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This paper outlines a method, called reconciliation, for managing interference between
partial specifications or viewpoints. The method supports the detection, verification and
tracking of ontological overlaps. The paper describes the heuristics on which the method
is based and illustrates the application of the method using a scenario.

1. Introduction

The construction of a complex software system involves many agents (aka par-
ticipants or actors). These agents have different perspectives or views of the artifact
or system they are trying to describe or model. This gives rise to many partial speci-
fications (or viewpoints) reflecting those perspectives [Nuseibeh et al. 1994; Maiden
et al. 1995]. These specifications “interfere” with each other to the extent they refer
to, or assert properties of common aspects of the system under development and its
domain. This is a particular feature of the requirements engineering setting.

Interference between specifications can occur at two different levels. First,
they might “ontologically overlap”, that is they might incorporate components refer-
ring to common aspects of the “real world”. Second, in cases where they overlap
ontologically, they might also be inconsistent with each other. We believe that both
ontological overlap and inconsistency are inevitable and acceptable in system develop-
ment [Finkelstein et al. 1994]. Ontological overlap because it is necessary to support
multiple perspectives, and inconsistency because it is a necessary to support innovative
thinking, deferment of commitments and exploration of alternatives.

The consequence of this stance is that interference between specifications needs
to be “managed”, involving cooperation between the “viewpoint owners” [Finkelstein
et al. 1994]. This is complicated by specifications which: use different languages;
are at different degrees of abstraction, granularity and formality; deploy different ter-
minologies; are at different stages of development. These complexities, set alongside
the normal software engineering problems of scale, suggest the need for automated
reasoning and method support for interference management.

The interference management that is required (or indeed possible) varies. In
certain cases it might be loose, that is simply identifying ontological overlaps and
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inconsistencies, in other cases it might be tight, involving the integration of the spec-
ifications and the resolution of their inconsistencies.

Reconciliation, the method discussed in this paper lies between loose and tight
interference management. It supports the detection, verification and tracking of on-
tological overlaps. This is in some senses an easier problem than dealing with in-
consistencies. It is amenable to the application of heuristic techniques, for example,
inexact-matching mechanisms [Spanoudakis and Constantopoulos 1995] and models
of computer-supported negotiation [Easterbrook 1991], while inconsistency detection
may require theorem proving and sophisticated formal frameworks [Hunter and Nu-
seibeh 1995]. In any case the detection of ontological overlaps is prerequisite for
detecting inconsistencies.

In the rest of the paper, we describe a heuristic method for reconciling view-
points (section 2), we detail the heuristics on which it is based (section 3), give a
scenario showing how it is used (section 4), briefly describe tool support for speci-
fication matching (section 5), review related work (section 6), and conclude with a
discussion of open research issues and future work (section 7). An Appendix giving
basic definitions is attached.

2. Overview

The method we adopt for reconciling viewpoints has two basic stages, namely
analysis and revision, as shown in Fig. 1. It detects ontological overlaps using a
computational model of similarity and a classification of specification components
with respect to a meta-model of domain-independent, semantic modelling properties
– analysis. It also supports the re-modelling of specification components so that the
results of similarity analysis and viewpoint owners assessment of overlaps converge
– revision. The goal of this process is to ensure that the modelling of specifica-
tions is consistent with the human assessment of ontological overlaps between them
and establish a shared understanding among specification owners of the potential for
inconsistency.
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ontological
overlaps

revised specifications

assessments of
ontological
overlaps

modelling
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ontological
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Figure 1. Reconciliation of viewpoints.
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2.1. Analysis of specifications

The analysis of specifications is performed by a computational model of sim-
ilarity. A specification is treated as an aggregation of “specification components”,
classified using a meta-model, which expresses general, domain-independent, seman-
tic modelling properties. Both this meta-model and the specifications are described in
Telos, an object-oriented knowledge representation language, supporting the semantic
modelling abstractions of classification, generalisation and attribution [Mylopoulos et
al. 1990].

2.1.1. Meta-model

The meta-model consists of a kernel and a set of extensions. The kernel pro-
vides the key, domain-independent, properties of semantic modelling schemes [Storey
1993; Motschnig-Pitrik 1993], whereas the extensions provide additional properties
for modelling established specification languages.

The kernel part is organised as a generalisation taxonomy of classes, with speci-
fication components classified by the properties they possess. In particular, components
are distinguished into those representing entities and those representing relations. En-
tity representing components are further specialized into natural, nominal, place, event,
activity, state, agent and physical quantity components. Components representing re-
lations are initially distinguished by their arity (for example binary or n-ary relations).
Binary relations are further specialized according to: cardinality constraints (for ex-
ample, 1 : 1, N : M , total and onto relations); mathematical properties of relations
(for example, symmetric, transitive and set-inclusion relations); existential dependen-
cies between related items or other constraints between them, including their temporal
coexistence, physical separability and substance homogeneity (Storey 1993).

The extensions to the meta-model comprise classes of additional properties for
modelling established specification languages. Current extensions include constructs
to support the description of specifications developed in the relational (for example
fields, relations, inclusion dependencies) and object-oriented data models (for example
object types, attributes and identifiers, is-a relations).

In essence, the meta-model enables the enrichment of the semantic content of
specification components by asserting domain-independent properties about them and
supports their representation with respect to a common set of structuring constructs.
Both are prerequisites for the computational detection of their similarity. A detailed
description of the meta-model is given in [Spanoudakis and Constantopoulos 1995].

