into subtasks
for the corresponding slave agents to solve. To maximize
the satisfaction that patients receive, the patient representa-
tive agents are designed to be as informative and timely as
communicating with a human. Our approach of using Java
in the initial pseudo-natural language parser, XML as the
knowledge base, XQL as the query language and Microsoft
Agent to report the findings to the user in an entertaining
way appears to be an effective solution.

This work is still quite new and has not been devel-
oped to its full capability. Future work includes enhancing
the capabilities of agents and the communication, collab-
oration, and coordination mechanisms in the multi-agent
system, improving the pseudo-natural language parser to
make it understand the user’s input and synonyms better,
supporting a more advanced query setup to provide accurate
replies in the circumstance of multiple inexact matching,
and developing mechanisms for the agents to learn auto-
matically from the users, history profiles, and information
on the Web. The ultimate goal is to meet or exceed human
capabilities.

Acknowledgements

The authors wish to thank Mr. Mihail Popescu and Mr.
Doug Sapp for helping with the implementation of the sys-
tem.

References

Bigus, J.P. and J. Bigus (1998), Constructing Intelligent Agents with Java,
Wiley, New York.

Bradshaw, J.M. (1997), Software Agents, AAAI Press, The MIT Press,
Cambridge, MA.

Bray, T. (1999), “An Introduction to XML Processing with Lark and Lar-
val,” http://www.textuality.com/Lark/.

Connolly, D. (1999), “Extensible Markup Language Online,”
http://www.w3.org/XML.

Espeset, T. (1996), Kick Ass Java Programming, Coriolis Group Books,
Scottsdale, AZ.

Ferber, J. (1999), Multi-Agent Systems, Addison-Wesley, Reading, MA.
Gonzales, R.C. and R.E. Woods (1993), Digital Image Processing,

Addison-Wesley, Reading, MA.
IBM (1999), “XML Parser for Java: Another AlphaWorks Technology,”

http://www.alphaworks.ibm.com/ formula/XML.

Jennings, N.R. and M.J. Wooldridge (1998), Agent Technology: Founda-
tions, Applications, and Markets, Springer, Berlin.

Kopp-Borotschnig, H. and A. Pinz (1996), “A New Concept for Active
Fusion in Image Understanding Applying Fuzzy Set Theory,” In Fuzz-
IEEE’96, New Orleans.

Lange, D.B. and M. Oshima (1998), Programming and Deploying Java
Mobile Agents with Aglets, Addison-Wesley, Reading, MA.

Microsoft (1999), “Microsoft Agents,” Microsoft MSDN Online Work-
shop, http://www.microsoft.com/msagent.

Nwana, H.S. and N. Azarmi, Eds. (1997), Software Agents and Soft Com-
puting: Towards Enhancing Machine Intelligence, Springer-Verlag,
Berlin.

Pinz, A., M. Prantl, H. Gangster, and H. Kopp-Borotschnig (1999),
“Active Fusion – A New Method Applied to Remote Sensing Image
Interpretation,”
http://www.icg.tu-graz.ac.at/CVGroup/Projects/
ActiveFusion/activefusion.html.

218 Y. Shang, H. Shi / A Web-based multi-agent system for interpreting medical images

Pope, A. (1998), The CORBA Reference Guide, Addison-Wesley, Reading,
MA.

Prantl, M., H. Gangster, H. Kopp-Borotschnig, D. Siclair, and A. Pinz
(1996), “Object Recognition by Active Fusion,” In SPIE Conference
on Intelligent Robots and Computer Vision XV, Vol. 2904, San Jose,
CA.

Shoham, Y. (1993), “Agent-Oriented Programming,” Artificial Intelligence
60.

Sycara, K., K. Decker, A. Pannu, M. Williamson, and D. Zeng (1996),
“Distributed Intelligent Agents,” IEEE Expert.

Weib, G. (1997), “Distributed Artificial Intelligence Meets Machine Learn-
ing – Learning in Multi-Agent Environment,” In Lecture Notes in Ar-
tificial Intelligence, Vol. 1221, Springer-Verlag, Berlin.

Weib, G. and S. Sandip (1996), “Adaption and Learning in Multi-
agent Systems,” In Lecture Notes in Artificial Intelligence, Vol. 1042,
Springer-Verlag, Berlin.

xml.com (1999), “XML.COM Online,” http://www.xml.com.

