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We study numerical solution branches of certain parameter-dependent problems defined
on compact domains with various boundary conditions. The finite differences combined
with the domain decomposition method are exploited to discretize the partial differen-
tial equations. We propose efficient numerical algorithms for solving the associated lin-
ear systems and for the detection of bifurcation points. Sample numerical results are re-
ported.
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1. Introduction

In this paper, we are concerned with numerical solutions of certain nonlinear
eigenvalue problems of the form

G(u,λ) = 0 in Ω. (1.1)

Here Ω is a compact domain with piecewise smooth boundary ∂Ω, and one may
impose appropriate boundary conditions on ∂Ω. If the domain Ω possesses certain
symmetries, one may solve several reduced problems of equation (1.1) on a sym-
metry cell Ω1 of Ω with various boundary conditions on ∂Ω1, see, e.g., [1,14] and
the further references cited therein. On the other hand, if Ω does not possess any
symmetry property, then one may use the domain decomposition method to solve
equation (1.1).

Suppose that equation (1.1) or its associated reduced problems are discretized
by the centered difference approximations. The corresponding centered difference

∗ Supported by the National Science Council of R.O.C. (Taiwan) through Project NSC 89-2115-M-005-
006.

 J.C. Baltzer AG, Science Publishers



368 C.-S. Chien et al. / A continuation–domain decomposition algorithm

analogues are of the form

H(x,λ) = 0, (1.2)

where H :RN × R → RN is a smooth mapping with x ∈ RN , λ ∈ R. The Jacobian
of H is denoted by DH = [DxH ,DλH] ∈ RN×(N+1) with DxH ∈ RN×N . In
general, the matrix DxH is symmetric if Dirichlet boundary conditions are imposed
on ∂Ω. On the other hand, DxH is nonsymmetric if Neumann or mixed boundary
conditions are considered. The unsymmetric discretization matrices associated to a
class of self-adjoint differential operators with Neumann or mixed boundary conditions
are quasi-symmetric. That is, they are similar to symmetric ones. Thus, the adaptive
continuation–Lanczos algorithm described in [7] can be exploited to trace solution
branches of (1.2).

Our aim here is to develop efficient continuation algorithms for tracing solution
curves of equation (1.2). Here the finite differences combined with the domain decom-
position method [6;15, chapter 13] are exploited to discretize the partial differential
equations. We show how the associated linear systems can be effectively solved, and
how the bifurcation points can be detected in the context of the domain decomposition
method.

This paper is organized as follows. In section 2 we show that the discretization
matrices associated to a class of self-adjoint differential operators are quasi-symmetric.
The implementation of the domain decomposition method in the context of continua-
tion methods [2,3,12] is discussed in section 3. A continuation–domain decomposition
algorithm is proposed for tracing solution curves of certain second order semilinear el-
liptic eigenvalue problems. Finally, numerical examples involving bifurcating branches
of nonlinear eigenvalue problems are given in section 4.

2. Symmetrization of the discretization matrices

Exploiting symmetries in differential equations is an efficient technique to reduce
the computational cost for obtaining numerical solutions of the equation. By doing
this one can solve the associated reduced problems defined in a smaller domain with
mixed boundary conditions, see, e.g., [1,8,14]. In general the resulting coefficient
matrices are quasi-symmetric [4, p. 106]. That is, one can find some transformation
matrices such that the coefficient matrices become symmetric. Thus, the continuation–
Lanczos algorithm [9] can be exploited to trace solution curves of parameter-dependent
problems. We refer to [10, chapter 9] and the further references cited therein for
the study of the Lanczos method. Recently, a more flexible continuation–Lanczos
algorithm proposed by Chien et al. is described in [7]. In this section we show that
the discretization matrices associated to a class of self-adjoint differential operators are
quasi-symmetric.
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2.1. Discretization matrices associated to ordinary differential operators

Let T1 and T2 be any two unreduced real tridiagonal matrices of the following
form:

Ti =


a1 b 0c1 a2 c2

. . . . . . . . .
cN−2 aN−1 cN−10 αi aN

 ∈ RN×N , bc1 > 0, i = 1, 2, (2.1)

with α1 = cN−1, α2 = b and bcN−1 > 0.