2.1.2. Computational model of similarity

Specifications, described as Telos objects in terms of the meta-model, are com-
pared using a computational model of similarity [Spanoudakis and Constantopoulos
1995; 1996; Spanoudakis 1994]. Similarity analysis is based on three metric func-
tions, namely the classification, generalisation and attribution metrics, which measure
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conceptual distances between specifications with respect to the classification, general-
isation relations and the attributes constituting their descriptions.

The classification distance between specification components indicates their dif-
ferences with respect to the properties expressed by the relevant classes of the meta-
model. It is computed by identifying the non-common classes of two components,
estimating the importance of these classes, and aggregating the importance measures
obtained into a classification distance measure (function dc in the Appendix). The
generalisation distance reveals semantic differences between specification components,
indicated by their non-common superclasses and is computed in a similar manner to
the classification distance (function dg in the Appendix). The attribution distance be-
tween specifications determines an optimal isomorphism Is between their structures.
Specification components contained in these structures are mapped only if they are
classified under the same classes of the meta-model – semantic homogeneity. In cases
where they can be mapped in many ways, the model selects the mapping with the
minimum total distance (minimum distance isomorphism and the function da in the
Appendix). The estimation of the pairwise distances between specification components
uses recursive generation of isomorphic mappings between their own substructures.

The similarity analysis of two specifications results in:

(i) their classification, generalisation, attribution and overall distance measures;

(ii) a graph isomorphically mapping semantically homogeneous components at the
successive levels of the structural closures of the specifications (the arcs of this
graph are weighted by the pairwise distances of the mapped components);

(iii) a list with their common and non common classes, each weighted by its im-
portance; and

(iv) a list with their common and non common superclasses, each weighted by its
importance.

2.2. Revision of specifications

The isomorphism Is between the components of two specifications is likely
to reflect their ontological overlaps. However, flaws, incompleteness or lack of an
adequate semantics in the modelling of specifications might force similarity analysis
to generate mappings, which are incorrect. In such cases, specification owners can
propose a different isomorphism Io between specification components, which in their
opinion correctly reflects these overlaps.

Our method uses the assessment of similarity matching by specification own-
ers to suggest heuristic checks on, and subsequently revisions to specifications which
would make Is and Io converge. The criteria forced similarity analysis to generate
incorrect mappings between components, namely the semantic homogeneity and the
minimum distance isomorphism, can be used to trace those mappings back to specific
elements in specifications modelling and suggest revisions. Some of these revisions
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resolve forms of inconsistency between specifications arising from incompatible clas-
sifications of ontologically coincident components under the meta-model. Other com-
plete specifications with respect to each other. The method supports iterative revisions
(Fig. 1) up to a point where Is and Io coincide completely. Revision stops at this
point since the results of similarity analysis are confirmed as a correct reflection of
the ontological overlaps between specifications. Along the way, the method guides
specification owners through a disciplined check on the correctness and completeness
of their specifications as well as systematic modification in line with their indication
of the ontological overlaps between them.

3. Heuristics

3.1. Appraisal

Specification owners “appraise” the result of similarity analysis by suggesting
an alternative isomorphism Io between the ontologically coincident components of
their specifications. In general, Is and Io will partially coincide. Components with and
without counterparts in Is will be referred to as corresponding and unique, respectively.
Components mapped identically or left without any counterparts by both Is and Io
will be said to be correct corresponding and correct unique components, respectively.
Components with non identical mappings in Is and Io will be said to be wrong unique
or wrong corresponding components. The characterization “wrong” for corresponding
components means that their mappings by Is do not correctly indicate ontological
overlaps. Similarly, the characterization “wrong” for unique components in some
specification means that, despite the absence of any counterparts for them in Is, they
should be treated as ontologically coincident with components of the other specification
with which it is being compared.

We can further distinguish wrong components as:

(i) Wrong unique components of type 1 (WU1-components). These are unique
components of one specification, which should have been mapped onto unique
components of the other (according to Io) although they have not by Is (e.g.,
components x1 and y1 in Case 1 of Fig. 2).

(ii) Wrong unique components of type 2 (WU2-components). These are unique
components of one specification that should have been mapped onto compo-
nents of the other (according to Io), which have been mapped onto different
counterparts by Is (e.g., component x1 in Case 2 of Fig. 2).

(iii) Wrong unique components of type 3 (WU3-components). These are unique
components of one specification that should have been mapped onto com-
ponents of the other (according to Io), which did not exist at the time of
comparison (e.g., component x1 in Case 3 of Fig. 2).
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Figure 2. Wrong unique and corresponding specification components.

(iv) Wrong unique components of type 4 (WU4-components). These are unique
components of one specification which are identified as redundant after the
comparison with another specification fails to map them onto counterparts
(e.g., component x1 in Case 4 of Fig. 2).

(v) Wrong corresponding components of type 1 (WC1-components). These are
components which should have been mapped (according to Io) on counterparts
different from the ones which Is maps them on and which have not been
mapped by Is (e.g., component y1 in Case 2 of Fig. 2).

(vi) Wrong corresponding components of type 2 (WC2-components). These are
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components, which should not have been mapped onto any counterparts ac-
cording to Io although they have by Is (e.g., components x1 and y1 in Case 5
of Fig. 2).

(vii) Wrong corresponding components of type 3 (WC3-components). These are
components, which should have been mapped (according to Io) onto counter-
parts different from the ones they have in Is. Their appropriate counterparts
have themselves been mapped onto wrong components by Is (e.g., components
x1 and y2 in Case 6 of Fig. 2).

