
International Journal of Parallel Programming , Vol . 26, No. 1, 1998

Compilation of Constraint Programs
with Noncyclic and Cyclic
Dependencies to Procedural
Parallel Programs

Ajita John1 and James C. Browne2

This paper reports on a compiler for translation of constraint specifications into
procedural parallel programs. A constraint program in our system consists of a
set of constraints and an input set containing a subset of the variables appearing
in the constraints. The compiler described in this paper successfully compiles a
substantially larger class of constraint specifications to efficient programs than
did its predecessors. In particular the compiler has been extended to generate
processor and memory efficient programs for cyclic constraints which can be
resolved by computational relaxation methods. The paper first details the basic
compilation process for noncyclic constraints. It then describes the additional
steps in the compilation process which enable resolution of cyclic constraints to
iterative computational processes and illustrates the process using derivation of
a parallel program for solution of the Laplace equation as the example.

KEY WORDS: Constraint compiler parallel matrix; cyclic constraints; non-
cyclic constraints.

1. INTRODUCTION

Constraint systems are a natural means of expressing a family of computa-
tions. Specification of some subset (inputs) of the type instances (variables)
appearing in the constraint system leads to a constraint program which can

65

0885-7458/98/0200-0065$15.00/0 Ñ 1998 Plenum Publishing Corporation

1 Bell Labs Innovations, Lucent Technologies, 101 Crawfords Corner Rd, 4E-622, Holmdel,
New Jersey 07733. E-mail: ajita@research.bell-labs.com.

2 Dept. of Computer Sciences, University of Texas, Taylor Hall 2.124, Austin, Texas 78712.
E-mail: browne@cs.utexas.edu.

be evaluated to determine the values for the noninput variables. Constraint
programs are attractive as a representation to be compiled for parallel
execution since constraint systems do not specify control flow and thus
allow the compiler full freedom to optimize the compiled program to a
specific target execution environment. But previous evaluation methods for
constraint systems have largely employed interpretive evaluation
methods(1, 2) and have been quite slow in execution. Also, previous use of
compilation of constraint systems (3, 4) to procedural programs have not
considered parallelism.

This paper defines and describes a compilation process which trans-
lates constraint programs specifying matrix computations to efficient
parallel programs. A constraint program is a system of constraints and a
specification of some subset of the type instances (variables) appearing in
the system of constraints as being known. The compilation process con-
verts the constraint program to a dependence graph where the nodes
implement operations over the variables appearing in the constraint
system. The dependence graph is then mapped to a procedural program for
execution. This program computes the variables designated as unknown.
In the case where the dependence graph has no cycles mapping of the
dependence graph to an efficient procedural program is straightforward.
But the compilation process leading to dependence graphs naturally
produces single assignment variables. Resolution of cyclic dependence
graphs of single assignment variables to efficient parallel programs requires
additional phases of compilation including both introduction of iterative
algorithms for resolution of cyclic dependence graphs and translation of the
single assignment variables in the cyclic portion of the dependence graph
to be mutable variables.

Previous papers (5, 6) gave preliminary descriptions of the compilation
process through generation of procedural parallel programs for noncyclic
dependence graphs. The compiler has now been extended to generate
efficient parallel programs for cyclic dependence graphs which can be
resolved by iterative (relaxation) algorithms. This paper gives a complete
description of this compilation process through development of the
dependence graph and defines and describes the additional compilation
phases necessary to generate efficient parallel executables for cyclic
dependence graphs. Solution of the Laplace equation is used as the illustra-
tion and the vehicle for measurement of performance.

Section 2 defines the constraint specification language used as the basis
for compilation. Section 3 defines the compilation process through genera-
tion of dependence graphs and mapping of noncyclic dependence graphs to
procedural parallel programs. Section 4 defines the additional compilation
phases needed to resolve cyclic dependence graphs. A constraint specification

66 John and Browne

does not contain the implicit information about the target execution
environment present in most procedural language programs. But this infor-
mation can be specified to the compiler separately from the program. Sec-
tion 5 gives provisions for describing the target execution environment to
the compiler. Section 6 gives the execution behavior of the parallel program
for the Laplace equation. Section 7 is a review of related research. Conclu-
sions and directions for future work are presented in Sections 8 and 9,
respectively.

2. LANGUAGE DESCRIPTION

This section describes the components of our programming system. It
explicates the type system, the rules for expressing constraints, and the
structure of a complete program in the system. The section concludes with
the constraint specifications for a few sample programs. The notations used
are similar to those in the C programming language.

2.1. Type System

Our approach relies on a rich hierarchical type system where types at
higher levels are constructed from those at lower levels in the hierarchy.
The schematic for the layout of the type system is shown in Fig. 1. The
lowest level of the type hierarchy contains integers, reals, and characters.
At the next level of the hierarchy are arrays to which we give semantic
structure to construct the base matrix types, which define matrices of scalar

Fig. 1. The type system
layout.

67Noncyclic and Cyclic Dependencies to Procedural Parallel Programs

elements. In addition to dense matrices, the base matrix type currently sup-
ports specialized matrix types such as lower and upper triangular enabling
the flexibility to invoke specialized algorithms based on the structure of the
matrix for the operations defined on the matrix subtypes. Other specialized
types can also be easily incorporated. At the highest level of the type
system are hierarchical matrices, whose individual elements are matrices.

The entities in the type system are integers, reals, characters, arrays,
base matrices and hierarchical matrices. The operators of addition, subtrac-
tion, multiplication, and division are defined on integers and reals. The
operator sets for characters and arrays are empty. The base matrix type has
associated operators of addition, subtraction, scalar multiplication, matrix
multiplication and inverse defined for matrices over integers and reals. The
operator set for hierarchical matrices is empty since operations are only
defined on the blocks which compose it.

2.2. Expressions

Expressions can be formed by applying defined operators on instances
of types in the type system and through calls to library and user-defined
functions. Functions must have defined inverses, otherwise only a limited
form of compilation can be done. Examples of library functions are mathe-
matical functions such as sqrt and sqr.

Apart from defined applications of operators, expressions of the
following form using indexed operators are allowed.

á op ñ FOR (á index ñ á b1 ñ á b2 ñ){X}

An indexed operator applies a binary operator op to an expression X
through a range of values b1. . .b2 for an integer variable index. The values
of b1 and b2 have to be bounded at compile-time. An indexed operator
allows for the compact representation of expressions and is useful in large
systems. For example, the construct

+ FOR (i 1 3){+ FOR (j 1 i){A[i][j]}}

expresses the sum of the lower partitions of a 3 3 3 matrix A:

A[1][1]+

A[2][1]+ A[2][2] +

A[3][1]+ A[3][2] + A[3][3]

68 John and Browne

The `̀+’’ operator refers to scalar addition or matrix addition depending
on whether A is a base matrix or a hierarchical matrix, respectively.

2.3. Constraints

Rules which govern the specification of constraints are enumerated in
this section. In designing these rules we have the motivation of capturing
the entire set of constraints a programmer would wish to impose upon a
system. Rule 1 allows for the expression of simple conditions, using rela-
tional operators, on expressions involving type instances. Rule 2 allows
propositional connectives AND/OR/NOT to be applied on constraints to
express conditions using compositions of constraints. Rule 3 is a generaliza-
tion of Rule 2 through which large compositions of constraints using
AND/OR operators can be compactly represented. Rule 4 introduces
modularity to enable large bodies of constraints to be replaced by calls to
reusable modules.

Rule 1.

(i) X1 R X2 , is a constraint, where R Î {< , <= , > , >= , == , != },
X1 , X2 are expressions over instances of scalar types.

(ii) M1= = M2 is a constraint, where M1 , M2 are expressions involving
matrices and matrix operators.

Rule 1(ii) allows a mix of scalars and matrices. Although we do not
currently allow relations of the form M1< M2 , these could be easily
defined to extend expressibility.

Rule 2.

(i) A AND/OR B

(ii) NOT A are constraints, where A and B are constraints.

Rule 3. Constraints over indexed sets have the form:

AND/OR FOR (á index ñ á b1 ñ á b2 ñ){A1 , A2 ,..., An}

An indexed set groups a set of constraints {A1 , A2 ,..., An} to be connected
by an AND/OR connective through a range of values b1 . . .b2 for an integer
variable index. The values of b1 and b2 have to be bounded at compile-
time. This condition will be relaxed in later versions of the compiler.
Indexed sets allow for the compact representation of large constraint
systems.

69Noncyclic and Cyclic Dependencies to Procedural Parallel Programs

An application of Rule 3 is AND FOR (i 1 2){A[i] = = A[i 2 1],
B[i+ 1]= = A[i]}. This construct represents the constraint A[1]= =
A[0] AND A[2]= = A[1] AND B[2]= = A[1] AND B[3]= = A[2].

Another application of Rule 3 is OR FOR (i 1 2){A[i]= = 0,
B[i+ 1]= = A[i]}. This construct succinctly captures the constraint
A[1]= = 0 OR A[2]= = 0 OR B[2]= = A[1] OR B[3]= = A[2].

Rule 4. Calls to user-defined constraint modules are constraints.
They have the form:

á Module Name ñ (P1 , P2 ,..., Pn)

where Module Name is the name of a defined constraint module (Sec-
tion 2.4 describes definition of constraint modules), which encapsulates
constraints between its formal parameters, local variables, and global
variables within its scope. P1 , P2 ,..., Pn are the actual parameters for the
constraint module call.

