
World Wide Web 3 (2000) 53–59 53

LSMAC: An improved load sharing network service dispatcher

Xuehong Gan a and Byrav Ramamurthy b

a Microsoft Corporation, One Microsoft Way, Redmond WA 98052, USA
E-mail: xuehongg@microsoft.com

b Department of Computer Science and Engineering, University of Nebraska – Lincoln, Lincoln, NE 68588, USA
E-mail: byrav@cse.unl.edu

The rapid growth of the Internet is changing the way we do business. Electronic Commerce (or E-Commerce) is already a reality and
will expand rapidly in the near future. However, the success of E-Commerce depends heavily on the scalability and availability of the
servers. Cluster-based servers using commodity hardware have been accepted as a good alternative to expensive specialized hardware for
building scalable services. In this paper, we summarize the two clustering architectures: IP-based clustering and MAC-based clustering.
A new efficient implementation of the MAC-based clustering architecture is presented and its performance in clustering Web servers
was measured using the WebStone benchmark and was found to be superior to that of existing MAC-based clustering implementations.

1. Introduction

The Internet is changing every aspect of our lives in-
cluding transforming the traditional business processes into
E-Commerce applications. Today, more and more compa-
nies are using the Internet to communicate with their part-
ners, to transact business, and to provide customer services.
The function performed by the network servers such as a
World Wide Web (WWW) server is critical to a company’s
business. Busy corporate web-sites will need to handle mil-
lions of “hits” on their servers daily. Other companies may
not need such a powerful server on a day-to-day basis, but
they will need to handle potentially a very large peak load.
For example, a sports magazine’s site may need to han-
dle millions of requests during the Olympic games. Server
overload is frustrating to the customers, and harmful to the
company’s bottomline.

The first option many companies use to scale their net-
work services is simply to upgrade the server to a larger,
faster machine. While this strategy relieves short-term pres-
sures, many companies find that they are repeatedly increas-
ing the size and power of the server to cope up with the
demand for their services. What those companies need for
their Web sites is incremental growth and massive scalabil-
ity – the flexibility to grow with the demands of the busi-
ness without incurring a large expense. One such solution
is using a cluster-based server. Clustering low-cost personal
computer systems is a cheap alternative to upgrading a sin-
gle high-end server with faster hardware. Busy sites such
as Excite, Inc. depend heavily on clustering technologies
to handle a large number of requests [Bruno 1997].

In the Internet, each server (single-homed) has a host-
name and its corresponding Internet Protocol (IP) address,
and a Medium Access Control (MAC) address. The clients
communicate with the server though the IP address or the
hostname. The mapping between IP addresses and host-
names is handled by Domain Name Service (DNS). In the
usual case (i.e., a non-clustered server), there is only one

server serving the requests addressed to one hostname or
IP address. With a cluster-based server, several back-end
servers cooperatively serve the requests addressed to the
hostname or IP address corresponding to the network ser-
vice. In general, all of these servers provide the same con-
tent. The content is either replicated on each machine’s
local disk or shared on a network file system. Each request
destined for that hostname or IP address will be distributed,
based on load-sharing algorithms, to one back-end server
within the cluster and served by that server. The distrib-
ution is realized by either a software module running on
a common operating system or by a special-purpose hard-
ware device plugged into the network. In either case, we
refer to this entity as the “dispatcher”.

Cluster-based servers can provide high availability and
good scalability. Regarding availability, cluster-based
servers can handle a large number of concurrent requests
and reduce the request latency. Also, the dispatchers can
detect malfunctioning servers in real-time and remove them
from the server pool. Availability is a key factor for cus-
tomer satisfaction for online businesses. Regarding scala-
bility, the administrators can easily add or remove servers
according to business demands.