(viii) Wrong corresponding components of type 4 (WC4-components). These are
components, that should have been mapped (according to Io) onto counterparts
different from the ones they have in Is, which did not exist at the time of
comparison (e.g., component x1 in Case 7 of Fig. 2).

Examples of these cases are given in section 4, below. Based on these dis-
tinctions, our method provides a set of heuristics that can be deployed for tracing
disparities between Io and Is back to the modelling of specification components and
revising them so that Io and Is converge. These heuristics are discussed below.

3.2. Dealing with WU1-components

WU1-components may appear if similarity analysis does not map them because
they were not classified under exactly the same classes of the meta-model (due to
semantic homogeneity). Notice that, ontologically overlapping components should be
identically classified because they are expected to share the same general semantic
properties. For instance, it would not be reasonable to say that two components, clas-
sified as 1 : N and M : N relations respectively, express the same relationship in the
real world. Therefore, classification discrepancies between ontologically overlapping
components might be reasonably attributed to incorrect and/or incomplete classifica-
tion with respect to the meta-model. Consequently, they need to be checked and
possibly revised thereby enabling similarity analysis to generate the desired mappings.
The following heuristics (expressed for the WU1-components of Case 1 in Fig. 2)
may be applied in such cases:

H1: Check if the non-common classes of x1 and y1 are correct and if not remove
them.

H2: Check if any of the non-common classes of x1 and y1 should be classes of the
other as well and add the relevant classifications.

3.3. Dealing with WU2-components

WU2-components may appear due to the criteria of semantic homogeneity or the
minimum distance isomorphism in similarity analysis. Because of the semantic homo-
geneity criterion, a WU2-component might not be mapped onto its desired counterpart
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as a result of non identical classification. Such cases may be explored and revised
in accordance with the heuristics H1 and H2, as in the case of WU1-components.
In other cases, the mapping of the desired counterpart of a WU2-component onto a
different, but wrong, component of the same specification (component x2 of Case 2 in
Fig. 2) might be the result of an accidental incorrect common classification of them.
Such cases can be explored and rectified using the following heuristics (expressed for
the components of Case 2 in Fig. 2):

H3: Check if the common classes of x2 and y1 are correct and if not remove them.
H4: Check if x2 and y1 should have been classified under any non-common classes of

the meta-model, although they have not, and if so add the relevant classifications.

Notice that H4 supports the elicitation of new information about the components
involved.

If the classification checks do not resolve the problem, the desired mapping
might be achieved by exploring why d(x2, y1) is less than d(x1, y1) and revising the
modelling of x1 and y1 in order to reverse this inequality. Viewpoint owners need
to consider specific aspects in the modelling of x1 and y1, which affected the partial
conceptual distances between them and consequently their overall distance. Given
that H1 and H2 have been applied revealing no classification discrepancies between
the components (this implies that their classification distance equals 0), the overall
distance inequality might be the result of inequalities between the generalisation and/or
the attribution distances of the involved components (i.e., dg(x1, y1) > dg(x2, y1)
and/or da(x1, y1) > da(x2, y1)). Reversing any of these inequalities by revising the
modelling of x1 and y1 can force similarity analysis map them onto each other. Below,
we present heuristics guiding such revisions (expressed for the components of Case 2
in Fig. 2).

3.3.1. Reversing the inequality between the generalisation distances

Viewpoint owners may consider revising the generalisations of x1 to decrease
dg(x1, y1) and the generalisations of y1 to decrease dg(x1, y1) or increase dg(x2, y1)
or both.

(i) decrease dg(x1, y1). The following heuristics might be applied:

H5: Check if x1 has been incorrectly generalised to its unique superclasses with
respect to y1 and if so remove the relevant generalisations.

H6: Check if any of the unique superclasses of x1 with respect to y1, which are
not superclasses of x2, should be superclasses of y1 and if so add the relevant
generalisations.

Notice that adding to the superclasses of y1 the unique superclasses of x1 which are
superclasses of x2, would not affect the inequality dg(x1, y1) > dg(x2, y1) since it
would decrease equally both dg(x1, y1) and dg(x2, y1).
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H7: Check if y1 has been incorrectly generalised to its unique superclasses with
respect to x1 but not x2 and remove the relevant generalisations if so.

Notice that removing the unique superclasses of y1 with respect to both x1 and x2
would not affect the inequality dg(x1, y1) > dg(x2, y1) since it would decrease equally
both dg(x1, y1) and dg(x2, y1).

(ii) increase dg(x2, y1). The following heuristic might be applied:

H8: Check if y1 has been incorrectly generalised into its common superclasses with
x2, which are not superclasses of x1, and if so remove the relevant generalisations.

Each non common superclass increases the generalisation distances between com-
ponents by the inverse of its specialisation depth in the generalisation taxonomies
of which it is a part. Therefore, it is possible to present viewpoint owners with
the relevant sets of classes, which are to be added or deleted, ordered in ascending
specialisation depths and identify those whose atomic modification could reverse the
inequality dg(x1, y1) > dg(x2, y1).