Constraints constructed from applications of Rule 1 are referred to as
simple constraints, which form the building blocks for constraints construc-
ted from applications of Rules 2± 4. Both linear and nonlinear constraints
can be expressed using these rules. Each rule has an analog in the
procedural world± ± Rule 1 maps to simple conditionals and simple com-
putations such as assignments, Rule 2 to sequencing and conditional
statements, Rule 3 to loops and Rule 4 to procedures.

Our basic compilation algorithm can be applied to both linear and
non-linear constraints without cycles. Cyclic constraints such as
simultaneous systems of equations cannot be resolved by the basic com-
pilation algorithm. The extended compilation process described in Sec-
tion 4 generates programs which resolve cyclic systems through iterative
solution algorithms.

The implemented compiler handles all types of linear and nonlinear
constraints where the initialization results in all nonlinear terms being
known at runtime. A detailed discussion is given in Section 3. This restric-
tion could be alleviated by an extension to the compiler to incorporate
higher order solvers for unknown nonlinear terms into the compiled
program.

All invoked functions must have defined inverses, otherwise compila-
tion is only successful for cases where all parameters of the functions are
known at runtime. Constraint systems involving inequalities must be cast
by the compilation process to conditional expressions where the values of
all of the variables are known at runtime.

70 John and Browne

2.4. Program Structure

A program in our system has the following constituents.

(i) Program name.

(ii) Global variable declarations: list of global variables with
associated types.

(iii) Global input variables: input set I .

(iv) User-defined function signatures: signatures of C functions,
which may be invoked in expressions. For example, the user-
defined function max in the constraint max(a, b) < 5 may have
the function signature int max (intx, inty) . The actual function
definitions are provided in a separate file which is linked with
the compiled executable for the constraint program.

(v) Constraint module definitions: module name, formal parameters
and their types, local variable declarations, and a constraint
module body constructed from applications of Rules 1± 4 in Sec-
tion 2.3. Constraints within a module can involve local variables,
formal parameters, and global variables. Name scoping and
type matching are similar to those implemented for procedures
in C programs.

(vi) Main body of the program: constraints on global variables
expressed through applications of Rules 1± 4 in Section 2.3.

2.5. Sample Programs

This section presents four example programs written using the
language constructs presented in Section 2.3. While the first one is a toy
example, the others have been successfully executed with good performance
results.

2.5.1. The Quadratic Equation Solver

Figure 2 shows a constraint specification for the noncomplex roots of
a quadratic equation ax2+ bx+ c= = 0. sqr, sqrt, and abs are library func-
tions. The main body specifies the conditions on values of the roots r1 and
r2 when a= = 0 and when a!= 0. The condition on the values of r1 and r2
when a! = 0 is expressed by a call to a constraint module DefinedRoots .
The definition for the module expresses the relationship between the
parameters a, b, c, r1, and r2 in the event that the discriminant (t) is
greater than or equal to 0. The specification can be enhanced for imaginary

71Noncyclic and Cyclic Dependencies to Procedural Parallel Programs

Fig. 2. Constraint specification for quadratic equation solver.

roots. The input set could be {a, b, c}, {a, b, r1}, or {a, b, r2}. Other input
sets will not lead to dependence graphs through the compilation process
described in Section 3.

2.5.2. The Block Triangular Solver (BTS)

The example chosen is the solution of the AX= = B linear algebra
problem for a known lower triangular matrix A and vector B. The matrix
and vectors can be divided into blocks as shown in Fig 3. S 0 ...S 3 represent

Fig. 3. BTS: partitioned lower triangular matrix A, vectors X
and B.

72 John and Browne

Fig. 4. Constraint specification for the BTS system with com-
puted terms in bold.

lower triangular sub-matrices along the diagonal of A and M10 , M20 ,...,
M32 represent dense sub-matrices within A.

A constraint specification (excluding declarations) for a problem
instance split into 4 blocks is shown in Fig. 4. The significance of the bold-
faced terms will be explained in Section 3. The input set can be chosen as
{S 0 ,..., S 3 , M10 , M20 ,..., M32 , B0 ,..., B3}. The constraint specification closely
imitates the mathematical representation of the partitioned version of the
problem AX= = B.

Using an indexed set of constraints and an indexed operator, an alter-
nate compact program is shown in Fig. 6 using partitions on A as shown
in Fig. 5. The input set can be chosen as {A, B} to yield a solution for X.
Alternatively, {A, X} can be chosen as the input set to yield a solution
for B. Choosing {B, X} as the input set will not yield a solution for A
through the compilation process described in Section 3.

2.5.3. The Block Odd-Even Reduction Algorithm (BOER)

This is an example deliberately chosen by us to demonstrate that con-
structing the constraint specification by inspecting a given algorithm and

Fig. 5. BTS: partitioned lower triangular
matrix A.

73Noncyclic and Cyclic Dependencies to Procedural Parallel Programs

Fig. 6. Alternated notation for the constraint specification for the BTS system.

processing it through the compiler extracts the original algorithm if an
appropriate input set is chosen (shown later in the paper). Consider a
linear tridiagonal system Ax= = d where

A= 9
B C 0 0 . . . 0 0 0

:
C B C 0 . . . 0 0 0

0 C B C . . . 0 0 0

a a a a a a a a

0 0 0 0 . . . C B C

0 0 0 0 . . . 0 C B

is a block tridiagonal matrix and B and C are square matrices of order
n > 2. It is assumed that there are M such blocks along the principal
diagonal of A, and M= 2k 2 1, for some k > 2. Thus, N= Mn denotes the
order of A. It is assumed that the vectors x and d are likewise partitioned,
that is, x= (x1 , x2 ,..., xM) t, d= (d1 , d2 ,..., dM) t, x i= (x i1 , x i2 ,..., x in) t, and
di= (d i1 , d i2 ,..., d in) t, for i= 1, 2,..., M. It is further assumed that the blocks
B and C are symmetric and commute (B 3 C= = C 3 B) .

A version of the parallel algorithm given by Lakshmivarahan and
Dhall (7) has a reduction phase in which the system is split into two sub-
systems: one for odd-indexed (reduced system) and another for even-
indexed (eliminated system) terms. The reduction process is repeatedly
applied to the reduced system. After k 2 1 iterations the reduced system
contains the solution for a single term. The rest of the terms can be
obtained by back-substitution.

The constraint specification (excluding declarations) for the problem is
shown in Fig. 7. The significance of the bold-faced terms will be explained
in Section 3. The variable names BP , CP, and dP correspond to the
indexed terms B, C, and d in Ref. 7 and are examples of the hierarchical
data type in our system (elements of BP , CP, and dP are matrices). The
inputs to the system are BP[0], CP[0] and dP[i][0] , 1 < i < M. pow is a
C function implementing the arithmetic power function. The constraints
have been constructed by mapping assignments (=) in the algorithm(7) to

74 John and Browne

Fig. 7. Constraint specification for the BOER system.

equality (= =) in the constraint specification and loops to indexed sets.
Also, the three constraints corresponding to the reduction, single-solution,
and back-substitution phases have been reordered to demonstrate the
independence of this constraint specification on the expressed order of the
constraints.

2.5.4. The Laplace Equation

Consider the Laplace equation for a 4-point stencil on an N3 N grid
indexed by (0..N 2 1) (0..N 2 1) as shown in Fig. 8 for N= 10. The bound-
ary elements (shaded) are inputs to the problem. Every element not on the

75Noncyclic and Cyclic Dependencies to Procedural Parallel Programs

Fig. 8. The Laplace equation
grid.

boundary is the average of its four neighbors. Since there are (N 2 2) 3
(N 2 2) nonboundary elements, there are (N 2 2) 3 (N 2 2) constraints to
satisfy.

A constraint specification (excluding declarations) for the problem is
shown in Fig. 9. x is an array of dimensions ranging in (0 . .N 2 1, 0 . .N 2 1).
The simple constraint 4*x[i][j] 2 x[i 2 1][j] 2 x[i+ 1][j] = = x[i]
[j 2 1]+ x[i][j+ 1] in the specification can be expressed in many equiv-
alent representations including 4*x[i][y] = = x[i 2 1][j] + x[i+ 1]
[j]+ x[i][j 2 1]+ x[i][j+ 1]. This program is an example of con-
straints over scalar elements of a structured type.

3. COMPILATION

The constraint compiler transforms a textual program given in the for-
mat outlined in Section 2.4 to a sequential or parallel C program for a
selected architecture such as a Sparc, Cray, PVM, or MPI configuration.
This section discusses the basic compilation algorithm(5) which handles
constraint systems without cycles. We discuss an enhancement to the basic

Fig. 9. Constraint specification for the Laplace equation system.

76 John and Browne

algorithm for constraint systems with cycles in Section 4. The compilation
algorithm consists of the following phases.

Phase 1. The textually expressed constraint specification is trans-
formed to an undirected graph representation as for example given by
Leler. (1)

Phase 2. A depth-first traversal algorithm transforms the undirected
graph to a directed graph.

Phase 3. With a set of input variables I , the directed graph is
traversed in a depth-first manner to map the constraints in the constraint
specification to conditionals and computations for nodes of a generalized
dependence graph.