Lemma 2.1. The unreduced tridiagonal matrices T1 and T2 defined above are similar
to the symmetric tridiagonal matrices T̃1 and T̃2 of the following form:

T̃i =



a1
√
bc1 0√

bc1 a2 c2

c2 a3 c3
. . . . . . . . .

cN−2 aN−1 βi0 βi aN

 , i = 1, 2,

with β1 = cN−1 and with β2 =
√
bcN−1, respectively.

Proof. Choose

D1 = diag

(√
c1

b
, 1, . . . , 1

)
and D2 = diag

(√
c1

b
, 1, . . . , 1,

√
cN−1

b

)
.

Then we have D1T1D
−1
1 = T̃1, and D2T2D

−1
2 = T̃2. �

Example 2.1. If we choose a1 = a2 = · · · = aN = 2, b = −2, and c1 = c2 =
· · · = cN−1 = −1 in (2.1), then T1 and T2 are the discretization matrices associated
to −d2/dx2 defined in [0, 1] with mixed boundary conditions

u(0) = u′(1) = 0,

and with Neumann boundary conditions

u′(0) = u′(1) = 0,

respectively.
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Next, let P1 and P2 be any two real pentadiagonal matrices of the following
form:

Pi =



a1 αi βi 0b1 a2 b2 c2

c1 b2 a3 b3 c3
. . . . . . . . . . . . . . .

cN−4 bN−3 aN−2 bN−2 cN−2

cN−3 bN−2 aN−1 bN−10 s r aN


∈ RN×N , i = 1, 2, (2.2)

where α1 = b1, β1 = c1, α2 = p, β2 = q, and b1p, c1q, bN−1r and cN−2s are all
positive numbers.

Lemma 2.2. If

b1

p
=
c1

q
and

bN−1

r
=
cN−2

s
,

then the matrices P1 and P2 defined above are similar to the pentadiagonal matrices P̃1

and P̃2 of the following form:

P̃i =



a1 γi δi 0γi a2 b2 c2

δi b2 a3 b3
. . .

. . . . . . . . . . . . cN−3

cN−4 bN−3 aN−2 bN−2
√
cN−2s

cN−3 bN−2 aN−1
√
bN−1r0 √

cN−2s
√
bN−1r aN


, i = 1, 2,

with γ1 = b1, δ1 = c1, γ2 =
√
b1p, δ2 =

√
c1q.

Proof. Choose

D3 = diag

(
1, . . . , 1,

√
bN−1

r

)
∈ RN×N and

D4 = diag

(√
b1

p
, 1, . . . , 1,

√
bN−1

r

)
.

Then we have D3P1D
−1
3 = P̃1 and D4P2D

−1
4 = P̃2. �

Example 2.2. If we choose a1 = 5, a2 = · · · = aN−2 = aN = 6, aN−1 = 7, b1 =
· · · = bN−1 = −4, c1 = · · · = cN−2 = 1, r = −8, and s = 2, then P1 is the
discretization matrix associated to −d4/dx4 defined on [0, 1] with boundary conditions
u(0) = u′′(0) = u′(1) = u′′′(1) = 0.
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2.2. Discretization matrices associated to the Laplacian

Now we consider the 2-dimensional linear eigenvalue problem with Neumann
boundary conditions

∆u+ λu= 0 in Ω = [0, 1]2,
∂u

∂n
= 0 on ∂Ω.

(2.3)

The eigenpairs of (2.3) are

λm,n =
(
m2 + n2

)
π2,

um,n(x, y) = cosmπx · cosnπy, m,n = 0, 1, 2, . . . .
(2.4)

We discretize (2.3) by the centered difference approximations with uniform mesh
size h = 1/(N − 1) on the x- and y-axis, respectively. The discretization matrix
associated to −∆ in (2.3) is denoted by A ∈ RN2×N2

, where

A =
1
h2


AN −2IN 0−IN AN −IN

. . . . . . . . .
−IN AN −IN0 −2IN AN

 (2.5)

with AN obtained from h2A by replacing AN and IN by 4 and 1, respectively, and
IN ∈ RN×N the identity matrix. Note that A is banded and nonsymmetric.