3.3.2. Reversing the inequality between the attribution distances

The attribution distances between x1 and y1 and between x2 and y1 are com-
puted from optimal isomorphisms mapping the subcomponents of y1 onto the subcom-
ponents of x1 and x2, respectively. Revising the modelling of the subcomponents of
x1 and y1 may change these isomorphisms either decreasing da(x1, y1) or increasing
da(x2, y1). This can be done by applying the following heuristics:

(i) decrease da(x1, y1)

H9: Check if the unique subcomponents of y1, with respect to the similarity isomor-
phism between x1 and y1, are WU1, WU2, WU3 or WU4 components and deal
with them if so.

The subcomponents of y1, which conform to H9 can be checked in an order imposed
by the following measure:

s(z)
(
d(z, Is(z)

)
− d
(
z, I ′s(z)

)
.

In this formula, z refers to a unique subcomponent of y1; s(z) is a measure of the
importance of z for y1, called salience, which is computed by the similarity analysis
model; Is(z), d(z, Is(z)) refer to the counterpart of z in x1 (i.e., nil) and the overall
distance between Is(z) and z (i.e., 1), respectively; and I ′s(z) and d(z, I ′s(z)) refer
to the counterpart of z in x2 and the overall distance between I ′s(z) and z (i.e., 1)
respectively. Hence, the subcomponents of y1 which are subject to H9 should be
considered in a sequence determined by their distance to their counterparts in x2,
weighted by their salience for y1.



442 G. Spanoudakis, A. Finkelstein, Reconciling requirements

H10: Check if the unique subcomponents of x1 with respect to the similarity isomor-
phism between x1 and y1 are WU1, WU2, WU3 or WU4 components and deal
with them if so.

The subcomponents of x1, which are subject to H10 can be checked in an order im-
posed by their salience s(z), since this salience measure determines their contribution
to the overall distance between x1 and y1 (function da in the Appendix).

H11: Check for WC1 or WC3 subcomponents in the similarity isomorphism between
x1 and y1 and deal with them if any.

Notice that checking and possibly revising WC2 and WC4 components in x1 and y1
would not decrease da(x1, y1), since re-mapping them would give rise to two or one
unique components in the specifications, respectively.

(ii) increase da(x2, y1)

H12: Check for WC2 or WC4 subcomponents with respect to the similarity isomor-
phism between y1 and x2 and deal with them if any.

WC2 components would increase the attribution distance between y1 and x2 if left
unmapped, since according to function da they would contribute to this distance to
the maximum possible extent.

3.4. Dealing with WU3-components

H13: Create a new component y1 with no subcomponents and deal with y1 and x1
as WU1 components.

H13 supports the elicitation of new components in one of the specifications involved.

H14: Check for WU1, WU2, WU3 or WU4 components in the subcomponents of x1
and deal with them if any.

3.5. Dealing with WU4-components

Having been identified as redundant, WC4 components should be removed from
their aggregating specifications. Hence

H15: Remove x1.

3.6. Dealing with WC1-components

WC1 components as counterparts of WU2 components in Is appear for the
same reasons and therefore the heuristics introduced in section 3.3 can be applied.
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3.7. Dealing with WC2-components

Since the contribution of unique components to the overall distance between
specifications is maximal, similarity analysis prefers to map them onto dissimilar
counterparts rather than leaving them unmapped, provided that the criterion of semantic
homogeneity allows it. By doing this, it minimizes the overall distance between the
specifications being compared. In such circumstances it is possible that an incorrect
common classification of two components might cause an undesired mapping, which
can be avoided by modifying the classification of the components. This case might
be subject to the heuristics H3 and H4.

3.8. Dealing with WC3-components

The WC3-components x1 and y2 of Case 6 in Fig. 2 might not have been
mapped onto each other as required either because they were not identically classified
or because the mapping of x1 onto y1 and x2 onto y2 had a relatively lower aggregate
distance, i.e., d(x1, y1) + d(x2, y2) < d(x1, y2) + d(x2, y1). In this circumstance we
can apply the following heuristic:

H16: Regard x1 as a WU2-component that should be mapped onto y2, and y2 as a
WU2-component that should be mapped onto x1, and deal with them

H16 leads to the application of the heuristics concerning the classification of com-
ponents and the inequalities between their generalisation and attribution distances,
discussed above.

3.9. Dealing with WC4-components

The WC4-component x1 of Case 7 in Fig. 2 may be dealt with as suggested
by the following heuristic:

H17: Create a new component y2 with no subcomponents and consider it as WU2-
component.

In the next section, we demonstrate how the previous heuristics can be used to explore
ontological overlaps between specifications.

4. Scenario

We demonstrate the application of the reconciliation method using a scenario
of exploring overlaps between two object-oriented specifications of library borrowers,
items and their relations. These specifications overlap by including components rep-
resenting library borrowers (the object types Borrower and Student), different types
of library items (the object types CopyOfBook, Publication and their subtypes) and
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Figure 3. Scenario Step 1.

borrowing relations between them (the object type Loans and the object attribute Bor-
rows). However, they are not modelled identically (different taxonomies of library
items, different attributes for students and borrowers). Similarity analysis generates
the isomorphism Is shown in Fig. 3, driven by the identical classification and the
structural similarities of the components.

