
Annals of Software Engineering 8 (1999) 203–221 203

Automated class testing using threaded multi-way trees
to represent the behaviour of state machines

Bor-Yuan Tsai a,b, Simon Stobart a, Norman Parrington a and Ian Mitchell a

a School of Computing, Engineering and Technology, University of Sunderland, St. Peter’s Way,
Sunderland SR6 0DD, UK

E-mail: bor-yuan.tsai@sunderland.ac.uk
b Department of Information Management, Aletheia University, Taipei, Taiwan

E-mail: david@jupiter.touc.edu.tw

Extensive test data is required to demonstrate that “few” errors exist in software. If
the process of software testing could be carried out automatically, testing efficiency would
increase and the cost of software development would be significantly reduced. In this paper,
a tool for detecting errors in object oriented classes is proposed. The approach uses a
state-based testing method. The method utilises state machines in order to produce threaded
multi-way trees, which are referred to as inspection trees. Inspection trees can be used to
generate test cases and parse test results files. This allows us to determine whether the
classes under test contain errors. The algorithms for the creation of inspection trees and the
examination of the test results file using an inspection tree are described in the paper.

1. Introduction

Software testing is a considerable expense in the development of software sys-
tems, with estimates ranging between 20% and 50% of development costs [Glass 1990;
Myers 1979; Norman 1993]. It is a very expensive, time consuming and tedious ac-
tivity to demonstrate that “few” errors exist and requires a large amount of test data to
accomplish successfully. If the process of software testing could be carried out auto-
matically, then testing efficiency would increase and the cost of software development
can be reduced.

The method of automated class testing which is introduced in this paper is a part
of a larger software testing development project. In brief, the method duplicates the
behaviour of a state machine into a threaded multi-way tree in order to generate test
cases. The threaded multi-way tree (also called an inspection tree), the process of test
result inspection and inspection tree generation are described.

Class testing, state-based testing and state machines are first explained in section 2
using a bounded queue example. In section 3, the structure of the threaded multi-way
tree is demonstrated and a graph used to illustrate the relationship of the threaded multi-
way tree to a state machine. An algorithm for creating the tree is also proposed. The
detection of errors using the tree is discussed in section 4. A demonstration of using

 J.C. Baltzer AG, Science Publishers



204 B.-Y. Tsai et al. / Automated class testing

inspection trees for complicated state machines, such as concurrency, hierarchy and
nesting, is given in section 5. A graph showing an approach which can automatically
generate inspection trees for various state machines is included in section 6. Finally,
section 7 contains our conclusions.

2. Class testing

During class testing, testers analyse and test the interactions of functions within
the classes. There are several methods which can be used, such as structure testing,
specification testing, state-based testing and/or data flow testing.

The method described within this paper is state-based testing, which may be
performed as either specification testing or structural testing [Jacobson et al. 1992].
The following subsections give some basic concepts of state-based testing and state
machines. In addition, a template and a state machine of a bounded queue are illustrated
to explain automated class testing.

2.1. State-based testing and state machines

State-based testing is a form of implementation class testing. The main point of
state-based testing is to examine the values which have been stored in an object at a
particular time. Those particular values represent the state of the object. State-based
testing also validates the interactions that occur between the transitions and the state of
an object. State machines can be used to illustrate the relationships between transitions
and states. Moreover, test cases, in state-based testing, can be generated from state
machines [Binder 1995; Tsai et al. 1997a; Turner and Robson 1995]. Therefore the
state machine is an aid to performing state-based testing.

State machines specify the state sequence caused by a transition sequence in a
modular fashion. A state machine is a graph whose nodes are states and whose directed
arcs are transitions. The directed transition arcs are drawn from the receiving state to
the target state. A state has a unique name and denotes the status of an object at a
particular point in time. A transition arc is also uniquely named to show the behaviour
of the object and it also depicts the current state changing to the next state. Figure 2
illustrates a state machine of a bounded queue class in figure 1. A statechart, proposed
by Harel [1987], is an extended form of a state machine. Hierarchy, concurrency, and
broadcast communication are the three basic extensions to state machines.

The communication between integrated classes can be tested using integration
testing, but this will not be discussed in this paper. To aid understanding, the example,
presented in sections 3 and 4, consists of simple state nodes and transitions. Inspection
trees can also be used to represent complicated scenarios, such as hierarchical, nested,
or concurrency. These will be discussed in section 5.