Phase 4. Specifications of the execution environment are used to
optimally select the communication and synchronization mechanisms to be
used by CODE. (8)

Phase 5. The dependence graph is mapped to the CODE parallel
programming environment to produce sequential and parallel programs in
C as executable for different parallel architectures.

Phases 1± 5 are described in detail in the rest of this section. Phases 1± 3
will be illustrated through the quadratic equation solver introduced in Fig. 2.

3.1. Phase 1: Generation of Constraint Graphs

A parser transforms the textual source program to a source graph for
the compiler. Starting from an empty graph, for each application of
Rules 1± 4 in Section 2.3 an undirected constraint graph can be constructed
by adding appropriate nodes and edges to the existing graph. For each
instance of a simple constraint (Rule 1) a node is created with the con-
straint attached to it as shown in Fig 10a. For each application of Rule 2
(A AND/OR B, NOT A) the graph is expanded as shown in Figs. 10b,
and c. Figure 11a illustrates the expansion of the constraint graph for each
application of Rule 3 (AND/OR FOR(á index ñ á b1 ñ á b2 ñ){A1 , A2 ,...,
An}). For each application of Rule 4 (á ModuleName ñ (P1 , P2 ,..., Pn)) a
node is created with the constraint module call and the actual parameters
attached to it as shown in Fig 11b.

The different kinds of nodes in the constraint graph are (i) simple con-
straint nodes (1 in Fig. 10a) (ii) operator nodes corresponding to AND/
OR/NOT connectives (2 in Fig. 10b, and c) , (iii) for nodes corresponding
to indexed sets (3 in Fig. 11a) , and (iv) call nodes corresponding to con-
straint module calls (4 in Fig. 11b). The index and its range information for
an indexed set are attached to the corresponding for node.

77Noncyclic and Cyclic Dependencies to Procedural Parallel Programs

Fig. 10. Constraint graphs for (a) rule 1; and (b) and (c) rule 2.

Fig. 11. Constraint graphs for (a) rule 3 (b) rule 4.

Fig. 12. Constraint graphs for the quadratic equation solver.

78 John and Browne

A constraint graph is constructed for the main body and for each of
the constraint module bodies giving rise to a set of constraint graphs. Each
graph is constructed in a hierarchical fashion. Simple constraint and call
nodes occur at lower levels, and operator and for nodes connect one or
more subgraphs at higher levels. There will be a single node at the highest
level. The constraint graph obtained for a particular constraint specifica-
tion is unique.

The constraint graphs for the quadratic equation solver are shown in
Fig. 12.

3.2. Phase 2: Translation of Constraint Graphs to
Directed Graphs

A depth-first traversal of each graph in the set of constraint graphs
obtained from the main body and the constraint module bodies constructs
a set of directed graphs. The directed graph corresponding to the main
body is referred to as the main tree. The traversal assigns constraints con-
nected by AND operators in a constraint graph to the same node in the
corresponding directed graph and constraints connected by OR operators
in a constraint graph to nodes on diverging paths in the corresponding
directed graph.

Figure 13 illustrates phase 2 for four base cases, where a, b, c, and d are
simple constraints. There is a potential for combinatorial explosion in case 4
which corresponds to the applying the distributive law: (a OR b) AND (c OR
d) º (a AND c) OR (a AND d) OR (b AND c) OR (b AND d).

The resulting directed graphs in this phase do not contain any
AND/OR nodes. Instead, a node in a directed graph may contain a list of
simple constraints, indexed sets, or constraint module calls. However,

Fig. 13. Phase 2 for four base cases.

79Noncyclic and Cyclic Dependencies to Procedural Parallel Programs

AND/OR nodes are implicitly represented in a directed graph since all con-
straints along a path are connected by the AND operator and constraints
on different paths are connected by the OR operator. The satisfaction of all
the constraints along a path from the root to a leaf in a directed graph
represents a satisfaction of the constraint system represented by the direc-
ted graph. Different paths, being implicitly connected by the OR operator,
represent different ways of satisfying the constraint system.

The algorithm dft is a generalization of Fig. 13. Let v1 be the unique
node at the highest level of the input constraint graph G. Each output
directed graph G* is initialized to a root v1* . Each node in G* can hold a
list of constraints. An indexed set of constraints within a node in G* has
an associated directed graph obtained from the depth-first traversal of the
constraint graph corresponding to constraints in the indexed set. vc and vc*
are the nodes currently being visited in G and G*, respectively. dft is
initially invoked with the call dft(v1 , v1*).

The case of the operator node NOT has been omitted from the descrip-
tion of dft . However, it is implemented in the system as follows. A NOT
operator node operates on a single constraint subgraph. It is moved down
all the levels of the subgraph by changing nodes± ± AND to OR and OR to
AND± ± traversed in its path until it reaches a simple constraint or another
NOT node. If it reaches a simple constraint, the NOT node is removed by
negating the simple constraint. If it reaches another NOT node, both NOT
nodes are removed from the graph.

80 John and Browne

The directed graphs obtained for the quadratic equation solver
through phase 2 are shown in Fig. 14.

3.3. Phase 3: Generation of Dependence Graphs

Using the input set I , a depth-first traversal of the main tree T main

from phase 2 attempts to generate a dependence graph. The generalized
dependence graph is a directed graph in which nodes are computational
elements and arcs between nodes express data dependency. It has a unique
start node which has no arcs directed into it and whose inputs are in I .
The start node can be executed exactly once at the initiation of the com-
putation. A path from the start node in the graph is a computation path.

Fig. 14. Directed graphs from phase 2 for the quadratic equation solver.

81Noncyclic and Cyclic Dependencies to Procedural Parallel Programs

A node in the dependence graph has the form: firing rule, computation,
routing rule (see Fig. 15). A firing rule is a condition that must hold before
the node can be enabled for execution. The computation at a node is per-
formed when the node is executed. A routing rule is a condition that must
hold for the node to send data on its outgoing paths.

At the initiation of phase 3, a dependence graph G is constructed
which is similar in structure to T main , i.e., there is a 1-1 mapping between
nodes and arcs in T main and the nodes and arcs in G, respectively. The node
in G corresponding to the root of T main is designated as the start node. The
structure of G may change later as detailed in Sections 3.3.2 and 3.3.3. The
nodes in G are initially empty.

A known set is associated with each node in the dependence graph G.
The variables in the known set at a node are knowns at that node. (The
values of these variables are known at runtime at that node.) All variables
not in the known set at a node are unknowns at that node. The input set
is cast as the known set for the start node. A child node in the dependence
graph inherits the known set of its parent when the node in T main corre-
sponding to the child node is visited during the depth-first traversal.

When a node in T main is visited, constraints at that node may be
resolved through processes detailed in Sections 3.3.1± 3.3.3 into computa-
tions or conditionals (firing/routing rules) of the corresponding node in G.
Any constraint which cannot be resolved is retained in an unresolved set
of constraints which is propagated down T main to other nodes through the
depth-first traversal in the hope that it may get resolved later. A number
of passes may be made through each constraint at a node and the

Fig. 15. Generalized
dependence graph node.

82 John and Browne

propagated unresolved set of constraints for resolution of these constraints.
A new pass is initiated if at least one constraint was resolved in the pre-
vious pass; otherwise the depth-first traversal proceeds to visit the next
node. Treatment of constraints remaining unresolved at the leaves of T main

is described in Section 3.3.8.

3.3.1. Resolution of Simple Constraints

Each node v in the directed graph from phase 2 may have a set of
simple constraints attached to it. Additionally, the depth-first traversal may
have a list of unresolved constraints propagated down from v’s parent.
Each simple constraint at v or in the unresolved set of constraints can be
resolved as one of the following for the corresponding node v* in the
dependence graph.

(i) Firing Rule: To be so classified a constraint must have no
unknowns at v* before the first pass through the list of con-
straints at v and the unresolved set of constraints.

(ii) Computation: To fall into this category a constraint must
involve an equality and have a single unknown at v*. The con-
straint is cast as a computation at v* for the unknown which is
added to the known set for v*.

(iii) Routing Rule: To be a routing rule all unknown variables in the
constraint must become knowns through computations at v*.

Constraints involving inequalities must be resolved as firing/routing
rules. When a constraint is classified as a computation it is mapped to an
equation. All terms involving the single unknown in the computation are
moved to the left-hand side of the equation. If the unknown occurs in an
actual parameter of a function, the inverse of the function may be applied
to extract a computation for the unknown. Currently, our system solves
equations in linear unknown terms. Thus nonlinear constraints can be
currently resolved if the unknown terms are linear. In the future, we plan
to incorporate solvers for scalar types that will solve for higher powers of
the unknown. If the variables in the computation are matrices, the com-
putation is replaced by calls to specialized matrix routines written in C.
For example, the statement A * x+ b1= = b2 with x as the unknown is
first transformed into A * x= = b2 2 b1 and then a routine is invoked to
solve for x. If A is lower (upper) triangular, then forward (backward) sub-
stitution is used to solve for x. Otherwise x is solved through an LU
decomposition of A.