In particular, Is maps:

(1) Borrower onto Student, as the most similar pair of natural kind, agent modelling
entities;

(2) CopyOfBook onto Publication, as the most similar pair of natural kind, entities;

(3) LoanedCopies onto BookCopy, as the most similar pair of natural kind, entities;

(4) LoanableCopies onto ReferenceBook, as the most similar pair of natural kind,
entities;

(5) HasCode onto HasStudentCard, as the most similar pair of 1 : 1, total, onto,
contemporaneous, nonhomogeneous, separable and existentially independent
binary relations;

(6) HasAddress onto LivesAt, as the most similar pair of N : M , optional, onto,
contemporaneous, nonhomogeneous, separable and existentially independent
binary relations;

(7) Loans onto IsBorrowedBy, as the most similar pair of N : 1, optional, not onto,
contemporaneous, nonhomogeneous, separable and existentially independent
binary relations.
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Notice that Is has been selected among other isomorphisms that map identically clas-
sified components in S1 and S2 since it yields the minimum attribution distance (cf.
function Da in the Appendix). For instance, the attribute LivesAt could have been
mapped onto the attribute LoanDuration in S1 because of their identical classifica-
tions. However, the higher similarity of the objects of HasAddress and LivesAt (these
are Student and Borrower) and the identity of their values (both are strings) led analysis
to their mapping as a more plausible one.

The reconciliation of S1 and S2 starts from the assessment of Is by specifica-
tion owners. Assuming that the mappings of Borrower onto Student, HasCode onto
HasStudentCard, HasAddress onto LivesAt and Loans onto IsBorrowedBy are verified
by specification owners as correctly reflecting ontological overlaps, we concentrate
on the other associations in Is. According to specification owners, the mappings of
CopyOfBook onto Publication, LoanedCopies onto BookCopy and LoanableCopies
onto ReferenceBook do not reflect correct ontological overlaps.

In particular, CopyOfBook should have been mapped onto BookCopy rather
than Publication, as indicated by the specification owners isomorphism Io in Fig. 4.
Thus, according to our scheme CopyOfBook and BookCopy are WC3-components.
The incorrect mapping might be explored by considering CopyOfBook as a WU2-
component that should have been mapped onto BookCopy and vice versa, as suggested
by H16. Since CopyOfBook and BookCopy had been identically classified as nominal
kind entities the application of H1 and H2 does not reveal any problem in respect of
the criterion of semantic homogeneity. Also, the application of H3 and H4 does not
reveal any accidental incorrect common classification for LoanedCopies and BookCopy
or CopyOfBook and Publication (all of them had been correctly classified as nominal
kind entities). As indicated by the computed partial distances of these components,

Figure 4. Scenario Step 2.
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Figure 5. Scenario Step 3.

the incorrect mapping was generated because of the unequal attribution distances

da(LoanedCopies,BookCopy) + da(CopyOfBook,Publication)

< da(CopyOfBook,BookCopy) + da(LoanedCopies,Publication).

To reverse this inequality we should apply H9, H10, H11 and H12.
More specifically, H10 leads to the realisation that the subcomponent (attribute)

Represents of CopyOfBook is a WU3-component. In other words, it is missing from
the specification of BookCopy in S2. By way of H13, the specification owner de-
cides to create a new attribute, called CopyOf, for the object type BookCopy. A new
object type called BookManuscript is also introduced as the value of this attribute.
However, even after this modification similarity analysis still fails to map Book onto
BookManuscript because they are not classified identically with respect to the meta-
model. Treated as WU1-components, BookManuscript is classified identically with
Book as a nominal kind component (due to H2). Similarly to the attribute Represents,
the attribute HasIsbn of Book is identified as a WU3-component (given the similarity
isomorphism between Book and BookManuscript) and through H13 and H2, a new at-
tribute, having the same name and classification with it, is created for BookManuscript.
These modifications result in the specifications and the similarity isomorphism, which
is (partially) shown in Fig. 5.

However, even the new isomorphism is viewed as ontologically incorrect be-
cause of the mapping of LoanedCopies onto Publication and LoanableCopies onto
ReferenceBook. As identified by the mapping of CopyOfBook onto BookCopy, Loaned-
Copies and LoanableCopies should correspond to subtypes of BookCopy. Since no
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Figure 6. Scenario Step 4.

such subtypes exist in S2, LoanedCopies and LoanableCopies are considered as WC4-
components. Consequently (H17), two new object types called CheckedOutCopies
and BorrowableCopies, which are meant to be their counterparts are incorporated
in S2 (Fig. 6). The mere incorporation of these two components is insufficient to
force similarity analysis to map them as required. Thus, CheckedOutCopies and Bor-
rowableCopies are treated as WU2-components (with respect to LoanedCopies and
LoanableCopies, respectively) and consequently they are classified identically to these
components (H2).

Despite this classification, similarity analysis still maps LoanedCopies onto
Publication rather than CheckedOutCopies because of their lower attribution distance 1

da(LoanedCopies,Publication) = 0.502

and
da(LoanedCopies,CheckedOutCopies) = 1.

In fact, LoanedCopies has one corresponding (Loans which corresponds to IsBor-
rowedBy) and two unique subcomponents (the Isa relation between LoanedCopies and
CopyOfBook and the inherited attribute Represents) when compared to Publication.
On the other hand, all these subcomponents are unique when compared to Checked-
OutCopies. In trying to reverse this inequality, H10 and H13 lead to the specification

1 In all distance computations, the normalisation parameters of the similarity model were set as follows:
bc = bg = ba = boo = 0.5 and boa = 0.005.
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of an Isa relation between CheckedOutCopies and BookCopy, through which Checked-
OutCopies inherits IsBorrowedBy. After these modifications, the attribution distance
between LoanedCopies and CheckedOutCopies becomes lower than the attribution
distance between LoanedCopies and Publication,

da(LoanedCopies,CheckedOutCopies) = 0.34,

since the former pair has two corresponding subcomponents while the latter has two
unique. Hence, LoanedCopies is mapped onto BorrowableCopies by similarity anal-
ysis.