B.-Y. Tsai et al. / Automated class testing 205

2.2. A queue class example

This example illustrates how a threaded multi-way tree can be derived from a
state machine. In further subsections, a bounded queue class is used, the C++ template
of which is given in figure 1. Suppose that the queue class, called Queue, has limited
spaces in which the Queue object can only store five units of data. When a Queue
object is created, it is in an empty state. Once some data is stored in the object, then
its state is changed from empty to not full. As the Queue object has been filled with
five items of data, its state is full. A Queue object thus has empty, not full and full
states, which are represented by three nodes in the Queue class state machine shown
in figure 2.

Empty state could be a member of NotFull state set, but we assume the NotFull
state set does not include the Empty state, so the NotFull state is a kind of PartlyFull
state in this paper. Moreover, if a queue has only space to store a single data item,
the queue will change from Empty state to Full state when the addrear transition is
executed. In this paper, we assume that the state of the queue object cannot be directly
changed from Empty to Full. If the assumptions are excluded here, then the queue has
only empty and nonempty states.

In figure 1, qlist[] is declared as an array for the Queue to store data. The
f index and r index are two array indices, used to indicate the position from/in which
the next data will be deleted/added. Moreover, the count data member is used to
calculate the amount of data in a Queue object. For example, a Queue object is an
empty queue when count is zero, and it is full once count is equal to Size. The
three condition expressions, count == 0 (the object is at empty status), 0 < count <
Size (the object is at not full status), and count == Size (the object is at full status),
are also known as the state information of the Queue object. The Queue class state
machine shows the state of a Queue object is no longer at empty and full states once
the post-condition, after executing the addrear/deletefront function, is 0 < count <
Size.

Figure 1. The template of a bounded queue. Figure 2. The statechart of the bounded
queue.



206 B.-Y. Tsai et al. / Automated class testing

To explain the template in figure 1, there are three member functions and a
constructor and a destructor declared. The functions addrear() and deletefront() are
discussed as an example in the following sections. When a Queue object is declared,
the constructor queue() causes the object to be in the empty (initial) state, and the three
data members f index, r index and count are initialised to zero.

When an empty queue object receives an “add new data” message, the addrear
member function will be executed. After executing the function, the state of this object
is changed to NotFull state from Empty state, see addrear arc labelled “1” in figure
2. The value of the count is increased to one, which is greater than zero and less than
Size. If the next message is to delete the only data in the object, then the state of
the object is at an Empty state again, as the count is once again zero. Furthermore,
if the queue object is in a NotFull state, when it receives another message to add
a new data item, the value of count is increased. The state of this object is still
unchanged at NotFull. This transaction is depicted as a loop transition arc on the state
machine. For instance, the transition arc, labelled “3” in figure 2, is a loop transition
arc which comes out from and then goes back to the same NotFull state. That means
the transition does not cause the state of object to change to another different state.
Once the queue object is full, then its state is changed to Full state, into which no
more data can be added. During this state, the queue object cannot receive any “add
new data” messages. Similarly no data can be deleted when an object is in an empty
state.

2.3. State machines in class testing

To design and test an application, which is still under development, sounds a
hard task to achieve. This is because no matter how good the method used to test
an application during development is, testers will still need to execute the application
when it has been finished, with further test data again to prove no errors have been
introduced at the final stages. However, during development testers can undertake
some test work. This may include the design of test methods, test drivers, test stubs
and generating oracles, test cases, test data, and expected results. These can be used
to test the application once it has been fully developed. This means, of course, that
the end of the design process is the beginning of test execution but not necessarily the
beginning of test activity.

This testing approach should begin by following the development of the specifi-
cation, which is also used as a reference document to develop the application, but not
the program code. Therefore, a well defined specification is fundamentally important
for designing and testing applications [Tsai et al. 1997b].

Our specification is represented as a state machine, which illustrates the associ-
ation between object states and object transitions. In addition, the state machine has
many advantages, including test case generation. The transition arc flow and state
information aspects of a state machine can be applied to detect errors in a program.
Moreover, the transition arcs in a state machine show the various behaviours which



B.-Y. Tsai et al. / Automated class testing 207

the object has at any particular time. The result of a transition having been executed,
known as a post-condition, can be represented by a state node in the state machine.
Based on this, a threaded multi-way tree can be developed to duplicate the behaviour
of a state machine. The nodes of the tree contain the expected results of all the tran-
sitions of an object. A test results file can be parsed to determine whether the class
under test has errors or not.