83Noncyclic and Cyclic Dependencies to Procedural Parallel Programs

3.3.2. Resolution of Indexed Sets

An indexed set AND/OR FOR (á index ñ á b1 ñ á b2 ñ){A1 , A2 ,..., An} is
resolved if every constraint A i , 1 < i < n, is resolved for all values of index
in b1 .. .b2. Resolved indexed sets are compiled to loops which iterate over
values of index in b1 . . .b2. If every constraint in a set S 1k {A1 , A2 ,..., A n}
is resolved as a computation, every constraint in a set S 2k {A1 , A2 ,..., A n}
is resolved as a firing/routing rule and every constraint in a set S 2k {A1 ,
A2 ,..., An} remains unresolved, the indexed set is split into the following
three indexed sets.

(1) An indexed set AND/OR FOR (index á b1 ñ á b2 ñ) S 1 resolved as
a computation

(2) An indexed set AND/OR FOR (index á b1 ñ á b2 ñ) S 2 resolved as
a firing/routing rule

(3) An unresolved indexed set AND/OR FOR (index á b1 ñ á b2 ñ) S 3

Note that S 1 n S2 n S3= = {A1 , A2 ,..., An} and S i m S j= = w (null set)
where 1 < i, j< 3 and i Þ j.

The restrictions for a constraint A i , 1 < i < n, in an indexed set struc-
ture to be compiled successfully in our system are as follows. For all values
of index in b1 . . .b2 (a) A i has to have the same classification (computation/
firing rule/routing rule), (b) if A i is a simple constraint and is classified as
a computation, a unique term in the constraint has to be the unknown
(a term can be a simple variable x or an indexed term such as X[á list of
indices ñ], where X is a structured data type). An example of a construct
that will be compiled successfully is

X[0]= = 0 AND (AND FOR (i 1 5){X[i 2 1]= = X[i] + Y [i]})

with Y known and X unknown. It will be compiled to the computations

X[0] = 0

for i= 1 to 5 do

X[i] = X[i 2 1] 2 Y [i]

Note that the indexed set is compiled to a loop which computes the
value of X[i] in successive iterations.

An example of a construct that will not be compiled successfully is
AND FOR (i 1 5){X[1] = = X[i]+ Y [i]} with X unknown and Y known.
This is because in the first iteration both the terms X[1] and X[i] are

84 John and Browne

Fig. 16. Indexed set at a node in a directed
graph from Phase 2.

unknown whereas subsequent iterations have only X[i] as an unknown
(violates (b)).

3.3.2.1. Resolution of AND Indexed Sets. Let an AND indexed set
AND FOR (i á b1 ñ á b2 ñ){A1 , A2 ,..., An} occur among constraints C1 ,
C2 ,..., Cp at a node in a directed graph as shown in Fig. 16. Evaluate con-
straints A 1 , A2 ,..., An for classification as firing/routing rules or computa-
tions for i= b1 . . .b2. Let k(1) . . .k(n) be a reordering of the subscripts 1 . . .n.
Let {Ak (1) , Ak (2) ,..., Ak (m1)} be the constraints which evaluate to firing rules
for all i= b1 . . .b2. Let {Ak (m1+ 1) . . .Ak (m 2)} be the constraints which
evaluate to computation for all i= b1 . . .b2. Let {Ak (m2+ 1) . . .Ak (m3)} be the
constraints which evaluate to routing rules for all i= b1 . . .b2. Let
{Ak (m 3+ 1) . . .Ak (n)} be the constraints which remain unresolved.

Similarly, evaluate constraints C1 , C2 ,..., Cp . Let r(1) . . . r(p) be a reor-
dering of the subscripts 1 . . .p. Let {C r(1) , C r(2) ,..., C r(l1)}, {C r(l1+ 1) . . .C r(l2)},
and {C r(l2+ 1) . . .Cr(l3)} be the constraints which evaluate to firing rules,
computations, and routing rules, respectively and {C r(l3+ 1) . . .Cr(p)} be the
unresolved constraints. The generated dependence graph is shown in
Fig. 17. The unresolved constraints are propagated down T .

The firing rule corresponding to Ak (1) , Ak (2) ,..., Ak(m1) is Ak (1) AND
Ak (2) AND .. . AND Ak(m1) for all i= b1 . . .b2. A similar construct is set up

Fig. 17. Generated dependence graph for an AND indexed set.

85Noncyclic and Cyclic Dependencies to Procedural Parallel Programs

for the routing rule corresponding to Ak(m 2+ 1) . . .Ak (m 3) . The computations
for Ak (m 1+ 1) . . .Ak(m 2) are expressed as

for i= b1 to b2 do

Computation corresponding to Ak (m 1+ 1)

Computation corresponding to Ak (m 1+ 2)

a

Computation corresponding to Ak (m 2)

3.3.2.2. Resolution of OR Indexed Sets. Let an OR indexed set
OR FOR (i á b1 ñ á b2 ñ){A1 , A2 ,..., An} occur among constraints C1 , C2 ,...,
Cp at a node in a directed graph from phase 2 as shown in Fig. 16.
Evaluate constraints A1 , A2 ,..., An for classification as firing/routing rules
or computation for i= b1 . . .b2. Let k(1) . . .k(n) be a reordering of the sub-
scripts 1 . . .n. Let {Ak (1) , Ak (2) ,..., Ak(m 1)} be the constraints which evaluate
to firing rules for all i= b1 . . .b2. Let {Ak (m1+ 1) . . .Ak (m 2)} be the constraints
which evaluate to computations for all i= b1 . . .b2. Let {Ak (m2+ 1) . . .Ak (m 3)}
be the constraints which evaluate to routing rules for all i= b1 . . .b2. Let
{Ak (m 3+ 1) . . .Ak (n)} be the constraints which remain unresolved.

Similarly, evaluate constraints C1 , C2 ,..., Cp . Let r(1) . . . r(p) be a reor-
dering of the subscripts 1 . . .p. Let {C r(1) , C r(2) ,..., C r(l1)}, {C r(l1+ 1) . . .C r(l2)},
and {C r(l2+ 1) . . .Cr(l3)} be the constraints which evaluate to firing rules,
computations, and routing rules, respectively and {C (l3+ 1) . . .C r(p)} be the
unresolved constraints. The generated dependence graph is shown in
Fig. 18. The unresolved constraints are propagated down T .

Fig. 18. Generated dependence graph for an OR indexed set.

86 John and Browne

The `̀ Call Node’’ invokes the dependence graph corresponding to T .
i= b1 . . .b2 shows that the associated arc and its destination node are
replicated for values of i from b1 . . .b2. The firing rule for Ak(1) , Ak(2) ,...,
Ak (m 1) is Ak (1) OR Ak (2) OR . . . Ak (m 1) for any i= b1 . . .b2. A similar con-
struct is set up for the routing rule for Ak (m 2+ 1) . . .Ak (m3) .

3.3.3. Resolution of Constraint Module Calls

A constraint module call has the form ModuleName(e1 , e2 ,..., en)
where e i , 1 < i < n, is an actual parameter. Actual parameters may be
expressions. Let the formal parameters corresponding to e1 , e2 ,..., en be
f 1 , f 2 ,..., f n , respectively. Let K be the known set at that node in G
(dependence graph) which corresponds to the node in T (directed graph
from phase 2) where the constraint module is invoked. If all the variables
in e1 ,..., en and all the global variables occurring in the constraint module
body are in K and no local variable occurs in the constraint module body,
the call to the constraint module is cast as a firing/routing rule which tests
whether the body of the constraint module is satisfied or not.

If the constraint module call cannot be cast as a firing/routing rule, an
attempt is made to generate a dependence graph from the constraint
module definition. A new dependence graph Gmod is created which is similar
in structure to the directed graph T mod from phase 2 for the constraint
module, i.e., there is a 1-1 mapping between nodes and arcs in Gmod and
nodes and arcs in T mod , respectively. T mod is traversed with a new known
set Kmodule which is initialized to { f i | {all variables in e i}kK, 1 < i < n} n
{x | x Î K and x is a global variable in the scope of the module}. The
unknowns are considered to be all formal parameters not in Kmodule , the
local variables in the constraint module, and all the global variables not in
K but in the scope of the module.

The resolution of constraints in the constraint module is similar to
that for the main module with one difference. The dependence graph Gmod

is retained with only the set of paths with the maximal output set for for-
mal parameters and global variables. For example, let there be 5 paths
numbered 1 through 5 with the following computed formal parameters and
global variables. 1: {a, b}, 2: {a}, 3: {a, b, c}, 4: {a, b}, 5: {a, b, c}. Paths 3
and 5 have the maximal output set {a, b, c} and are the only ones retained
in the dependence graph; paths 1, 2, and 4 are deleted. If there is more than
one distinct maximal set, any one maximal set is chosen at random. This
technique of deleting paths not having the maximal output set is not
implemented in the dependence graph generation of the main module
where all paths need not have the same set of computed variables. The
reason for imposing this condition in a constraint module is that the actual
parameters are bound to the formal parameters at the point of call. If

87Noncyclic and Cyclic Dependencies to Procedural Parallel Programs

different sets of variables are computed in different paths of the dependence
graph corresponding to a constraint module it is not possible to determine
statically the actual parameters and global variables computed in the con-
straint module call, which have to be added to K.