Similarly, the identical classification of BorrowableCopies and LoanableCopies
is insufficient to enforce their mapping since the attribution distance between Loan-
ableCopies and ReferenceBook,

da(LoanableCopies,ReferenceBook) = 0.602,

is lower than the attribution distance between LoanableCopies and BorrowableCopies,
da(LoanableCopies,BorrowableCopies) = 1. In fact, the attribution distance between
BorrowableCopies and any other object would be equal to 1 (i.e., the maximum dis-
tance that can be computed by the similarity model) since BorrowableCopies has no
attributes as it stands. In trying to reverse this inequality, H9 leads to the identification
of the Isa relation connecting LoanableCopies with CopyOfBook as a WU3-component
with respect to BorrowableCopies. By way of H13, a new Isa relation, connecting
BorrowableCopies with BookCopy is created. This modification does not reverse the
attribution distance inequality. Now, da(LoanableCopies,BorrowableCopies) becomes
equal to 0.633 as a consequence of the inheritance of the attributes IsBorrowedBy
(from Publication) and MaxLoanDuration (from BookCopy) to BorrowableCopies.
These attributes are unique as dictated by the similarity isomorphism between Bor-
rowableCopies and LoanableCopies. As a result of H10, IsBorrowedBy is realized as
a WU4-subcomponent (i.e., a redundant subcomponent) for BorrowableCopies, since
a borrowing relation cannot involve items which have not been checked out from
the library, as specified in S1. The operationalisation of H15 in this case involves
the re-modelling of the subcomponent IsBorrowedBy as an attribute of CheckedOut-
Copies rather than Publication. Thus, it is no longer inherited by BorrowableCopies.
Also, MaxLoanDuration is identified as a WU3-subcomponent (i.e., a missing sub-
component) with respect to BorrowableCopies and consequently (H13, H1 and H2)
an analogous attribute, with the same name, is created for CopyOfBook and becomes
an attribute of LoanableCopies by inheritance. These modifications reduce the attri-
bution distance between BorrowableCopies and LoanableCopies down to 0.491 and
as a result these two components are mapped onto each other by similarity analysis
(see Fig. 7).

Specifications S1 and S2 have now been revised and their similarity analysis
generates an isomorphism which has been verified as ontologically correct by spec-
ification owners. At this point reconciliation may stop. Along the way S1 and S2
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Figure 7. Scenario Step 5.

have undergone modifications that made them compatible with their owners assess-
ment about the existence of ontological overlaps between them. New information,
originally missing from them, was also elicited as a result of their comparison. Also,
through the process, specification owners established a shared understanding about
the ontological overlaps in their specifications and the potential for introducing further
inconsistencies in them.

5. Tool support

The analysis stage in specification reconciliation is currently supported by a
prototype built as a customization of the Semantic Index System (SIS), a tool for
representing, storing and retrieving objects described in the Telos language [Constan-
topoulos and Doerr 1993]. This tool has been integrated with an implementation
of the similarity model and provides queries for detecting similarities between Te-
los objects [Spanoudakis 1994]. The meta-model for specification analysis has been
implemented as a kernel SIS object base, which is used as a schema for describing
specifications. Specifications are described as SIS objects classified using this schema
and are therefore amenable to similarity analysis. This process of description is sup-
ported by interactive data entry forms, built-in the SIS, and customized to support the
task of classifying specification components.

To support the full reconciliation method discussed above we are building a
process model, using techniques presented in [Leonhardt et al. 1995], describing the
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activity of exploring and rectifying wrong unique and corresponding components based
on the heuristics. The model will allow specification owners to switch between the
stages of analysis and revision if they feel it is necessary, and guide – rather than
forcing – them to adopt specific, predefined types of reconciliation [Finkelstein et al.
1994].

6. Related work

The detection of ontological overlap and the resolution of the inconsistencies it
might cause have been concerns in requirements engineering research, due to a recent
interest in requirements specification from multiple viewpoints [Finkelstein and Som-
merville 1996; Nuseibeh et al. 1994; Maiden et al. 1995; Kotonya and Sommerville
1992]. They have also been central issues in obtaining and maintaining the seman-
tic interoperability of multiple database systems [Sheth and Larson 1990; Goh et al.
1994].

Research in requirements engineering has mainly concentrated on the detection
and resolution of logical inconsistencies, usually taking for granted the detection of
ontological overlap. Some of the approaches focus on the detection of particular
types of inconsistencies between specifications expressed in specific representation
models [Finkelstein et al. 1994; Robinson and Fickas 1994; Heitmeyer et al. 1995;
Easterbrook and Nuseibeh 1995], while other are concerned with inconsistency in
general [Zave and Jackson 1993]. There has been some work on the detection of
ontological overlap based either on the generation of canonical representations of
specifications in a common underlying language [Johanneson 1993; Meyers and Reiss
1991] or on elaborating analogies between specifications. This elaboration has been
based on matching specifications with classes of requirements engineering problems
[Maiden et al. 1995] or on heuristics identifying analogies from the annotation of
specifications with terms in domain-specific dictionaries [Leite and Freeman 1991].