The rest of this paper is organized as follows. We first
discuss related work in section 2, which summarizes the
two clustering architectures: IP-based clustering and MAC-
based clustering. Then we describe our implementation of
the MAC-based clustering architecture in section 3. Sec-
tion 4 describes how we evaluated our implementation and
presents the results. We present our conclusions and de-
scribe future work in section 5.

2. Related work

Until recently, clustering has been typically used in pro-
prietary server environments to improve application up-
time. For clustering, two or more servers are combined

 Baltzer Science Publishers BV



54 X. Gan, B. Ramamurthy / LSMAC: An improved load sharing network service dispatcher

into a configuration where one server takes on the work-
load of another in case of a hardware or software failure.
In fact, high-end high-availability server clustering tech-
nologies, developed by such vendors as IBM, HP, and Sun
Microsystems, have been introduced into the commercial
mainstream. Most of these products only provide high
availability, and little scalability. Some products support
rudimentary scalability. But they usually require develop-
ers to rewrite applications to be cluster-aware with vendor-
specific Application Programming Interfaces (APIs).

In contrast, a new generation of more generic server
clustering systems are hitting the market. These systems
provide scalability as well as availability without these lim-
itations – the server software does not have to be cluster-
aware; i.e., the servers can run any combination of oper-
ating systems on any mix of hardware. At the same time,
these systems can provide server fail-over and fault toler-
ance just as the high-end server-clustering does. These new
generation clustering technologies can be divided into two
categories: Round Robin Domain Name Service (RR-DNS)
[Brisco 1995] and Single-IP-Image [Damani et al. 1997].
A hybrid of the RR-DNS approach and Single-IP-Image
approach has also been studied, in which the DNS server
selects one of several dispatchers in a round robin fashion
[Dias et al. 1996]. Even though these systems are primar-
ily being marketed and used as Web load-sharing systems,
they could just as easily be configured and/or modified to
provide load sharing to other network services. We discuss
each of these techniques below.

2.1. Round Robin Domain Name Service (RR-DNS)

Early implementations of the cluster-based server con-
cept used RR-DNS. RR-DNS is a hostname-based ap-
proach. It works by mapping a single hostname of the
server to several different IP addresses though DNS. DNS is
a giant hierarchical distributed database for mapping host-
names to their corresponding IP addresses. In RR-DNS,
one of a set of server IP addresses will be returned with
each request. The return record sequence is circular-shifted
by one for each response in a round robin fashion. RR-
DNS is the most commonly used method mainly due to its
simplicity and low cost. No additional software or hard-
ware is needed. However, there are many drawbacks in
using the RR-DNS technique for clustering servers. RR-
DNS does not automatically handle hosts that go down; so
manual modification of DNS zone files and reloading DNS
is required. Even if the DNS zone file is immediately mod-
ified after a server failure, the problem still arises due to
DNS caching. The IP address has been cached by local
DNS servers across the Internet; for the next few minutes,
many users get error messages instead of connecting to
one of the available servers. Secondly, clients themselves
may cache DNS replies and bypass DNS for subsequent
requests, which defeats the attempts at load sharing using
the round robin mechanism.

2.2. Single-IP-Image

In contrast to the multiple IP addresses in RR-DNS,
methods for presenting a single IP image to clients have
been sought and developed over the years. These meth-
ods work by publishing one IP address (cluster address) in
DNS for clients to use to access the cluster. Each request
reaching the cluster using the cluster address is distributed
by the dispatcher to one of n back-end servers. The meth-
ods differ in the way they forward packets to a back-end
server. Currently there are two major schemes: IP-based
dispatching and MAC-based dispatching.