If the dependence graph generation is successful (there are no
unresolved constraints at the end of the paths with the maximal output
set), a new set of constraints is generated as follows.

ek1= = Z1 , ek2= = Z 2 ,..., ekp = = Zp , where Z i , 1 < i < p, are new
variables generated by the compiler and ek1 . . .ekp are the actual parameters
corresponding to the set of computed formal parameters in the maximal
output set. An attempt is made to resolve this set of constraints with
Z1 . . .Zp in the known set K. If the constraints in this set are resolved as
computation for all the unknowns in ek1 . . .ekp , a call node which invokes
the dependence graph for the constraint module call Gmod is generated as
shown in Fig. 19. A child node of the call node receives values computed
for the formal parameters by the call node and binds them to Z1 . . .Zp and
performs the computation generated from the new set of constraints.

If the dependence graph generation is not successful, the constraint
module call is considered to be unresolved.

For a constraint module with n parameters there are 2n possible input
parameter sets and consequently, there are 2n potential translations for a
particular constraint module. Of course, not all translations might be suc-
cessful. Constraint module invocations, with the same set of formal
parameters and global variables as inputs, reuse the same dependence
graph.

Fig. 19. Dependence graphs for a constraint module call.

88 John and Browne

Fig. 20. Dependence graphs for the quadratic equation solver with
I = {a, b, c}.

3.3.4. Quadratic Equation Solver through Phase

The dependence graphs for the quadratic equation solver with the
input set {a, b, c} are shown in Fig. 20 where computations for r1 and r2
are extracted. The dependence graphs for the quadratic equation solver
with a different input set {a, b, r1} are shown in Fig. 21. The dependence
graphs compute values for variables c and r2. The inverses of the functions
sqrt and abs have been applied to derive the computations for t. The com-
piler can be optimized to detect that the path starting from the node com-
puting t= 2 sqr(2 * a * r1+ b) can never be traversed to completion.

Figures 20 and 21 show that the same constraint program specification
can be reused to derive the dependence graphs for different input sets.
However, not all input sets can lead to dependence graphs where no con-
straints remain unresolved. For example, no dependence graph can be
generated with the input set {a, r1} because the simple constraint
b * r1+ c= = 0 and the constraint module call DefinedRoots remain
unresolved in the main tree (The module call DefinedRoots remains

Fig. 21. Dependence graphs for the quadratic equation solver with I = {a, b, r1}.

89Noncyclic and Cyclic Dependencies to Procedural Parallel Programs

unresolved because all the constraints in the directed graph for the module
remain unresolved.) . Note that phases 1 and 2 need not be repeated when
a new input set is supplied for a constraint specification.

3.3.5. Single Assignment Variable Programs

The compilation process generates dependence graphs with single
assignment variables. This occurs because a child node in the dependence
graph G inherits the known set of its parent as its initial known set and no
deletions are made to the known set of a node. Hence, once a variable is
added to the known set of a node it is retained in the known sets of all
nodes in the subgraph rooted at that node. If a path in G contains nodes
in the order v1* . . . vn*, where v1* is the start node, vn* is the leaf and n is the
length of the path, exactly one node v i*, 1 < i < n, can contain a computa-
tion for a variable x. There will be no occurrence of x in any computation
or firing/routing rule for nodes in v1* . . .v*i 2 1 or in any firing rule for v i*.
While single assignment variables are appropriate for parallel programs,
they can lead to excessive use of memory in some circumstances. Section 4
details our approach to introduction of mutable variables where they are
necessary.

3.3.6. Generation of Either Effective or Complete Programs

The presence of the OR operator in a constraint system results in the
possibility that there exists more than one assignment of values to the
variables which will result in satisfaction of the constraint system. (A given
input set for a program with an OR operator may or may not allow multi-
ple assignments which satisfy the constraint system.) A program which is
effective generates exactly one set of assignments of values to variables
which satisfies the constraint system. A program which is complete
generates all of the sets of assignments of values to variables which will
satisfy the constraint system. The compilation process can be directed to
generate the executable either for exactly one `̀OR branch’’ of the
dependence graph or to generate the executable for all paths which lead to
valid assignments. Thus, the compilation process can produce programs
which are either effective or complete. A program which is complete
realizes OR parallelism, as will be further discussed in Section 3.3.7. Non-
determinism arises if the compiler randomly chooses a path for execution
in effective programs.

3.3.7. Extraction of Parallelism

Our constraint representation maps to a dependence graph which is a
parallel computation structure because all nodes that are enabled for

90 John and Browne

execution may be executed in parallel. The constraint representation allows
the targeting all types of parallelism (AND/OR, task and data parallelism)
through a single representation. AND/OR parallelism refers to parallelism
in computations extracted from terms connected by AND and OR opera-
tors, respectively. Task parallelism refers to parallelism in computations for
different data. Data parallelism refers to parallelism in computations for
different parts of a structured data item. In our system data parallelism
arises from the hierarchical representation of our type system. For example,
matrices can be represented as blocks of sub-matrices and constraints over
sub-matrices are translated to data-parallel conditionals/computations.

The different sources of parallelism and their respective types in the
representation are enumerated as follows.

While 1± 4 are extracted by the current compiler, 5 has not yet been
implemented.

1. OR, Task: OR parallelism corresponds to executing the different
paths in the dependence graph in parallel. These paths have
resulted from the extraction of computation from constraints con-
nected by OR operators.

2. AND, Task: The computational statements that are assigned to a
node have the potential for parallel execution. For instance, the
assignments r1= (2 b+ r)/2 * a and r2= 2 (b+ r)/2 * a in Fig. 20
can be done in parallel. Parallelism is exploited by keeping in
mind that the compiler generates a single-assignment system
and the lone write to a variable will appear before any reads to it.
A particular node may be split into several nodes to exploit the
parallelism in the computations at the node. The granularity of
such a scheme depends on the complexity of the functions and the
operators invoked in the statements.

We illustrate AND-OR parallelism in 1 and 2 through a simple example.
Consider the constraint specification in Fig. 22 for a program involving
variables {a, b, c, x, y}. The dependence graph for the input set {a, b, c}
and output set {x, y} for the specification in Fig. 22 is shown in Fig. 23.
Since a, b, c are inputs, a< b and a< c are classified as conditionals. The
constraints involving equalities (b= = x, y= = c, x= = c, and b= = y)

Fig. 22. Constraint specification
for a simple example.

91Noncyclic and Cyclic Dependencies to Procedural Parallel Programs

Fig. 23. Dependence graph showing AND-OR parallelism.

are classified as computations for the single unknown in them. OR
parallelism comes into play in the parallel execution of the two paths
branching out from the start node in the event that a< b and a< c. This
also implies that this program can be compiled to be either complete or
effective, as discussed in Section 3.3.6. AND parallelism is extracted from
the computations for x and y.

3. Task: we have further exploited the complexity of matrix opera-
tions by splitting up the specifications, performing computations in
parallel, and composing them. For example, if x= m * y+ m * z,
where x, m , y, z, and b are matrices, m * y and m * z can be done
in parallel. This leads to significant speedup since multiplication of
matrices is an O (N3) operation (m , y, z being order N3 N) . In a
later version of the compiler, provision will be made for user
specification of parallelism for operations over structures.

4. Data (Parallelism in AND indexed sets): The computations within
the compiled loop structures corresponding to AND indexed sets
have the potential for parallel execution. We first discuss the case
of loops with a single computation. The discussion is then
generalized to the case of loops with multiple computations.
Throughout this discussion the case of array accesses will be
detailed. The case of scalar accesses in loops will follow trivially
since they do not involve indexed terms.

(i) If the array corresponding to the computed term is not accessed
anywhere in the computation, all iterations of the loop can be
executed in parallel. The compiled parallel structure for such
a loop is shown in Fig. 24a. The node performing the com-
putation and the arc connecting the parent to it are replicated
N times, where N is the range of the loop index. The results

92 John and Browne

of the computation performed by the parallel nodes are
merged (not shown in figure) .

(ii) If the array corresponding to the computed terms is accessed
in the computation and the set of accessed indices of the array
are disjoint from the set of computed indices of the array, all
iterations of the loop can be executed in parallel. The compiled
structure is again as shown in Fig. 24a.

(iii) If cases (i) and (ii) do not hold, the loop iterations are inter-
dependent and are executed sequentially. The compiled struc-
ture for this case is shown in Fig. 24(b). The node performing
the computation is invoked repeatedly in succession.

A similar analysis is done for the loop structure compiled from an
indexed set with more than one constraint. In such a case there may be
more than one computation within the loop and interdependencies between
different computations for all the iterations have to be checked in addition
to dependencies between iterations of the same computation. If there are no
dependencies between the iterations of a computation (cases (i) and (ii))
and no iteration of the computation is dependent on an iteration of
another computation, then all iterations of the computation are executed in
parallel; otherwise, the iterations of the computation are executed sequen-
tially. In general, the loop structure will be a combination of parallel and
sequential loop executions as shown in Fig. 24c.

5. Data: Finally, primitive operations in the base types like
matrix± matrix multiply can be executed in parallel by invoking
appropriate parallel algorithms.

3.3.8. Unresolved Constraints

Any path P from the root to a leaf in the directed graph T from
phase 2 consists of nodes, each containing a set of constraints. P represents

Fig. 24. (a) Parallel execution of loop; (b) sequential execution of loop; and (c)
Generalized compiled loop structure.