The eigenpairs of A are

λhm,n = 2(N − 1)2
(

2− cos
mπ

N − 1
− cos

nπ

N − 1

)
,

(2.6)
Um,n(xi, yj) =± cos

miπ

N − 1
· cos

njπ

N − 1
, m,n = 0, 1, . . . ,N − 1,

where {(xi, yj) | 0 6 i, j 6 N − 1} is the set of grid points on [0, 1]2. Note that the
eigenpairs of

T =:
1
h2


2 −2 0−1 2 −1

. . . . . . . . .
−1 2 −10 −2 2

 ∈ RN×N
are (see [11, p. 440])

λhn = 2(N − 1)2
(

1− cos
nπ

N − 1

)
,

(2.7)

Un =±
(

cos
nπ

N − 1
, cos

2nπ
N − 1

, . . . , cos
n(N − 1)π
N − 1

)T

, n = 0, 1, . . . ,N − 1.
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Applying the idea of matrix–tensor products, one may easily verify that

A = IN ⊗ T + T ⊗ IN , λhm,n = λhm + λhn, Um,n = Un ⊗ Um,

where λhm,n, Um,n and λhm, λhn, Um, Un are defined as in (2.6) and (2.7), respectively.

Lemma 2.3. The matrix A defined in (2.5) is similar to a symmetric block tridiagonal
matrix Ã, where

Ã =
1
h2



ÃN −
√

2IN 0−
√

2IN ÃN −IN
−IN ÃN

. . .
. . . . . . −IN

−IN ÃN −
√

2IN
0 −

√
2IN ÃN


∈ RN2×N2

(2.8)

with ÃN obtained from h2Ã by replacing ÃN and IN by 4 and 1, respectively.

Proof. Let D = diag((
√

2/2)D5,D5, . . . ,D5, (
√

2/2)D5) ∈ RN2×N2
be a block diag-

onal matrix, where D5 = diag((
√

2/2), 1, . . . , 1, (
√

2/2)) ∈ RN×N . One may readily
verify that DAD−1 = Ã. �

Remark. Lemmas 2.2 and 2.3 show that the symmetrizations of P1, P2 and A are
independent of their diagonal entries.

Recently, Chien et al. [8] exploited symmetry and scaling properties of the von
Kármán equations to trace solution branches of its reduced problem defined on a sub-
domain. Specifically, the centered difference analogue corresponding to the linearized
von Kármán equations

∆2w + λwxx = 0 in Ω1 =

[
0,

l

2m

]
×
[

0,
1

2n

]
,

w = ∆w= 0 on x = 0 and y = 0,

wn = wnnn = 0 on x =
l

2m
and y =

1
2n

(2.9)

is considered. Here w(x, y) is the deformation of an elastic plate defined on the
subdomain Ω1 of [0, l] × [0, 1], m,n ∈ N, and the subscript “n” denotes the unit
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normal derivative. In this case the discretization matrix associated to the biharmonic
operator in (2.9) is

B =
1
h4



BK1 EK IK 0
EK BK2 EK IK

IK EK BK3 EK IK
. . . . . . . . . . . . . . .

IK EK BKL−2 EK IK

IK EK BKL−1 EK

0 2IK 2EK BKL


∈ RKL×KL (2.10)

with BKi ∈ RK×K obtained from h4B by replacing EK and IK by −8 and 1,
respectively, and

diagBK1 = (18, 19, . . . , 19, 20, 19),

diagBKL−1 = (20, 21, . . . , 21, 22, 21), (2.11)

diagBKj = (19, 20, . . . , 20, 21, 20), otherwise;

and

EK =


−8 2 0
2 −8 2

. . . . . . . . .
2 −8 α

0 β −8

 ∈ RK×K (2.12)

with α = 2 and β = 4. Here the positive integers K and L in (2.10) are the number
of interior mesh points on the x- and y-axis, respectively.

Lemma 2.4. The matrix B defined in (2.10) is similar to a symmetric block matrix B̃.
Here

B̃ =
1
h4



B̃K1 ẼK IK 0
ẼK B̃K2 ẼK IK

IK ẼK B̃K3 ẼK
. . .