In IP-based approaches, each server in the cluster has
its own unique IP address. The dispatcher is assigned the
cluster address so that all client requests will first arrive
at the dispatcher. After receiving a packet, the dispatcher
rewrites the IP header to enable delivery to the selected
back-end server, based on the load-sharing algorithm. This
involves changing the destination IP address to the IP ad-
dress of the chosen back-end server and recalculating the IP
and Transport Control Protocol (TCP) header checksums.
The rewritten packet is then sent to the appropriate back-
end server. Packets flowing from a back-end server to a
client go through a very similar process. All of the back-
end server responses flow through the dispatcher on their
way back to the clients. The dispatcher changes the source
IP address in the response packet to the cluster address,
recalculates the IP and TCP checksums, and sends it to the
clients. This method is detailed in RFC2391, Load Sharing
Using IP Network Address Translation (LSNAT) [Srisuresh
and Gan 1998]. A commercial example of the LSNAT ap-
proach is Cisco’s Local Director [Cisco 1999]. A slight
variation of this approach was proposed for IBM’s TCP
Router [Attanasio and Smith 1992], in which the selected
back-end server puts the cluster address instead of its own
address as the source IP address in the reply packets. Even
though the TCP Router mechanism has the advantage of
not requiring the reply packets go through the TCP Router
(dispatcher), the TCP/IP stack of every server in the cluster
has to be modified.

In MAC-based approaches, all servers in the cluster
share the cluster address as a secondary IP address while the
dispatcher is assigned a different address. A routing rule
is inserted into the routing table in the immediate router so
that those packets destined for the cluster address are al-
ways routed to the dispatcher. The secondary IP address as-
signment can be accomplished using interface aliases (e.g.,
the ifconfig command) on most Unix systems. The dis-
patcher controls the MAC addresses of the frames carrying
the request packets and then forwards the frames over a lo-
cal area network (LAN) to an appropriate back-end server.
The TCP/IP stack of the back-end server, which receives
the forwarded packets, will handle the packets just as a nor-
mal network operation since its secondary IP address is the
same as the destination IP address in the packets. No IP ad-
dresses in either inbound or outbound packets are modified.
Different MAC-based approaches vary in the mechanism



X. Gan, B. Ramamurthy / LSMAC: An improved load sharing network service dispatcher 55

Figure 1. Logical representations of LSNAT and LSMAC dispatchers.

for controlling the MAC addresses. It appears that IBM
eNetwork Dispatcher [Hunt et al. 1998; IBM 1999] modi-
fies the routing algorithm for the cluster address so that it
routes packets based on the primary IP addresses of back-
end servers. This method was first proposed for ONE-IP
[Damani et al. 1997], even though their use of IP alias-
ing is slightly different. In addition, ONE-IP proposed an-
other MAC-based method using broadcasting. Each packet
is broadcast by the dispatcher to every back-end server.
Each server implements a local filter so that every packet
is processed by exactly one server. The disadvantage with
this method is that filtering reduces the capacity of each
server to serve client requests. Our implementation of the
MAC-based clustering differs from both methods in that it
directly rewrites the MAC addresses of each frame (see sec-
tion 3.1). We call our dispatcher LSMAC. LSMAC takes
its name because it realizes Load Sharing Using Medium
Access Control.

MAC-based approaches (e.g., LSMAC) have several ad-
vantages over IP-based approaches (e.g., LSNAT). First, the
outgoing packets do not need to traverse the dispatcher (fig-
ure 1). Thus, the outgoing packets can be directed to take a
different route from the incoming packets, so that the net-
work contention is eased. Secondly, the fact that outbound
packets need not pass through the dispatcher reduces the
amount of processing the dispatcher must do and speeds up
the entire operation. This feature is especially important
considering the extreme downstream bias on the WWW,
i.e., requests are small while the server responses are much
larger. On the other hand, MAC-based approaches have
their own disadvantage: they require the dispatcher and
back-end servers to be interconnected in a LAN. In con-
trast, IP-based approaches allow the dispatcher and back-
end servers to be in different internal LANs, since IP pack-
ets can be routed even across LANs. However, in the case
of different LANs, additional care is needed to set up the
routing rules correctly so that all traffic directed to the clus-
ter address and all replies from back-end servers traverse
the IP-based dispatcher.