93Noncyclic and Cyclic Dependencies to Procedural Parallel Programs

one way of satisfying the constraint system since constraints on different
paths are implicitly connected by the OR operator. Every constraint on P
must be resolved to either a computation or to a conditional (firing/routing
rule) for P to satisfy the constraint system. The depth-first traversal
described in Section 3.3 collects any unresolved constraint on P at its leaf.
An unresolved constraint can be any one of the following types.

(i) A simple constraint involving an equality and at least two
unknowns.

(ii) A simple constraint involving a relational operator other than
an equality and at least one unknown.

(iii) An unresolved call to a constraint module. This would imply
that there is more than one unknown in the set of actual
parameters, local variables, and global variables in the body of
the constraint module. (Unknowns in an actual parameter imply
that the corresponding formal parameter is unknown.)

(iv) An unresolved indexed set of constraints AND/OR FOR
(á index ñ á b1 ñ á b2 ñ){A1 , A2 ,..., An} where each A i , 1 < i < n, is
unresolved due to one of the following reasons.

(a) A i may be an unresolved indexed set.

(b) If A i is a simple constraint or a constraint module call, there
is no unique unknown term for all values of i in b1 . . .b2 (See
Section 3.3.2) .

(c) During the resolution process A i is classified as a computation
for some values of i in b1 . . .b2 and as a conditional
(firing/routing rule) for other values of i in b1. . .b2.

In case (c) we may be able to split the indexed set into several resolved
indexed sets with different index bounds. Assume that

S 1k {A1 , A2 ,..., An} is resolved as computations and conditionals in the
ranges B s1(1) , B s1(2) ,..., B s1(p1)

S 2k {A1 , A2 ,..., An} is resolved as computations and conditionals in the
ranges B s2(1) , B s2(2) ,..., B s2(p2)

a

and S qk {A1 , A2 ,..., An} is resolved as computations and conditionals

in the ranges B sq(1) , B sq(2) ,..., B sq(pq)

where B i , sj (1) < i < s j (p j) . 1 < j < q, is a subrange in b1 . . .b2, S i m S j= =
the null set, w , 1 < i, j < q, i Þ j, and S 1 n S 2 n . . . n S q= = {A 1 , A2 ,..., An}.

94 John and Browne

The indexed set can be split into the following resolved indexed sets.

AND/OR FOR (i á Bs1(1) ñ) S 1

AND/OR FOR (i á Bs1(2) ñ) S 1

a

AND/OR FOR (i á Bs1(p1) ñ) S 1

AND/OR FOR (i á Bs2(1) ñ) S 2

a

AND/OR FOR (i á Bs2(p2) ñ) S 2

a

AND/OR FOR (i á Bsq(pq) ñ) S q

We shall enumerate some of the several options available for resolu-
tion of each type of unresolved constraint.

1. Since there is a 1-1 mapping between nodes in T and the
dependence graph G, there is a unique leaf in G corresponding to
the leaf in P containing the unresolved constraints. In Fig. 25 the
two corresponding leaves in T and G are shaded. The shaded leaf
in G can be deleted. This virtually removes P from T and
corresponds to not attempting to satisfy the constraint system
through the path P. If deletion of the leaf in G results in its parent
becoming a leaf, the parent must be deleted too. This must be con-
tinued in a recursive fashion until the deletion of a leaf does not
result in its parent becoming a leaf. Then a new path descending

Fig. 25. Deletion of a path with unresolved constraints.

95Noncyclic and Cyclic Dependencies to Procedural Parallel Programs

T is chosen and pursued to see if a usable G can be obtained. This
approach can be applied to unresolved constraints of any type
((i) ± (iv)). Of course, there is the danger of getting an empty
dependence graph if all leaves in T contain unresolved constraints.

2. The user may have incorrectly specified the initial input set by
overlooking the inclusion of some variables or including the wrong
variables and may be helped in the choice of a new input set
through display of the unresolved constraints and the unknowns
in them. The depth-first traversal in phase 3 can be performed
again with the new input set. This can be done repeatedly until all
constraints in the system are resolved. While selection of
unknowns to be added to the initial input set may be easy for con-
straints of types (i) , (ii) , and (iii) , it may be quite difficult to do
for constraints of type (iv) since unknowns could typically be of
the form A[fn 1(i1 ,..., ik] . . . [f n l

(i1 ,..., ik)] where i1 . . . ik are indices
for nested indexed sets containing the unresolved constraints,
fn 1 . . . fn l are arithmetic functions over the indices, and A is any
structured data type. Some parts of A may be known and other
parts of A may be unknown forcing the user to identify the regions
that the term A[fn 1(i1 ,..., ik] . . . [f nl

(i1 ,..., ik)] refers to and denote
them as known.

3. Commercial solvers such as MATLAB can be invoked to solve the
unresolved constraints by providing a wrapper around the invoca-
tion to the MATLAB solver in the form of a constraint module
call. This technique can be most beneficial for the resolution of
constraints of types (i) and (ii) .

4. Iterative solutions can be attempted for unresolved constraints of
types (i) , (iii) , and (iv) through several relaxation methods. This
process is described in detail in Section 4.

3.4. Phases 4 and 5: Specification of Execution Environment
and Mapping to Code

Apart from the textual constraint program, the programmer is
encouraged to specify an execution environment specification which is used
by the compiler to optimally select certain execution environment charac-
teristics used by CODE (8) to generate programs. The execution environment
specification merits a separate discussion and is described in Section 5.

Our target for executable for constraint programs is the CODE
parallel programming environment. CODE takes a dependence graph as its
input. The form of a node in a CODE dependence graph is given in Fig. 15.

96 John and Browne

Fig. 26. Control flow for the constraint compiler.

It is seen that there is a natural match between the nodes of the dependence
graph developed by the constraint compilation algorithm and the nodes in
the CODE graph. The arcs in the dependence graph in CODE are used to
bind names from one node to another. This is exactly the role played by
arcs in the dependence graph generated by our translation algorithm.
CODE produces sequential and parallel C programs for a variety of
architectures.

The control flow for the entire compiler is shown in Fig. 26.

3.5. Procedural Parallel Programs for the BTS and
BOER Systems

In this subsection we show how all of the parallelism in the BTS
(Fig. 4) and BOER (Fig. 7) examples can be extracted by the compiler.

3.5.1. The BTS System

Consider the specification for the BTS system being compiled with the
input set {S 0 ,..., S 3 , M10 , M20 ,..., M32 , B0 ,..., B3}. The specification was

97Noncyclic and Cyclic Dependencies to Procedural Parallel Programs

given in Fig. 4 with certain terms (X0 , X1 , X2 , X3) in bold-faced to indicate
terms that are chosen as outputs by the compiler. By applying technique 3
in Section 3.3.7 the compiler splits up the specifications to perform the mul-
tiplications in series such as M10 * X0 , M20 * X0 , and M30 * X0 in parallel.
Thus, the vector multiplications for all Ms within a column may be done
in parallel. Figure 27 shows the form of the extracted dataflow and exactly
corresponds to the parallel algorithm in Ref. 9. Data parallelism could be
used on the block level operations and captured in our representation with
an appropriate type structure, if desired.

3.5.2. The BOER System

The constraint specification for the BOER system was given in Fig. 7
with certain terms in bold-faced to indicate computed terms. Each indexed
set is compiled to a loop iterating over values of the index. Each simple
constraint is compiled to a computation for a term (bold in Fig. 7).
Analysis of the computations extracted shows that, in the reduction phase,
the computations for BP[j], CP[j], and dP[i * pow(2, j)][j] can be
executed in parallel. However, different iterations of the loop enclosing

Fig. 27. Dependence graph for the BTS program.

98 John and Browne

these computations (for index j) cannot be done in parallel due to interde-
pendencies between the three computations. The different iterations of the
nested loop for index i enclosing the computation for dP[i * pow(2, j)][j]
can be performed in parallel. The nested loop for index i in the back-sub-
stitution phase enclosing the computation for x[. . .] can be performed in
parallel. However, the iterations for the outer loop for index j enclosing the
computation for x[. . .] cannot be parallelized. Our compiler detects all the
dependencies for this analysis and correctly extracts all the existing
parallelism in the specification.

The resulting dependence graph is shown in Fig. 28 and exactly
corresponds to the dataflow in the algorithm in Ref. 7. The START and
STOP nodes initiate and terminate the program, respectively. A FOR node
initiates the different iterations of a loop. The two such nodes in the figure
correspond to the two outer indexed sets for index j in the reduction and
back-substitution phases in the constraint specification. The annotation
`̀Replicated’’ on the arcs specify that the annotated arc and the destination
node (shaded in Fig. 28) are dynamically replicated for parallel execution.
The two such annotated arcs correspond to the two nested indexed sets
(for index i) in the constraint specification and are instances of data
parallelism. The nodes annotated by BP , CP, dP, and x compute values for
parts of the corresponding variable. The parallel execution of the computa-
tions for BP, CP, and dP is an instance of task parallelism. The nodes
annotated by `̀Merge’’ collect computed results from parallel executions. It
is to be noted that our compiler automatically detects the parallelism in the

Fig. 28. Dependence graph for the BOER program.