. . . . . . . . . . . . IK

IK ẼK B̃KL−2 ẼK
√

2IK

IK ẼK B̃KL−1

√
2ẼK

0 √
2IK

√
2ẼK B̃KL


∈ RKL×KL
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with B̃Ki ∈ RK×K obtained from h4B̃ by replacing ẼK and IK by −8 and 1,
respectively, and the diagonal elements of B̃Ki are the same as those of Bi in (2.11),
and ẼK has the same form as EK defined in (2.12) with α = β = 2

√
2.

Proof. Let E = diag(D6, . . . ,D6, (
√

2/2)D6) ∈ RKL×KL be a block diagonal
matrix, where D6 = diag(1, . . . , 1, (

√
2/2)) ∈ RK×K . One may readily verify that

EBE−1 = B̃. �

Remark. One may choose D, E and Di, i = 1, 2, . . . , 6, in the proof of lemmas 2.1–
2.4 so that its entries can be either positive or negative. By doing this some entries of
the symmetric matrices obtained will have different signs.

3. A continuation–domain decomposition algorithm

3.1. A brief review of the predictor–corrector continuation method

We denote the discrete solutions of the equation (1.2) by c, where

c =
{
y(s) =

(
x(s),λ(s)

)
| H
(
y(s)

)
= 0, s ∈ I ⊂ R

}
.

Assume that a parametrization via arc length is available on c. Several well-known
curve-tracking algorithms have been developed during the past decade, e.g., the HOM-
PACK90 of Watson et al. [16]. We will trace the solution curve c by predictor–
corrector continuation methods [2,3,12]. Numerical computation of bifurcation points
and branch-switching techniques can be found, e.g., in [2,13] and the further references
cited therein. Let yi = (xi,λi) ∈ RN+1 be a point which has been accepted as an
approximating point for the solution curve c. Suppose that the Euler predictor is used
to predict a new point zi+1,1. That is,

zi+1,1 = yi + δiui. (3.1)

Here δi > 0 is the step length, and ui is the unit tangent vector at yi, which is obtained
by solving the following bordered linear system:[

DxH(yi) DλH(yi)
rT
i

]
· ui =

[
0̄
1

]
(3.2)

for some constraint vector ri ∈ RN+1. The accuracy of the approximation to the
solution curve must be improved via a corrector process. Suppose that the modified
Newton method with constraint[

DxH(zi+1,1) DλH(zi+1,1)
uT
i

]
· wj =

[
−H(zi+1,j)

0

]
, j = 1, 2, . . . , (3.3)
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is solved, then we set zi+1,j+1 = zi+1,j + wj , j = 1, 2, . . . . If yi lies sufficiently
near c, then the modified Newton process will converge if the step size δi is small
enough. For simplicity we rewrite the equation (3.2) or (3.3) as[

A p
qT γ

] [
x
λ

]
=

[
f
g

]
, (3.4)

where p, q, f ∈ RN and γ, g ∈ R. The block elimination algorithm [5,12] is given as
follows.

Algorithm 3.1 (Block elimination).
Step 1. Solve Av = p, Aw = f .
Step 2. Compute λ = (g − qTw)/(γ − qTv).
Step 3. Compute x = w − λv.

3.2. The domain decomposition method

From (3.4) and algorithm 3.1 it is obvious that we need only solve one linear
system to obtain the tangent vector ui. To perform the corrector process, note that two
linear systems must be solved per Newton iteration. However, one of them, namely,
DxH(zi+1,1)v = DλH(zi+1,1) reappears at each iteration. Thus, after the first iteration
we need only solve one linear system per iteration.

Now we discuss iterative methods for solving the linear systems in step 1 of
algorithm 3.1. Without loss of generality, we consider the following semilinear elliptic
eigenvalue problem:

∆u+ λf (u) = 0 in Ω,

u= 0 on ∂Ω.
(3.5)

Here f :R→ R is a smooth odd gradient map which is normalized to satisfy f ′(0) = 1,
f ′′′(0) 6= 0, and Ω is an L-shaped region resulting from cutting away a quarter of the
unit square. Assume that edge-based partitioning is used on the domain Ω. We label
the nodes by subdomain as shown in [15, p. 387]. Note that the interface nodes are
labeled last. For a general partitioning into m subdomains Ωi, i = 1, . . . ,m, the linear
systems which appear in step 1 of algorithm 3.1 have the following form (see, e.g.,
[15, chapter 15]):

B1 E1

B2 E2
. . .