The different strategies used to obtain the semantic interoperability of multiple
database systems can be distinguished into the tight-coupling, loose-coupling, and
knowledge based [Goh et al. 1994]. The tight-coupling strategies [Batini et al. 1986;
Sheth and Larson 1990] integrate local database schemas into one or more global
schemas after detecting semantic equivalencies and disparities between them. They
are based on the representation of schemas in single data models and explicitly asserted
relationships between local schema components (for example, inclusion dependencies,
equivalence or containment relations). However, integration is not fully automated.
The loose-coupling strategies detect semantic equivalencies based on annotations of
local schema components with terms in shared ontologies [Bright et al. 1994; Sciore et
al. 1994]. These strategies ensure the consistent exchange of semantically equivalent
information by deploying conversion functions, supplied by local database systems
delegates [Sciore et al. 1994]. Finally, the knowledge representation strategies [Collet
et al. 1991; Arens and Knoblock 1992] transform local schemas to a global schema,
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which unifies disparate interpretations and representations. This global schema is a
knowledge base describing concepts in various application domains, which enables
the comparison of local schemas not explicitly interrelated with each other.

7. Conclusion

The construction of complex software systems involves many agents with dif-
ferent perspectives or views of the system they are trying to describe, which give
rise to many partial specifications (or viewpoints). Viewpoints “interfere” with each
other to the extent they refer to, or assert properties of common aspects of the system
under development and its domain (i.e., ontological overlap), which in turn might be
inconsistent with each other. This interference needs to be “managed”.

Reconciliation, the method discussed in this paper is a method of loose in-
terference management. It detects ontological overlaps (a prerequisite for detecting
inconsistencies) by analysing similarities between viewpoints and guides viewpoint
owners through a process of assessing and verifying them, thus establishing a shared
understanding among these owners of the potential for inconsistency. We believe
that the method has promise though there is clearly considerable scope for further
work. An important issue is the extension of the method so as to make it applicable
to specifications of behavioural requirements. This could be achieved by extending
the meta-model so as to reflect general properties of behavioural specifications. Cur-
rently, we are investigating such extensions, using as a case study the integration of
various specification models of the use-case driven Object-Oriented Software Engi-
neering method [Jacobson 1993] with our meta-model for specification analysis. We
will be looking at extending the tool support and at larger scale examples which would
constitute a more realistic test.

In the long-term, we envisage the computational support for our method as a
component in a tool-kit developed to support the full spectrum of interference manage-
ment covering specifications expressed in different languages, with different degrees
of abstraction, granularity and formality, deploying different terminologies and being
at different stages of development or elaboration. We believe that to cope with the
diversity of the interference problem, such a tool-kit should support multiple reasoning
mechanisms and/or methods; including rule-based consistency checking [Finkelstein
et al. 1994; Easterbrook et al. 1994] and computer-supported human negotiation [East-
erbrook 1991].
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Appendix. The computational model for similarity analysis

The similarity model is composed of distance measuring functions defined on
Telos objects. In this Appendix, we formally introduce these objects and functions.
A more detailed account of the model, including an analysis of its polynomial com-
plexity, is given in [Spanoudakis 1994; Spanoudakis and Constantopoulos 1996].

A.1. Telos objects

Telos objects are partitioned according to their classification level into Tokens
and Classes. Classes are further partitioned into Simple Classes, Meta Classes, Meta
Meta Classes and so on. They are also partitioned according to their role into Individ-
uals (objects modelling entities) and Attributes (objects modelling properties and/or
relations between entities). These four basic categories of objects have the following
tuple forms:

• Individual tokens (It): oi = [In,A]

• Individual classes (Ic): oi = [In,Isa, A]

• Attribute tokens (At): oi = [From,In,A,To]

• Attribute classes (Ac): oi = [From,In,Isa,A,To]

In these forms, i is an object identifier for oi, In is a set of object identifiers denoting
the classes of oi (oi is said to be an instance of the classes in In), Isa is a set of object
identifiers denoting the superclasses of oi, A is a set of system identifiers denoting
the direct attributes (i.e., those not inherited) of oi, From is the identifier of the object
owning the attribute oi and To is the identifier of the object being the value/range of
attribute oi.

Telos objects have logical names (unique to individual objects but shared by
more than one attribute objects owned by distinct classes). Telos classes have inten-
sions (INT[i]) including the identifiers of the attributes they introduce or inherit from
their superclasses. Each Telos attribute class i has an original class OC(i) (i.e., the
most general attribute superclass of i, which has an identical logical name with it).

A.2. Distance functions

A.2.1. Identification distance

The identification distance indicates whether two objects are identical or not.
Object identity depends on the equality of internal unique identifiers which are assigned
to objects by the database system. Although objects with the same identifier have
exactly the same value (i.e., they have the same classes, superclasses, attributes and
attribute values), objects with the same values may not have the same identifier (i.e.,
deep equal but not identical objects). The identification distance distinguishes between
those two cases. Formally, this distance is defined as follows:
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Definition 1. The identification distance did between two objects oi and oj is defined
by:

did(oi, oj) =

{
0 if i = j,
1 if i 6= j.

A.2.2. Classification distance

The classification distance between two objects is measured by identifying and
measuring the importance of their non-common classes. Thus, it gives an account of
how two specifications differ with respect to the properties expressed by the classes of
the meta-model. The importance of each class is measured by its specialisation depth,
SD(x), which is formally defined as follows:

Definition 2. SD(x) is the maximum length (number of links) of the paths connecting
class x with the most general class of its generalisation taxonomy, called specialisation
depth of x.