99Noncyclic and Cyclic Dependencies to Procedural Parallel Programs

for loops in the reduction and back-substitution phases. Furthermore, it is
capable of extracting the parallelism within the expression 2 * CP[j 2 1] *
CP[j 2 1] 2 BP[j 2 1] * BP[j 2 1] in the computation for BP[j] by
computing the products 2 * CP[j 2 1] * CP[j 2 1] and BP[j 2 1] *
BP[j 2 1] in parallel. By incorporating calls to BLAS routines (technique
5 in Section 3.3.7) which invoke parallel algorithms, incorporating data
parallelism, for matrix± matrix multiply the compiler would have extracted
all the existent parallelism in the example.

4. ITERATIVE SOLUTIONS FROM CONSTRAINT SYSTEMS

Section 3 detailed the basic compilation algorithm for translating a
constraint specification along with an input set to a dependence graph. The
basic compilation algorithm cannot resolve constraint specifications with
input sets that give rise to dependencies with cycles.

To illustrate dependencies with cycles, consider the constraint program
shown in Fig. 29. Phase 2 of the compiler collects constraints connected by
AND operators at the same node and since there is only a single AND
operator in the specification in Fig. 29, phase 2 will generate a single node
with the two simple constraints: a+ b= = x and x+ b= = y (shown in
Fig. 30). When this node is traversed in phase 3 with the input set {a, y}
both simple constraints remain unresolved because there are two
unknowns b and x in each of them (simple constraints are resolved as con-
ditionals if they have no unknowns and as computations if they involve an
equality and only one unknown; otherwise they are unresolved). The term
cyclic is used to refer to this situation because a cycle exists in the low-level
constraint graph representation (where variables and operators have
associated nodes) for this constraint program as shown in Fig. 31. Note
that the arcs connected to the input variables a and y have directions on
them to denote that the values for these variables are available. The nonin-
put variables x and b are in a cycle and neither of the two `̀+’’ operator

Fig. 29. Constraint specification and
input set with a cyclic dependency.

100 John and Browne

Fig. 30. Directed graph
from phase 2 for constraint
specification in Fig. 29.

nodes can `̀ fire’ ’ for computed values to be propagated along the arcs until
either x or b is given a value. The constraints involved in such a situation
are sometimes referred to as cyclic constraints. In fact, cyclic constraints
give rise to cyclic dependencies .

This section discusses the augmentation to the basic compiler for
handling constraints with cyclic dependencies. We opt to use the technique
of relaxation whereby iterative solutions to cyclic constraints are sought.
Relaxation attempts to satisfy all the constraints in the system within a cer-
tain degree of accuracy by making an initial assignment of values to the
unknowns, computing the value of one unknown in each constraint and
then estimating the error in the current value. Further iterations of com-
puting the value of the unknown variables are initiated if the errors are not
sufficiently small. In each iteration, the values computed in previous or
current iterations are used to recompute the values of the unknowns in an
attempt to achieve convergence where the difference in computed values in
two consecutive iterations is reasonably small. The solutions extracted for
the unknowns in the system are often approximate.

The class of numerical applications which can be solved through
iterative methods is quite large. Many such applications are also quite
amenable to parallelization. Relaxation is not, however, a universally
satisfactory solution. Iterative methods may suffer from numerical stability
problems. Systems using these methods might fail to terminate. Even for
systems guaranteed to converge, these methods may be very slow.

A number of issues arise with respect to implementation of relaxation
as an algorithm for resolution of cyclic dependencies: (i) Since there will be
more than one unknown term in an unresolved constraint, how is the term

Fig. 31. A constraint graph with a cycle.

101Noncyclic and Cyclic Dependencies to Procedural Parallel Programs

to be computed selected from among all the unknown terms ? (ii) How
does the compiler deal with the memory requirement for single assignment
variables (Section 3.3.5) in iterative solutions? (iii) How is the choice
between the different kinds of relaxation methods (Jacobi, Gauss-Seidel
etc.) made ? In the rest of this section we trace the design of the compiler
for iterative solutions to cyclic constraint systems.

4.1. Selection of Term To Be Computed

Constraints that remain unresolved through the basic constraint com-
piler are collected at the leaves of the directed graph from phase 2 and will
involve more than one unknown term (except in the case of simple con-
straints not involving an equality) . The compiler chooses one of the
unknown terms in an unresolved constraint as the term to be computed
and either assigns default initial values to other unknown terms or accepts
such values as inputs from the user. Unresolved constraints can be of three
types: a simple constraint, a constraint module call, or an indexed set of
constraints (see Section 3.3.8 for a detailed description of the causes for
these constraints being unresolved). The following subsections detail the
selection of the computed term for the three types of unresolved con-
straints.

4.1.1. Unresolved Simple Constraints

Relaxation can be attempted only for simple constraints involving an
equality since other types of simple constraints must be resolved as firing/
routing rules. An unresolved simple constraint involving an equality has
more than one unknown variable and any such variable is randomly
chosen as the term to be computed. For example, consider the unresolved
constraints in Fig. 30. There are two unknowns b and x in both the con-
straints. b can be chosen as the term to be computed in the first constraint
a+ b= = x. Subsequently, the second constraint x+ b= = y has just one
unknown x, which is chosen as the term to be computed.

4.1.2. Unresolved Constraint Module Calls

An unresolved constraint module call has more than one unknown in
its set of actual parameters, local variables and global variables in the body
of the constraint module. An unknown in an actual parameter implies than
the corresponding formal parameter is unknown. A constraint module call
could be unresolved for either of the two following reasons.

(a) The directed graph from phase 2 for the constraint module call
has unresolved constraints at the leaf of at least one path. This

102 John and Browne

Fig. 32. An unresolved constraint module call.

situation is shown in Fig. 32a where the unresolved constraint C
contains unknown variables { f 1 . . . f p , l1 . . . lq , g1 . . . gr} where f i ,
1 < i < p, is a formal parameter for the constraint module, l i ,
1 < i < q, is a local variable for the constraint module, and g i ,
1 < i < r, is a global variable in the body of the constraint
module. Depending on the structure of C (simple con-
straint/constraint module call/indexed set) an unknown variable
will be chosen for computation and other unknown variables will
be given initial values.

(b) Some subset of the set of constraints ek1= = Z1 , ek2= = Z2 ,...,
ekp = = Zp (See Section 3.3.3 for a description of the terms and
notation) to be resolved as computations for the child node of
the call node in the dependence graph which invokes the
constraint module remain unresolved (see Fig. 32b). Again,
depending on the structure of each unresolved constraint a com-
puted variable is chosen and other unknown variables are
initialized.

4.1.3. Unresolved Indexed Sets

Relaxation cannot be used when an indexed set AND/OR FOR
(i á b1 ñ á b2 ñ){A1 , A2 ,..., An} is unresolved for the following reason (See (c)
in Section 25).

103Noncyclic and Cyclic Dependencies to Procedural Parallel Programs

Fig. 33. Example of an unresolved
constraint specification.

· During the resolution process a constraint A i , 1 < i < n, is resolved
as a computation for some values of i in b1 . . .b2 and as a conditional
(firing/routing rule) for other values of i in b1 . . .b2.

We showed in Section 3.3.8 how the compiler can generate a closed
form solution in the preceding situation. If this case does not arise, the
failure to resolve an indexed set of constraints can be recursively traced to
`̀ culprit’’ (unresolved) simple constraints and constraint module calls
nested in it (A i , 1 < i < n) .

Consider any unresolved (simple constraint/constraint module call)
constraint C nested within an unresolved indexed set. A term in C is typi-
cally of the form A[fn 1(i1 ,..., ik)] . . . [fn l (i1 ,..., ik)] where i1 ,..., ik are indices
for nested indexed sets containing C, fn 1 ...fn l are functions over the indices,
and A is any structured data type. Some parts of A may be known and
other parts may be unknown depending on the initial input set and the
preceding computations in the current path in the dependence graph. The
compiler evaluates each term in C to determine the term that accesses the
largest unknown region in the structured data type. To illustrate this, con-
sider an example constraint specification involving a 1 3 N array x in
Fig. 33. The end elements of A (shaded in Fig. 34) are the inputs to the
system. The values for the index i in the indexed set are in the range
2 . . .N 2 1. The constraint x[i 2 1]= = x[1] 2 x[i+ 1] remains unresolved

Fig. 34. Regions of access by terms in Fig. 33.

104 John and Browne

because there is no unique unknown term for all values of x in 2...N 2 1
(Reason (b) in Section 25). The term x[i 2 1] accesses the region between
indices 1 . . .N 2 2 in the array x, the term x[i] accesses the region between
indices 2 . . .N 2 1 in the array x, and the term x[i+ 1] accesses the region
between indices 3 . . .N in the array x (see Fig. 34). Hence, the term x[i]
accesses the largest unknown region in x, i.e., x[2], x[3],..., x[N 2 1] and
is selected as the term to be computed in the iteration process while other
terms have to be given initial values for the first iteration.

The motivation behind using the heuristic of selecting the term accessing
the largest unknown region as the computed term is due to the following
reasons.

· Since the selected (computed) term accesses the largest unknown
region, the largest number of values will be computed in each itera-
tion of the relaxation process.

· Since the other terms access smaller unknown regions, fewer
initializations will have to be done.

If the selected term does not access the entire unknown region in the
data, the iterative process will not converge because certain locations in the
data will not be computed. The compiler can abort the process after a fixed
number of iterations, which can be a parameter in the system. Also, if the
selected term accesses a location that is an initial input to the system, con-
vergence may not be reached because that location will be overwritten in
the first iteration.