...
Bm Em

F1 F2 . . . Fm C




r1

r2
...
rm
s

 =


d1

d2
...
dm
e

 , (3.6)
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where each ri represents the subvector of unknowns that are interior to subdomain Ωi,
and s represents the vector of all interface unknowns. We express the system (3.6) in
the simpler form

A

(
r
s

)
=

(
d
e

)
, A =

(
B E
F C

)
, (3.7)

where E represents the subdomain to interface coupling seen from the subdomains,
F represents the interface to subdomain coupling seen from the interface nodes and
B = diag(B1, . . . ,Bm) is a block diagonal matrix. Suppose that the finite differ-
ence method is used to discretize (3.5), then the matrix A is symmetric. Thus the
continuation–Lanczos algorithm described in [9] can be used to solve the correspond-
ing linear systems as well as to detect a singularity of the coefficient matrix A.

Alternatively, from the first equation of (3.7) the unknown vector r can be ex-
pressed as

r = B−1(d−Es). (3.8)

On substituting this into the second equation of (3.7), we obtain the following reduced
system: (

C − FB−1E
)
s = e− FB−1d, (3.9)

where
S = C − FB−1E

is the Schur complement matrix associated with the s variable. Defining

E′ := B−1E and d′ := B−1d,

the solution to the linear system (3.7) is obtained by applying the block elimination
once more.

Algorithm 3.2 (Block elimination algorithm for solving (3.7)).

Step 1. Solve BE′ = E and Bd′ = d, respectively.

Step 2. Compute e′ = e− Fd′.
Step 3. Compute S = C − FE′.
Step 4. Solve Ss = e′.

Step 5. Compute r = d′ −E′s.

The domain decomposition algorithm for solving (3.4) is described as follows.

Algorithm 3.3 (Domain decomposition method for solving (3.4)).

Step 1. Solve Av = p and Aw = f by algorithm 3.2.

Step 2. Compute λ = (g − qTw)/(γ − qTv).

Step 3. Compute x = w − λv.
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In general, the matrices Ei contain a certain number of zero columns. Obviously,
we can use the continuation–Lanczos algorithm in [9] to solve the symmetric linear
systems with multiple right-hand sides in step 1 of algorithm 3.2 in a parallel com-
puter. Alternatively, we can also exploit the continuation–Lanczos–Galerkin algorithm
described in [7] to solve these symmetric linear systems. However, the drawback of
algorithm 3.2 is that we can not detect singularities of the coefficient matrix A.

Next, we discuss direct methods for solving the linear systems in step 1 of
algorithm 3.1. Recently, Allgower and Aston [1] have described numerical methods
for detecting simple bifurcation points along solutions of discrete bifurcation problems,
where the coefficient matrix is of the form (3.7). They proposed to use the determinant
of the Jacobian as a test function since it is zero at a bifurcation point and changes
sign when an odd order bifurcation point is passed. We will show that the numerical
method proposed by Allgower and Aston can be used to detect multiple bifurcation
points of certain semilinear elliptic eigenvalue problems as well. To start with, let

A =

[
B E
F C

]
.

By performing an LU-decomposition of A, we obtain[
B E
F C

]
=

[
L1 0
L2 L3

] [
U1 U2

0 U3

]
, (3.10)

where L1 and L3 are unit lower triangular, and U1 and U3 are upper triangular. Ex-
panding out the matrix product on the right-hand sides leads to the following equations:

B=L1U1, (3.11)

E =L1U2, (3.12)

F =L2U1, (3.13)

C =L2U2 + L3U3. (3.14)

Equation (3.11) is simply the LU-decomposition for A. Once the matrices L1

and U1 are obtained, the matrix U2 in (3.12) can be easily solved since L1 is unit
lower triangular. Similarly, equation (3.13) can be expressed as

UT
1 L

T
2 = F T.