3. Threaded multi-way trees and state machines

A single node of the threaded multi-way tree works the same way as a state node
of the state machine. Each tree node contains an incoming-transition field, a thread
field, pointer fields and a state name (information) field. Those fields are discussed in
detail in the following subsections.

3.1. The nodes of the tree

Each node of the threaded multi-way tree, which is also called an inspection tree,
consists of four fields shown as the following fragment of C++ code.

typedef struct node {
struct node ∗pre state //threaded to previous state
char funct name[15]; //incoming trans arc name
char state name[15]; //state information
struct node ∗next state[5]; //point to next states

}Treenode;

The structure of the node is shown in figure 3.

Figure 3. The structure of a threaded multi-way tree is presented as a state machine.



208 B.-Y. Tsai et al. / Automated class testing

The field named funct name is used to store the function name that emerges
from the previous state and, of course, the name is the same as the function name
of the message. The state name field contains the state information (post condition).
The state name field can be replaced by the variable items that store the value of the
attributes, such as the count data member in the Queue class template example. If the
state information is 0 < count < Size, which is also the result of a function, then the
object is in a NotFull state. In practice, testers can use this sort of expression instead
of the real state name which is shown in the state machine. More importantly, the
node in an inspection tree should be designed to detect the test results file, so that the
node of the tree should be declared in order to be able to read through the test results
file correctly.

The pre state threaded field stores the previous node address, if a transition func-
tion is executed and the state is still the same, then the pre state field points back to
the previous node which contains the same state information as the current node does.
The next state[] field is a pointer array (or a linked list) in which each element of the
array holds the address of a child node representing the next state node in the state
machine. Of course, the size of the array is determined by the most number of next
state nodes of the states in a state machine. In the state machine of the Queue class,
the Empty state has two next states which are NotFull and itself. The NotFull state
has five next states in which three of them are NotFull itself. The Full state has two
next states NotFull and itself (see figure 2). The number of child nodes in this tree,
duplicating the behaviour of the Queue state machine, is five. Therefore, the array is
declared with five elements.

Figure 2 shows that the NotFull state has five transition arcs leaving it, but three
of them loop back NotFull state itself. Therefore the next state of the NotFull state
might be Empty, Full or NotFull. The next state of the Full state is either NotFull
state or Full. Furthermore, the next state of the Empty state is either NotFull or Empty.
Consequently, the state machine in figure 2 can be illustrated by a threaded multi-way
tree shows in figure 4. Each node of the tree represents the corresponding node in the
state machine.

3.2. The expected results in the tree

The reason why the inspection tree can be used as a tool, automatically inspecting
errors in a class, is that the nodes of the tree contain the expected results for the
executed functions in the class. After feeding a test data file to the class program, a
test results file can be produced. Consequently, the test results file can be sent record by
record to the inspection tree to match against the expected results. If they match, then
the class under test passes the inspection, otherwise the class fails. The expected results
are stored in the state name field of the tree node. The actual inspection approach is
described with examples in section 4.



B.-Y. Tsai et al. / Automated class testing 209

Figure 4. The inspection tree of the Queue class.

Figure 5. The algorithm to build a threaded multi-way tree.

3.3. The algorithm to create the tree

The threaded multi-way inspection tree is created level by level using a queue.
When a non-leaf node at level N is allocated, it will be added into the queue. It will
be removed from the queue once all its children nodes at level N + 1 in the tree have
been allocated and linked with it. This tree will grow level by level until all the nodes
(leaves) at the lowest level are linked to the tree. The algorithm, which can create an
inspection tree, is shown in figure 5. A complete C++ program, which follows the
algorithm, can be found in [Tsai et al. 1998a].



210 B.-Y. Tsai et al. / Automated class testing

3.4. The mapping between inspection tree and state machine

In this section, the mapping between the inspection tree and the state machine is
presented. More specifically, it shows that the inspection tree can represent the state
machine completely. For example, the state machine, in figure 2, of the Queue class
is mapped to the inspection tree in figure 4; this is shown in figure 6.