3. LSMAC implementation

LSMAC differs from other MAC-based clustering ap-
proaches in that it directly modifies the MAC addresses,
while other MAC-based implementations usually customize
the dispatcher host’s IP routing algorithm. LSMAC has

two advantages over other MAC-based approaches: (1) it
simplifies the packet routing; (2) it avoids checksum recal-
culations. These two advantages speed up the packet dis-
patching process. It operates only on the Data-Link layer
and dispatches each incoming frame by directly modifying
its MAC addresses (both source and destination).

3.1. Dispatching process

Each TCP session consists of multiple packets. Once a
server is selected for the first packet of one request, future
incoming packets for the same request must be directed to
the same server. The dispatcher maintains a table contain-
ing information about all existing sessions. Upon receipt
of a packet, the dispatcher will determine whether a cor-
responding connection has already been established with a
back-end server. If such a session does not already exist, it
is simply a matter of creating a new entry in the dispatcher’s
session table. TCP flags on the incoming packets are used
to identify the establishment and termination of each con-
nection. The first packet of a TCP session is recognized
by the presence of SYN bit and absence of ACK bit in the
TCP headers. The end of a TCP session is detected when a
packet with both FIN and ACK bits set is received or when
a packet with RST bit set is received. Upon the termination
of a TCP session, the corresponding mapping in the table
is removed.

Once a mapping has been established, the LSMAC dis-
patcher rewrites the source and destination MAC addresses
of each frame and sends it to a chosen back-end server.
The choice of a particular back-end server can be made in
a round robin fashion or based on the actual server loads.
The back-end server handles the packet in a normal fashion
and replies directly to the client. Figure 2 illustrates an ex-
ample of the packet flow in a LSMAC cluster-based server.
In this example, the back-end server is aliased to the cluster
address 129.93.1.2. The dispatcher is assigned a different
IP address (129.93.1.10). We can see that the IP header is
not changed before entering and after leaving the dispatcher.
However, the dispatcher changes the MAC addresses of the
packet; it places its own MAC address (e3:67:89:a1:2b:04)
as the source MAC address of the packet and the back-end
server’s MAC address (a2:c2:04:05:56:13) as the destina-
tion MAC address. This modification enables the back-end
server to receive the packet.

The back-end servers behave as if they were communi-
cating directly with the clients and do not need to know



56 X. Gan, B. Ramamurthy / LSMAC: An improved load sharing network service dispatcher

Figure 2. Packet modifications in a LSMAC cluster-based server.

Figure 3. LSMAC dispatcher in a LAN environment.

anything about the clustered nature of the system. This
means that no special software needs to be installed on the
back-end servers. The LSMAC dispatcher is thus transpar-
ent to the clients and the servers.

In summary, the following steps are involved in LSMAC
dispatching (figure 3).

1. A client sends a HTTP packet with the well-known
cluster IP address A as the destination IP address.

2. The immediate router sends the packet to the LSMAC
dispatcher at IP address D, using the added route rule:
A→ D.

3. Based on the load sharing algorithm and the session
table, the LSMAC dispatcher decides that this packet
should be handled by the server (say B2), and sends
the packet to B2 by modifying the MAC addresses of
the frame.

4. The server B2 accepts the packet and replies directly to
the client without going through the LSMAC dispatcher
again.

Even though we focus on clustering Web servers in
benchmarking LSMAC in section 4, the LSMAC dispatcher
can be used to balance any TCP/IP-based network service.
In general, those protocols which do not open additional

ports during a TCP session, can be handled by LSMAC as
described above. For example, we employ the LSMAC dis-
patcher to “load share” TELNET sessions to our research
workstation-cluster. For others, which do open additional
ports, more processing is needed for the session lookup.
For example, in FTP, the client and the server send com-
mands on a control connection with port 21 (at the server),
but they transfer data on a separate data connection with
port 20 (at the server). The incoming packets on the data
connection from a client must go to the same back-end
server, to which the client is connected to on its control
connection.