Thus, non-common classes, which are placed at higher levels in generalisation
taxonomies are considered as more important than those placed at lower levels. Given
SD(x), the classification distance is defined as follows:

Definition 3. The classification distance dc between two objects oi and oj is defined
by:

dc(oi, oj) =
(
bcDc(oi, oj)

)
/
(
bcDc(oi, oj) + 1

)
, bc ∈ R+,

Dc(oi, oj) =
∑

x∈NCCij

SD(x)−1, NCCij = (oi.In− oj .In) ∪ (oj .In− oi.In),

bc is a normalization parameter evaluated so that dc equals 0.5 when Dc takes its
average value given a specific set of objects (i.e., a context-sensitive estimation of the
classification distance).

A.2.3. Generalisation distance

The generalisation distance provides an account of the semantic differences
of two individual objects as evidenced from their non-common superclasses. Each of
these superclasses is weighted by its specialisation depth, like the non-common classes
in the classification distance. The generalisation distance between attribute classes
depends on the identity of their original classes and distinguishes between refined
specialisations of the same attribute and specialisations between attributes with shared
but non-identical semantics.
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Definition 4. The generalisation distance dg between two objects oi and oj is defined
by:

dg(oi, oj) =

{(
bgDg(oi, oj)

)
/
(
bgDg(oi, oj) + 1

)
, bg ∈ R+ if oi, oj ∈ Ic,

do(oi, oj) if oi, oj ∈ Ac,

Dg(oi, oj) =
∑

x∈NCSij

SD(x)−1,

NCSij = (oi.Isa− oj .Isa) ∪ (oj .Isa− oi.Isa) ∪ {i, j},

do(oi, oj) =

{
0 if OC(i) = OC(j),

1 if OC(i) 6= OC(j),

bg is similar to and evaluated like bc in Definition 3.

A.2.4. Attribution distance

The attribution distance is estimated by searching for a minimum distance iso-
morphism between the attributes of two objects. Mappings are only considered be-
tween attributes, which are instances of the same original attribute classes. Thus, only
specification components which belong to exactly the same classes of the meta-model,
and therefore share exactly the same semantic properties, can be mapped onto each
other. The attribution distance takes into account the overall distance between the
object-values of attributes (Definitions 5 and 6 below). Thus, it generates minimum
distance isomorphisms among the attributes of these value-objects and recursively
among the attributes at all the successive levels of their decomposition-closures. In
doing so, it produces a detailed account of the structural resemblances between two
specifications. Formally, the attribution distance is defined as follows:

Definition 5. The attribution distance da between two objects oi and oj is defined by:

da(oi, oj) =
(
baDa(oi, oj)

)
/
(
baDa(oi, oj) + 1

)
, ba ∈ R+,

Da(oi, oj) =



∞ if oi.A = ∅ or oj .A = ∅,

min
m∈I(oi,oj)

( ∑
(x1,x2)∈m

s(x1)s(x2)d(x1, x2)

+
∑

x3∈oi[m]

s(x3)2 +
∑

x4∈oj [m]

s(x4)2
)
, otherwise,

where
I(oi, oj) is the set of all the possible morphisms between the semantically homoge-
neous attributes of oi and oj (two attribute objects k and l are semantically homo-
geneous if and only if OCL[k] = OCL[l] where OCL[x] = {y | (y = OC(z) and
z ∈ ox.In}),
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oi[m] (oj [m]) is the set with the attributes of oi (oj) that map onto no attribute of
oj(oi) given the isomorphism m,
s(x) is the salience of attribute class x computed as described in [Spanoudakis and
Constantopoulos 1996].

ba is similar to and evaluated as bc in Definition 3.

A.2.5. Overall distance

The overall object distance aggregates the partial identification, classification
and generalisation distances between two objects. Thus, it gives an overall account
of both the semantic and the structural differences between two objects, which is
particularly useful in cases where they are incompletely described with respect to
classification and generalisation relations or attributes. Formally, the overall distance
is defined as follows:

Definition 6. The overall distance d between two objects oi and oj is defined by:

d(oi, oj) =
(
booD(oi, oj)

)
/
(
booD(oi, oj) + 1

)
, boo ∈ R+, where

D(oi, oj) =
(
did(oi, oj)

2 + dc(oi, oj)
2 + dg(oi, oj)

2 + da(oi, oj)
2

+ dc(oi, oj)dg(oi, oj) + dc(oi, oj)da(oi, oj) + dg(oi, oj)da(oi, oj)
)1/2

if oi, oj ∈ (It ∪ Ic), and

d(oi, oj) =
(
boaD(oi, oj)

)
/
(
boaD(oi, oj) + 1

)
, boa ∈ R+, where

D(oi, oj) =
(
did(oi, oj)

2 + dc(oi, oj)
2 + 36dg(oi, oj)2 + da(oi, oj)

2 + d(oi.To, oj .To)2

+ 12dc(oi, oj)dg(oi, oj) + dc(oi, oj)da(oi, oj) + 12dg(oi, oj)da(oi, oj)
)1/2

if oi, oj ∈ (At ∪Ac).

D has a quadric functional form because of experimental evidence about statis-
tically significant correlation between dc, dg and da [Spanoudakis and Constantopou-
los 1996]. The relatively higher coefficients of products having dg as a factor (i.e., 36,
12) ensure that attributes with the same original class (whose generalisation distance
is equal to 0 according to Definition 4) will necessarily be mapped to each other, when
comparing the objects to which they apply. boo and boa are similar to and evaluated
as bc in Definition 3.
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