When a function is executed successfully, either the state changes from the current
state to next state, or does not change. The emerging function arcs of a state are
stored in the children’s nodes. For example, the outgoing arc, named addrear, of the
Empty state is stored in its NotFull children nodes and the other outgoing arc, named
is empty, is stored in the other child node Empty (see figure 4). If a child node’s state
information is the same as that of the ancestor’s, this means the state does not change
after executing the function. Therefore, the pre state field can be used to route the
current pointer back to the ancestor node. An example of the pre state field is the
relationship of the root, Empty, node and its rightmost child node. That shows the
Empty state of the Queue object is still unchanged after an is empty transition having
been executed. Another example is the pre state field of the rightmost grandchild of
the root, Empty, node. Here the Queue object loops back to the empty state again, see
figures 4 and 6, because its state information has changed from count == 0 to 0 <
count < Size, and to count == 0. This shows that the state of the object has changed
from Empty to NotFull and to Empty at last, after three functions queue(), addrear(),
and deletefront() having been executed in sequence.

For the sake of clarity, numbers which have been marked on the arcs of the state
machine in figure 2 are also marked in figure 6, and the threads in the pre state fields
shown in figure 4 are omitted in figure 6. In figure 6, the relationship between the
Queue state machine and the threaded multi-way tree of the Queue can be easily seen.
Thus, a threaded multi-way tree can duplicate the behaviour of a state machine.

4. Inspecting test results with the inspection tree

Testers can manually inspect the test results file which has automatically generated
after executing the class under test against a test data file. This manual inspection is
slow, boring, and time-consuming. However, the inspection tree can be treated as a
test tool to enable us to read through the test results file and detect errors within the
file automatically. Before describing this approach, the structure of the test data file
and the test results file are introduced.

A test data file consists of messages. Each message has a function name and
parameters. The parameters are the test data (see figure 7). The class under test
receives the messages one by one from the test data file, and then executes them. The
executing result of each message is stored in a file which is called the test results file.
In the file, each record corresponds to each test message. That means each record
has the executing function name as well as the actual test results. For example, after
executing the first message addrear(a), the results in an object are count == 1, data a



B.-Y. Tsai et al. / Automated class testing 211

Figure 6. The inspection tree of the Queue class.

Figure 7. Testing data files.



212 B.-Y. Tsai et al. / Automated class testing

Figure 8. Test results files.

is stored in, and r index is increased by one. However, the most important item is
the value of the data member count, which causes the state to change from Empty to
NotFull. In other words, the state information (count = 1) shows the next state has
been reached after executing the message. The significant executing results are stored
in the test results file (see figure 8).

Following the state machine (specification), each node of the inspection tree is
stored with a function name and an expected result. The inspection tree is used as
an oracle to detect the test results file. A driver program, such as the algorithm in
figure 9, is used to read the test results file record by record and sequentially send
each record to the inspection tree to find out whether the test result is expected or not.
If the test result is not as expected then an error has occurred.

Another advantage of inspection trees is that they can detect missing-path errors.
This type of error occurs if a partial function (or path) is specified but not implemented
in the program. To discover this error, an extra Boolean field (called visited) can be
added to each node of the inspection tree, and is set to true when it has been visited
during processing of the test results file. Of course, the test data file should be well
designed to make sure that each function of the class under test is executed at least
once. The algorithm in [Tsai et al. 1998b] can be adopted to generate the test data
files.

4.1. The method for inspecting the test results file

Figure 9 illustrates the method used to process inspection trees. The following
describes the use of this method to process the inspection tree in figure 6.



B.-Y. Tsai et al. / Automated class testing 213

Figure 9. The algorithm of detecting test results with inspection tree.

Supposing, in STEP 0, that the current node is the root node, which is at an
Empty status. In STEP 2 a test result record is read from the test result file, and the
recorded values (see test result file-1 in figure 8) are addrear and 1 (the value of count).
This means a message, like addrear(a) in the test data file-1 of figure 7, has been
passed to this object. After executing the message, the relation of the count and Size
attributes is 0 < count < Size, as Size == 5 and count == 1. In STEP 4 a search for
a function name is made from the leftmost child node of the current node to the right.
The value of funct name field in the first child node is addrear, which is the same as
the data, addrear, of the test result record. Furthermore, the count == 1 satisfies the
state information, 0 < count < size, in the child node. This matches the if condition
in STEP 5 and the current pointer stays at the, NotFull, node according to the value
of pre state field in the node. Consequently, jumping to STEP 7, the next test result
record will be read, and can be tested by following the steps until all records in the
file have been tested.