Therefore, L2 can also be easily solved since U1 is upper triangular. Finally, L3 and U3

can be found from an LU-decomposition of C−L2U2. Now the determinant of A can
be easily evaluated since detA = detU1 · detU3. Therefore, an odd order bifurcation
point is detected on the discrete solution if the determinant of A changes sign.

For the problem (3.5), the discretization matrix A corresponding to the Laplacian
is symmetric in the context of the domain decomposition method. Thus, the rank
deficiency of the matrix A is revealed by the sign patterns of the diagonal entries
of U1 and U3. Suppose that the function f in (3.5) is an odd gradient map. By the
result in [2] we can detect both simple bifurcations and multiple bifurcations. This
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fact has been verified by our numerical experiments. However, if the matrix A is
nonsymmetric, the numerical method proposed by Allgower and Aston can no longer
be exploited to detect simple bifurcations. The detailed investigation will be given
elsewhere. Note that one of our main purposes is to solve the linear systems. Once we
obtain the LU-decomposition (3.10), then (3.7) can be replaced by[

L1 0
L2 L3

] [
U1 U2

0 U3

] [
r
s

]
=

[
d
e

]
. (3.15)

If we let [
U1 U2

0 U3

] [
r
s

]
=

[
u
v

]
, (3.16)

then from (3.15) and (3.16) we have

L1u= d, (3.17)

L2u+ L3v= e or L3v = e− L2u, (3.18)

U3s= v, (3.19)

U1r= u− U2s. (3.20)

Combining (3.17)–(3.20), we obtain the following algorithm for solving (3.7).

Algorithm 3.4 (Detect singularity and solve the linear system (3.7)).

Step 1. Perform LU -decomposition on A, i.e.,[
B E

F C

]
=

[
L1 0

L2 L3

] [
U1 U2

0 U3

]
.

Step 2. Solve L1u = d.

Step 3. Solve L3v = e− L2u.

Step 4. Solve U3s = v.

Step 5. Solve U1r = u− U2s.

Finally, algorithm 3.3 should be replaced by

Algorithm 3.5 (LU-decomposition for solving (3.4)).

Step 1. Solve Av = p and Aw = f by algorithm 3.4.

Step 2. Compute λ = (g − qTw)/(γ − qTv).

Step 3. Compute x = w − λv.
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4. Numerical examples

The numerical methods described in previous sections were implemented to trace
solution branches of the following second-order semilinear elliptic eigenvalue prob-
lems:

∆u+ λ sinh u= 0 in Ω,

u= 0 on ∂Ω.
(4.1)

Equation (4.1) was discretized by the centered difference approximations with uni-
form mesh size h = 0.05 (respectively 0.025) on the x- and y-axis, respectively. In
example 1, the domain decomposition method is incorporated, while in example 2,
we exploit symmetry of the domain. All our computations were executed on an IBM
RS/6000 SP2 machine with High Performance Fortran Compiler and with 64-bit IEEE
arithmetic at National Chung Hsing University.

Example 1. We consider equation (4.1) defined on an L-shaped region described
in section 3. The direct method described in section 3 is used for the associated
linear systems as well as to detect a singularity of the coefficient matrix A. Fig-
ures 1–3 display the contours of the first three solution branches bifurcating at
(0,λ1) ≈ (0, 38.75), (0,λ2) ≈ (0, 60.26), (0,λ3) ≈ (0, 78.30), respectively.

Example 2. In this example, we show that the techniques described in section 2 can
also be applied to the problem defined on a nonsquare domain. We consider equa-
tion (4.1) with Ω := [0, 1]2 \ [0.4, 0.6]2. The predictor–corrector continuation method
described in section 3 is exploited to trace the first few solution branches of (4.1). Our
numerical results show that the solution curves of equation (4.1) bifurcating at (0,λ1)
and (0,λ5) can be represented by the first two solution curves of the following reduced

Figure 1. Contour of the solution curve bifurcating at (0,λ1) ≈ (0, 38.75).
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Figure 2. Contour of the solution curve bifurcating at (0,λ2) ≈ (0, 60.26).