In comparison to other MAC-based approaches, our ap-
proach simplifies the packet routing and avoids the check-
sum recalculations. These two advantages can largely im-
prove the dispatcher performance, considering that these
two operations need to be performed on each and every
packet.

3.2. Implementation considerations

The IP addresses and port numbers of the two endpoints
uniquely define every TCP connection (session) on the In-
ternet. We use these to map incoming packets to particular
connections already established with the back-end servers.
A hash table (figure 4) is used to store the association be-
tween client requests and back-end servers.

For studying load sharing, the prototype utilized two
algorithms: round robin and least-connections. The round
robin algorithm selects the back-end server as the target in
a circular fashion. The least-connections algorithm counts
the number of live TCP sessions at each back-end server.
When a new TCP session request comes in, the dispatcher
selects the back-end server with the least number of live



X. Gan, B. Ramamurthy / LSMAC: An improved load sharing network service dispatcher 57

Figure 4. Data structure for associations between sessions and servers.

TCP sessions as the target. For measuring the performance,
we use the round robin algorithm to distribute the load
amongst the entire set of back-end servers. This works
well since all of our servers are configured in a similar
fashion and the requests from the clients are comparable
in size and duration. However, because our solution does
not restrict the user to a certain server configuration, load-
sharing algorithms based on individual server usage could
yield better results in a heterogeneous environment. Our
modular design allows new load-sharing algorithms to be
easily added to the systems.

The LSMAC dispatcher requires the MAC address of
each back-end server for forwarding packets. For easy man-
agement, the Address Resolution Protocol (ARP) is used in
our prototype to automatically discover back-end servers.
The administrator specifies the cluster address and load-
sharing algorithm when invoking the LSMAC dispatcher.
The LSMAC dispatcher will broadcast an ARP request for
the cluster address and retrieve the back-end servers’ MAC
addresses from their ARP responses. In addition, the dis-
patcher periodically broadcasts ARP requests and processes
ARP replies to check the server availability. It also captures
Internet Control Message Protocol (ICMP) messages, which
will detect the case where the server could be down while
its ARP still works. This approach enables administrators
to add (remove) servers to (from) the cluster dynamically,
and enable the dispatcher to detect dead servers and remove
them from the server pool at running time. Additional de-
tails of the LSMAC prototype implementation can be found
in Gan [1999].

4. Evaluation

We evaluated the performance of the prototype in clus-
tering Web servers. Web servers play a vital role in en-
abling E-Commerce. All Web servers (clustered and non-
clustered) communicate with clients (browsers) using the
Hypertext Transfer Protocol (HTTP) [Berners-Lee et al.
1996]. The client establishes a connection to a TCP port
of the server (by default, port 80), and no other ports are
opened during the session.

WebStone [Mindcraft 1999] was used to benchmark the
performance of our cluster-based server systems. WebStone
is a configurable load generator for Web servers. This freely

available benchmark simulates varying client loads to mea-
sure a server’s connection rate, throughput, and request la-
tency.

Any one of the dispatcher, the back-end servers, or the
network can “bottleneck” the operation of a cluster-based
server system. In order to evaluate the capability of a
dispatcher correctly, we need to make sure that neither
the back-end servers nor the network bandwidth “bottle-
necks” the system and thus cuts the performance of the
dispatcher. Dynamic content such as Common Gateway
Interface (CGI) could easily “bottleneck” the system, since
a CGI program runs as a separate process in the server ma-
chine every time a CGI document is requested and therefore
is very computation-intensive. Similarly, requests for large
files could cause network saturation. The server throughput
is more related to the network bandwidth capability than to
the dispatcher capability. Request latency does not play a
significant role in the performance improvement achieved
using the dispatcher, considering the large latency encoun-
tered in a Wide Area Network (WAN). Thus, the connection
rate with small static files would be the best indicator of
the performance of the dispatcher. The server connection
rate is expressed as connections per second. This is an
indication of how fast the server system can establish a
connection and start communicating with the clients.