4.2. Example programs

The addrear function in figure 10 is an operation to insert an item into a Queue
object. An assumption is that an item is placed at the rear of list storage qlist[]. In this
case, it is necessary to first test if the queue object is full and to terminate the operation
if this is true. Otherwise, a new item is inserted at the rear of the list whose location is
designed by qlist[r index]. If the function misses the full condition, then an overflow
error occurs. The addrear function body, shown in figure 10, does not contain a full
condition statement on purpose. The inspection tree will find an overflow error when
the test result file is processed with the tree.



214 B.-Y. Tsai et al. / Automated class testing

Figure 10. The addrear and deletefront functions of the Queue class.

Figure 11. Error found in the test result files by the inspection tree.

The other function in figure 10, deletefront, is an operation to delete a data item
from a Queue object. Before deleting data from the queue object, it must be determined
whether the queue object is empty and terminate the operation if the condition is true.
In addition an underflow error could happen if the condition statement is missed in
this function. However, the deletefront function body in figure 10 is defined without
an underflow condition statement. If the test data file-2 in figure 7 is processed against
the deletefront function, the test result file-2, in figure 8, will contain underflow errors.

4.3. Test report

After inspecting the test result file-1 and test result file-2 with the method de-
scribed in figure 9, two test reports are generated with errors (see figure 11). The two
test reports show that the Queue class whose addrear and deletefront functions have
missing overflow and underflow conditions is highlighted as containing errors.



B.-Y. Tsai et al. / Automated class testing 215

Following the test report, testers can correct the errors and recode the functions.
They can also use the same inspection tree and driver program to re-inspect the cor-
rected class. Thus, using the inspection tree for regression testing.

5. Complicated state machines

The example discussed in the previous sections is a simple state machine. More-
over, classes might be described with more complicated state machines. In this section,
inspection trees are used to represent hierarchy, concurrent, and nested state machines.
The design state machine of a class could be different from its implement state ma-
chine. That means a transition in the design state machine could be replaced with
several member functions in the class program code. The inspection tree is also able
to represent the implement state machine; this will be discussed in section 5.4.

5.1. Hierarchy state machine

The concept of hierarchy is presented in the form of substates. One state may
be split into several substates. Moreover, only one of these independent substate
represents the state of the system at any one time. Consider a simple queue called
Que, whose state machine is in figure 13-a and its inspection tree in figure 12. Que’s
NotEmpty state can be divided into NotFull and Full substate, but only one of these
can represent their superstate at a time, see figure 13-c. In this case, the former class
is a superclass of the later class in which the subclass modifies the inherited addrear
and deletefront transitions. In practice, the addrear() and deletefront() methods in the
superclass are inherited by subclass (called bounded queue) with little changing.

McGregor and Dyer [1993] have demonstrated the mapping of inheritance to a
state machine for a class from the state machine of its superclass. The inspection tree
for a class can also be inherited by its subclass(es). The bounded queue, for example,
only modifies the right subtree of the root in figure 12, and the inspection tree of the
subclass (bounded queue) is the same as the tree in figure 4.

Another similar state diagram called a nested state machine will be discussed in
section 5.3.

Figure 12. The inspection tree of Que class.



216 B.-Y. Tsai et al. / Automated class testing

Figure 13. State machines using single inheritance and multiple inheritance.

5.2. Concurrency state machine

Multiple inheritance is the use of multiple superclasses inherited as the basis for a
new class. As discussed in the previous subsection, the state machine of superclass can
also be inherited by its subclasses. Assuming that the inherited superclasses represent
independent concepts, then the state machines of the superclasses do not have any
overlap to show the state machine of the subclass [McGregor and Dyer 1993]. In
figure 13, the state machines of the bounded queue and the priority queue are drawn
from the state machine of the simple queue, Que, in figure 13-a. The state machine
of the bounded priority queue, figure 13-d, is constructed by inheriting from the state
machines of the priority queue and the bounded queue (in figures 13-b and 13-c).
Concurrent states do not always occur in multiple inheritance, however, in this bounded
priority queue example, the NotFull state and Ordered state concurrently exist, as well
as the Full state and Ordered state.