Figure 3. Contour of the solution curve bifurcating at (0,λ3) ≈ (0, 78.30).

problem:

∆u+ µ sinhu= 0 in Ω′ = [0, 0.5]2 \ [0.45, 0.5]2,
∂u

∂n
= 0 on x =

1
2

and y =
1
2

,

u= 0 on ∂Ω′
∖{

(x, y) ∈ ∂Ω′ | x =
1
2

or y =
1
2

} (4.2)

branching from (0,µ1) and (0,µ2), respectively. With h = 0.025 the discretization
matrix associated to −∆ in (4.2) is an unsymmetric matrix of order 375×375. By using
techniques similar to those described in section 2, we can show that this unsymmetric
matrix is quasi-symmetric. The details are not given here. The continuation–Lanczos
algorithm is exploited to trace the solution curves of (4.2). Tables 1 and 2 show that
the first two bifurcation points are detected at µ1 ≈ 38.92546 and µ2 ≈ 97.29447,
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Table 1
Sample result for example 2, h = 0.05, ε = 5 ·10−8, tol = 5 ·10−10, ‖d‖∞ = 5 ·10−9, λ1 ≈

38.92683, using the symmetric Lanczos method.

µ MAXNORM NCS η dim(Tj) θ1 κ2 NCI

38.50000 0.59897E−05 7 0 11 0.15671E−02 0.49062E+04 2
38.90000 0.99027E−04 9 0 12 0.56708E−03 0.13296E+05 5
38.92449 0.11392E−02 11 0 18 0.35852E−04 0.21767E+06 6
38.92546 0.16188E−01 13 1 30 −0.10268E−05 0.76014E+07 2
38.92234 0.30977E−01 15 1 26 −0.12502E−04 0.12487E+02 2
38.84458 0.13385E+00 22 1 28 −0.32670E−03 0.19151E+02 3
37.79991 0.50053E+00 34 1 29 −0.48834E−02 0.31109E+02 5
34.51676 0.10236E+01 50 1 30 −0.21939E−01 0.35481E+03 4
29.15678 0.16177E+01 72 1 31 −0.53706E−01 0.14441E+03 4
22.55311 0.22853E+01 98 1 32 −0.10183E+00 0.75824E+02 3

Table 2
Sample result for example 2, h = 0.05, ε = 5·10−9, tol = 5·10−11, ‖d‖∞ = 5·10−10, λ5 ≈

97.29651, using the symmetric Lanczos method.

µ MAXNORM NCS η dim(Tj) θ1 κ2 NCI

960.90000 0.81323E−06 4 0 10 0.14913E−02 0.50257E+04 3
970.25000 0.70367E−05 7 0 13 0.24128E−03 0.31140E+05 5
970.28750 0.36322E−04 9 0 15 0.53777E−04 0.13972E+06 5
970.29447 0.14970E−01 12 0 22 0.32555E−05 0.23450E+07 5
970.27858 0.44648E−01 14 2 30 −0.27837E−04 0.27512E+06 4
970.16531 0.12084E+00 18 2 27 −0.47093E−03 0.13837E+02 5
960.97100 0.19050E+00 20 2 27 −0.11021E−02 0.13892E+02 5
930.89154 0.62462E+00 36 1 24 −0.15990E−01 0.54013E+01 5
870.09788 0.11157E+01 60 1 25 −0.53021E−01 0.54665E+01 4
780.94582 0.15588E+01 88 1 26 −0.10308E+00 0.71617E+01 4

respectively. Figures 4 and 5 show the contours of these two solution curves at µ1 and
µ ≈ 96.971, respectively.

The following notations are used in tables 1 and 2. In order to save space, we
only print out results near the bifurcation points.
NCS: numerical ordering of continuation steps,
ε: accuracy tolerance in Newton corrector,
κ2: the two-norm condition number of coefficient matrices,
tol: stopping criterion for the CG type method,
NCI: number of corrector iterations per continuation step,
MAXNORM: maximum norm of the approximating solution,
‖d‖∞: maximum norm of the perturbation vector, see lemma 3.1.
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Figure 4. Contour of the solution curve at µ1 ≈ 38.92546, example 2.

Figure 5. Contour of the solution curve at µ ≈ 96.97100, example 2.
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