Some vendors also publish the number of simultane-
ous connections supported. However, different connections
transfer different amounts of data. Some may cause a lot
of traffic because of downloading multimedia data, while
others may only transfer a few packets. Thus the number
of simultaneous connections supported has more to do with
memory available at the dispatcher than its ability to for-
ward packets quickly. A dispatcher usually uses less than
32 bytes of memory to keep track of each TCP session (24
bytes in our implementation, see figure 4). Thus, a dis-
patcher running on a machine with 32 MB memory could
theoretically support 1 million simultaneous connections.
Yet in order to support a mere 1 Kbps sustained transfer
rate (less than 2% of the capacity of a 56K modem) for
each connection, a network bandwidth of 1 Gbps would be
required!

4.1. Experiment design

In our experiments, the dispatcher and three standalone
back-end servers were executing on 266 MHz Pentium II
machines with 64 MB memory. These machines were
connected in a shared 100 Mbps Ethernet environment
or a switched 100 Mbps Ethernet environment. Red Hat
Linux 5.2 (kernel 2.2.6) and Apache Web Server 1.3 were
installed on every machine. WebStone 2.0 was run on two
266 MHz Pentium II machines with 128 MB memory each
on the same network. We chose four types of server files:
0 KB files that have no payload but still require HTTP
headers, 2 KB files which are typical of the first page at a
Web server, a file mix with file sizes and access frequen-
cies derived from a Web server access log (available from



58 X. Gan, B. Ramamurthy / LSMAC: An improved load sharing network service dispatcher

Figure 5. Connection rates in shared Ethernet environment.

Figure 6. Connection rates in switched Ethernet environment.

Mindcraft [Mindcraft 1999]), and purely dynamic files. The
dynamic files were generated by a CGI program based on
file sizes and access frequencies derived from the same Web
server access log. A performance comparison of the LS-
MAC dispatcher and a LSNAT dispatcher can be found in
[Gan et al. 2000].

4.2. Server connection rate

In a cluster-based server there is one or more back-end
servers simultaneously handling requests. In general, it
should have a higher connection rate than a single server,
unless the network bandwidth or the dispatcher becomes
a bottleneck. Our tests with small files (0–2 KB) show
that the dispatcher with three servers can handle over 1600
connections per second in shared environment (figure 5)
and reach 1800 connections per second in switched envi-
ronment (figure 6) at close to 100 percent CPU utilization.
The connection rate in a single server configuration with the
same file size is around 550 connections per second. With
a 2-byte page size, IBM Network Dispatcher can handle
815 connections per second when it runs on a SP-2 ma-
chine in a shared Token Ring environment [Hunt et al.
1998]. Each SP-2 node has a POWER2 67 MHz CPU
and 256 MB memory. Our implementation achieved supe-
rior performance because it avoids computation-intensive
checksum recalculations.

However, with the access log file mix, whose average
file size is 108.5 KB, the cluster-based server does not im-
prove the connection rate in a shared environment due to

Figure 7. Connection rates with varying number of back-end servers.

network collisions. The dispatcher with three servers main-
tains about 400 connections per second (figure 5), which is
very close to the connection rate of a single server. 400 con-
nections per second are about the maximum rate for that file
size in our 100 Mbps shared Ethernet environment, because
at that rate the server throughput reaches 60 Mbps. But,
with the same log file mix in a switched environment, the
LSMAC dispatcher reaches near 800 connections per sec-
ond (figure 6). This test points out that a higher capacity
network is needed in order to fully utilize the functionality
provided by the LSMAC dispatcher.