B.-Y. Tsai et al. / Automated class testing 217

Figure 14-a. The inspection tree of the priority and bounded queue.

Figure 14-b. The co state nodes in a concurrent inspection tree.

The inspection tree of the bounded priority queue, which shows how an inspec-
tion tree might be used to represent concurrent states in a state machine, is given in
figure 14-a. Here, an additional co pointer field is needed in the tree nodes. Both
the inspection trees of the superclasses (priority class and bounded class) are reused in
this state machine. The method to link the existing inspection trees into a concurrent
inspection tree is simply to find concurrent nodes and then store the address of the
nodes into the co pointer field of the related nodes.



218 B.-Y. Tsai et al. / Automated class testing

Figure 15-a. Nested bottle filling state Figure 15-b. The inspection tree of the nested
machine. state machine.

The test result file of the bounded priority class program is processed with the
inspection tree in figure 14-a. Assuming that three data have been added into the
object of the priority bounded queue, and the current visited node is at the NotFull
node. The co pointer of this NotFull node points to the Sorted node at the left up
tree in figure 14-a. Under the state information stored in the state name field of the
node, the queue object will be checked whether it is sorted or not. If it is not sorted
then errors existed.

Another sort of inspection tree, see figure 14-b, needs to create a different tree
node, called co states node, in which is contained the node address of all the concurrent
state nodes. This is pointed to by each of all the concurrent nodes in the linked trees.
When the current visited node is whose co pointer field is not null, then the co state
node will be visited next. From the co state node, all the concurrent state nodes among
the trees will be visited to check whether the object satisfies all the concurrent states.

5.3. Nested state machine

In the reuse of state machine, designers can produce a nested state machine for a
new state machine. The nested state machine, in figure 15-a derived from [Cook and
Daniels 1994], describes the behaviour of filling a bottle. If the bottle is broken, the
bottle is in a broken state, no matter whether it is empty or full. The reset transition
causes the bottle to be an empty state again, although it has already been sealed.
A bottle is at sealed state if it is filled and capped. An inspection tree can also be
used to represent the whole behaviour of the nested state machine, and its simplified
inspection tree is shown in figure 15-b. In fact, the nested state machine can be redrawn
as a normal state machine, if the outside/inside transitions on the square boundary line
are mapped to each state which is at the inside/outside of the boundary.

5.4. Methods comprised in a transition

The state machines of classes, a sort of module specification, are the output of the
detail design level in a software development life cycle [Tsai et al. 1997b]. A single
transition in a design state machine, from the designers’ view, could be finished by
several sequential (methods) functions. From the discussion in previous sections it was
shown that the nodes of inspection trees contain member function names rather than



B.-Y. Tsai et al. / Automated class testing 219

Figure 16. A transition comprises more than one methods in the program code.

Figure 17. The inspection tree of a priority queue class in figure 16.

transition name to parse the test result. For example, the state machine of a priority
class, shown in figure 16, contains one addrear transition which could be replaced
with the add() and sort() member functions. The state of the class will change to the
ordered queue state after the addrear transition (both add() and sort() functions) is
executed. Therefore, these two functions should be stored in the inspection tree, and
an add() followed sort() test case is required to test this class.

Each node of the inspection tree in figure 4 contains a function name, a state
information and pointers, but in this example, there is no state information that can be
stored with the add() function in a node. That means the node cannot represent the
Ordered state node in the state machine, see figure 16. Therefore the state name field
in the node will be filled with an empty string, see figure 17. The algorithm in figure 5
can still be used to build this sort of inspection trees. The inspection algorithm, given
in figure 9, can also be used with an additional condition statement.



220 B.-Y. Tsai et al. / Automated class testing

Figure 18. The process of creating an inspection tree.

6. The inspection tree generator

An object-oriented application can be aggregated by several classes. To facilitate
design and maintenance, the classes may be designed as small as possible. Therefore,
state machines are quite capable of modelling the states and transitions of the classes.
In addition, testers can use threaded multi-way trees to represent each of these state
machines.

If testers wish to create inspection trees for another state machine, all they need
to do is to change the structure of the tree node. The algorithm to create inspection
trees for various state machines is the same. Therefore, it is possible to design an
inspection tree generator that can generate various inspection trees for various state
machines. The inspection tree generator can be designed to modify the source code of
the inspection tree pattern into another source code, in order to build a new tree.