It is interesting to notice that the cluster-based server
scales better with dynamic content than static content. The
connection rate increases when more back-end servers are
added to the cluster in the CGI case. Figure 7 shows the
connection rate changes with varying number of back-end
servers for both static and dynamic content in a shared
environment under 42 web clients. Apparently adding more
servers eases the bottleneck of the back-end servers in the
CGI case. Thus, clustering is very useful in scaling Web
sites with large amounts of dynamic content, which plays
an important role in nearly all E-Commerce Web sites.

5. Conclusions

The scalability and availability of network services are
becoming increasingly important as more people get con-
nected to the Internet. Cluster-based servers can achieve
good scalability and high availability at a low cost. Cur-
rently most cluster-based servers use either an IP-based or a
MAC-based approach. In this paper we presented LSMAC,
a new variation of the MAC-based clustering architecture.
Our approach using direct MAC address modification sim-
plifies the packet routing and avoids checksum recalcula-
tions, thus speeding up the dispatching process. Based on
Webstone measurements, the LSMAC prototype was found
to achieve superior performance to existing MAC-based
clustering products. The experiments also show that a high
capacity network is necessary for implementing load shar-
ing network services, and a cluster-based web server scales
better for dynamic content than static content. We pre-
dict that there will be a large deployment of cluster-based



X. Gan, B. Ramamurthy / LSMAC: An improved load sharing network service dispatcher 59

servers in the near future due to the rapid expansion of
E-Commerce. Our future work will include incorporating
fault tolerance and handling non-TCP traffic.

Acknowledgement

The authors thank Trevor Schroeder and Professor Steve
Goddard (of UNL) for their valuable comments and help
with performance measurements of the prototype.

References

Attanasio, C.R. and S.E. Smith (1992), “A Virtual Multiprocessor Imple-
mented by an Encapsulated Cluster of Loosely Coupled Computers,”
IBM Research Report RC18442, IBM Research, Yorktown Heights,
NY.

Berners-Lee, T., R. Fielding, and H. Nielson (1996), “Hypertext Transfer
Protocol – HTTP/1.0,” RFC 1945, Internet Engineering Task Force.

Brisco, T. (1995), “DNS Support for Load Balancing,” RFC 1794, Internet
Engineering Task Force.

Bruno, L. (1997), “Balancing the Load on Web Servers,” Data Commu-
nications, September 21,
http://www.data.com

Cisco Systems (1999), “Local Director,”
http://www.cisco.com/warp/public/751/lodir/

Damani, O.P., P.E. Chung, Y. Huang, C. Kitala, and Y. Wang (1997),
“ONE-IP: Techniques for Hosting a Service on a Cluster of Machines,”
Computer Networks and ISDN Systems 29, 1019–1027.

Dias, D., W. Kish, R. Mukherjee, and R. Tewari (1996), “A Scalable
and Highly Available Web Server,” In Proceedings of the IEEE Com-
puter Conference (COMPCON), IEEE Computer Society Press, Los
Alamitos, CA, pp. 85–92.

Gan, X. (1999), “A Prototype of a Web Server Clustering System,” MS
Project Report, Department of Computer Science and Engineering,
University of Nebraska, Lincoln, NE.

Gan, X., T. Schroeder, S. Goddard, and B. Ramamurthy (2000), “LSMAC
vs. LSNAT: Scalable Cluster-based Web Servers,” Cluster Computing,
to appear.

Hunt, G., G. Goldszmidt, R. King, and R. Mukherjee (1998), “Network
Dispatcher: A Connection Router for Scalable Internet Service,” Com-
puter Networks and ISDN Systems 30, 347–357.

IBM (1999), “eNetwork Dispatcher,”
http://www.software.ibm.com/network/dispatcher/

Mindcraft (1999), “WebStone,”
http://www.mindcraft.com/webstone/

Srisuresh, P. and D. Gan (1998), “Load Sharing Using IP Network Address
Translation (LSNAT),” RFC 2391, Internet Engineering Task Force.