The testers can follow the state machine to modify the structure of the node in
the pattern, and then compile the modified code. Next, testers need to type the state
names (or called state information) and function names in accordance with the state
machine. Finally, the required inspection tree is created to enable inspection of the
test results file. Testers do not need to code a new program to create a new inspection
tree for another state machine. The process of modifying the pattern tree is shown in
figure 18.

7. Conclusion

State-based testing focuses on the question of whether a message or a sequence
of messages puts an object of the class under test into the correct state. The threaded
multi-way inspection tree imitates state-based testing with a state machine, to determine
whether the resultant state is correct or not, after the message(s) are passed to an
object. Binder [1996] defined four kinds of classes for testing: nonmodal, unimodal,
quasimodal and modal. This paper has shown the example of the class queue, which is



B.-Y. Tsai et al. / Automated class testing 221

quasimodal. A bank account class, a kind of modal class, has also been implemented
as an example with this automated class testing approach by Tsai et al. [1997c].

The advantages of the inspection approach, discussed as above, are that it is not
complicated. Furthermore, testers can produce various inspection trees from the state
machines. Additionally, regression testing can be performed since the inspection trees
can be reused. Thus using this approach with a class test tool can help to reduce the
overall cost of testing.

References

Binder, R.V. (1995), “State-Based Testing: Sneak Paths and Conditional Transitions,” Object Magazine,
October, 87–89.

Binder, R.V. (1996), “Modal Testing Strategies for OO Software,” IEEE Computer 29, 11, 97–99.
Cook, S. and J. Daniels (1994), Designing Object Systems: Object Oriented Modelling With Syntropy,

Prentice-Hall, Reading/London.
Glass, R.L. (1990), “Software Maintenance is Solution-Not a Problem,” Journal of Systems and Software

11, 2, 77–78.
Harel, D. (1987), “Statecharts: A Visual Formalism for Complex Systems,” Science of Computer Pro-

gramming 8, 3, 231–274.
Jacobson, I., M. Christerson, P. Jonsson and G. Övergaard (1992), Object-Oriented Software Engineering

– A Use Case Driven Approach, Revised 4th Edition, Addison-Wesley, Reading, MA.
McGregor, J.D. and D.M. Dyer (1993), “A Note on Inheritance and State Machines,” Technical Report

TR 93-114, 5th May, Department of Computer Science, Clemson University, SC.
Myers, G.J. (1979), The Art of Software Testing, Wiley, Reading/New York.
Norman, S. (1993), Software Testing Tools, Ovum Ltd., Reading/London.
Tsai, B.-Y., S. Stobart and N. Parrington (1997a), “Using Extended General Statecharts in Object-Oriented

Program Testing: A Case Study,” In Proceedings of the 24th Technology of Object-Oriented Languages
and Systems, TOOLS 24, IEEE Computer Society Press, Los Alamitos, CA, pp. 96–103.

Tsai, B.-Y., S. Stobart and N. Parrington (1997b), “Iterative Design and Testing Within the Software
Development Life Cycle,” Software Quality Journal 6, 4, 295–310.

Tsai, B.-Y., S. Stobart and N. Parrington (1997c), “A Method for Automatic Class Testing (MACT)
Object-Oriented Programs – Using A State-Based Testing Method,” In Proceedings of 5th European
Conference Software Testing Analysis & Review, EuroSTAR 97, EuroSTAR Administration, pp. 403–
415.

Tsai, B.-Y., S. Stobart and N. Parrington (1998a), “An Automatic Test Case Generator Derived from
State-Based Testing,” Occasional Paper: CIS-1-98, School of Computing and Information Systems,
University of Sunderland, UK.

Tsai, B.-Y., S. Stobart, N. Parrington and I. Mitchell (1998b) “An Automatic Test Case Generator Derived
from State-Based Testing,” In Proceedings of 5th Asia Pacific Software Engineering Conference,
ASPEC 98, IEEE Computer Society Press, Los Alamitos, CA, pp. 270–277.

Turner, C.D. and D.J. Robson (1995), “A State-Based Approach to the Testing of Class-Based Programs,”
Software Concepts & Tools 16, 3, 106–112.