4.2. Mapping Single Assignment Variables to
Mutable Variables

To satisfy a constraint within some degree of accuracy, the values for
the selected unknown terms have to be computed over some number of
iterations t. Since the basic compilation process generates single assignment
variables, iterative computations would require t memory locations for
each computed term. Such a memory requirement can be quite prohibitive
when the values of large data structures are being computed iteratively.

To overcome the large memory requirement for computing iterative
solutions with single assignment variables, a procedure for local introduc-
tion of mutable variables is required. For each variable x being computed
iteratively, the compiler may keep two locations: x and old ± x. Any com-
puted value is stored in the location x. Accessed values may come from
either x or old ± x, depending on the relaxation scheme being used. This will
be detailed in Section 4.3. At the end of each iteration, a check is done to

105Noncyclic and Cyclic Dependencies to Procedural Parallel Programs

see if the difference between values in x and old ± x is greater than the
specified degree of accuracy for solution of the constraints. If it is, x is
copied to old ± x and further iterations are initiated. The parallel functional
language SISAL employs a variant of this technique.(10) In our system, the
user may choose to supply a value for the degree of accuracy or accept the
default value assigned by the system.

Using only single assignment variables, any computed variable with N
memory locations would require t 3 N memory locations for t iterations. By
transforming single assignment variables to be mutable variables, the
memory requirement is reduced to 23 N.

4.3. Relaxation Methods

Relaxation methods such as Jacobi and Gauss-Seidel(11) can be used
for iterative solutions to constraints. The Jacobi method is a stationary,
iterative, method typically used for solving a partial differential equation
on a numerical grid. The update of each grid point depends only on the
values at neighboring grid points (defined by a stencil) from the previous
iteration. In the Gauss-Seidel method the most recent grid values are used
in performing updates. To generalize these two techniques to an iterative
system, the Jacobi method can be implemented by using values from the
previous iteration and the Gauss-Seidel method can be implemented by
using the most recent values (some possibly from the current iteration).
The Jacobi method yields more parallelism since all computations in a
current iteration are independent. However, convergence is typically slower
than the Gauss-Seidel method.

The user should be able to choose the method of relaxation to be used
by the constraint compiler. As mentioned in Section 4.2, two locations for
each computed variable x are kept: x and old ± x. If the chosen method of
relaxation is Jacobi, the compiler restricts all accessed values of the
variable x to be retrieved from the location old ± x, which stores the values
of variable x computed in the previous iteration. If the chosen method of
relaxation is Gauss-Seidel, the compiler restricts all accessed values of
variable x to be retrieved from location x which stores the most recently
computed value. The compiler currently implements only the Jacobi relaxa-
tion technique.

4.4. The Laplace Equation Example

Consider the Laplace equation for a 4-point stencil on an N3 N grid
indexed by (0 . . .N 2 1)(0 . . .N 2 1) as shown in Fig. 8. A constraint
specification for the problem was presented in Fig. 9.

106 John and Browne

Fig. 35. Jacobi relaxation for the Laplace equation.

The Laplace equation specification with the input set (boundary
elements) constitutes a cyclic dependency. Applying the technique
described in Section 4.1, x[i] will be chosen as the term to be computed
since it accesses the largest unknown region, i.e., all interior elements in
the grid x. The two indexed sets in the specification are compiled to loops
and the simple constraint 4 * x[i][j] 2 x[i 2 1][j] 2 x[i+ 1][j]= x[i]
[j 2 1]+ x[i][j+ 1] is compiled to a computation for x[i]: x[i][j]=
(x[i 2 1][j]+ x[i+ 1][j] + x[i][j 2 1]+ x[i][j+ 1])/4.

If the Jacobi method of relaxation is chosen by the user, the constraint
specification can be compiled to the procedural code shown in Fig. 35.
If the Gauss-Seidel method of relaxation is chosen by the user, the con-
straint specification can be compiled to the procedural code shown in
Fig. 36. The user may supply initial values for the interior (non-shaded)
points of the grid or choose to accept the default initial values assigned by
the compiler. Variable x is initialized to the initial values and the input
boundary values. Variable old ± x is initialized such that at least one point
differs in value from its corresponding point in x by more than the degree
of accuracy so that the first iteration can be initiated. The function
check ± accuracy(x, old ± x) returns 1 if the difference between any value in x
and old ± x is greater than the degree of accuracy; otherwise it returns 0. The
function copy ± values(old ± x, x) copies values from locations in x to corre-
sponding locations in old ± x.

4.4.1. The Dependence Graph for the Laplace Equation

Compilation of cyclic dependencies for an iterative solution has been
implemented in the constraint compiler for the Jacobi method of relaxa-
tion. The Gauss-Seidel method has not yet been implemented.

Fig. 36. Gauss-Seidel relaxation for the Laplace equation.

107Noncyclic and Cyclic Dependencies to Procedural Parallel Programs

In the Jacobi method of relaxation, both loops (for i and j) surrounding
the computation can be executed in parallel. A naive parallelization of the
loops will lead to (N 2 2) 2 computation nodes, each executing an instance of
the computation x[i][j]= (old ± x[i 2 1][j] + old ± x[i+ 1][j]+ old ± x[i]
[j 2 1]+ old ± x[i][j+ 1])/4. This is highly undesirable since the computa-
tions are too fine-grained. To overcome this, the compiler detects instances
of computation extracted from constraints specified at the scalar level. Simple
data partitioning techniques are applied to partition the data involved in the
computation over a specified number of computation nodes P. The data par-
titioning techniques are detailed in Section 5. In the Laplace equation, the
grid x is partitioned in a row-wise manner across P nodes in the extracted
dependence graph. Each partitioned slice in a computation node contains
locations that the node computes through each iteration and any overlapping
regions with other computation nodes that it accesses. For computations
specified at the scalar level, as in this case, the region of overlap between com-
putation nodes is determined by examining the terms in the computation. In
the Laplace equation, the accessed terms are x[i 2 1][j], x[i+ 1][j],
x[i][j 2 1], and x[i][j+ 1]. The indices for the accessed terms specify a
maximum displacement of 1 in the four directions of north, south, east, and
west. Since x has been partitioned in a row-wise manner, the overlap is 1 row
in the north and south directions. The row-wise partitioning of a 10 3 10
matrix across 4 nodes numbered 0 . . . 3 is illustrated in Fig. 37a. Each node i,
0 < i < 3, gets rows in the range 2 * i . . . 2 * (i+ 1) + 1.

In Fig. 37b we show the dependence graph extracted by the compiler
for a Laplace equation system executing on P nodes. The super node S
initiates new iterations. The computation nodes numbered 0 . . .P 2 1 each
have a slice of approximate size (N/P+ 2) 3 N (2 is the overlap between
slices) of the matrix x. In each iteration the code in Fig. 35 is executed by each
computation node on its local slice. At the end of each iteration overlapping

Fig. 37. (a) Data partitioning for the Laplace equation; and (b) Dependence graph for the
Laplace equation.

108 John and Browne

regions are exchanged between computation nodes and the super node is
informed by each computation node whether the degree of accuracy has
been reached for the values in the local slice. Computation is terminated
when all the nodes achieve convergence on individual slices.

5. EXECUTION ENVIRONMENT SPECIFICATION

The advantage of using a program specification that is independent of
the execution machine is portability± ± the ability to create executables for
different architectures without changing the program specification. The
constraint program specifications in our system are translated to an inter-
mediate architecture-independent dependence graph which can be mapped
to many different parallel machines. However, there are many architectural
mechanisms which can be exploited by an executable program if it is direc-
ted to do so. This usually leads to an improvement in performance.
Without violating the `̀ sanctity’’ of our architecture-independent program
specification, we propose an execution environment specification, separate
from the constraint program, that allows the user to provide useful hints to
the compiler about the underlying execution machine. The compiler can
use these hints to produce programs that may be more optimized for per-
formance.

This section discusses the design of the execution environment
specification for our compiler. Several features are discussed in individual
subsections. While some of them have been implemented in our system,
there are several others which could be added in the future.

5.1. Shared Variables

In shared memory architectures such as the Sparc and Cray J90, a
vast improvement in performance can be obtained if some variables are
declared as shared because it avoids the copying of large data across com-
putation nodes. This was demonstrated through the BTS example (5) where
the program using shared variables shows a dramatic improvement in per-
formance over the one not using shared variables.

The user has to be cautious when declaring shared variables in a
program containing constraints connected by OR operators. OR operators
translate to multiple paths in the dependence graph and hence, give rise to
the potential for multiple solutions. In a program not using shared
variables, each path can compute a solution independent of other paths.
However, a path in the dependence graph for a program using shared
variables may overwrite the value computed for a variable in another path.

109Noncyclic and Cyclic Dependencies to Procedural Parallel Programs

Hence, the user should not declare variables as shared if there is the poten-
tial for multiple solutions for them, which can be determined from the con-
straint specification by inspection.

5.2. Number of Available Processors

This piece of information can be used to determine the number of
nodes to be created when spawning off a computation to be executed in
parallel. For example, the N iterations in a loop structure can be parti-
tioned across P processors such that each processor gets approximately
N/P iterations to execute or the data computed within a loop structure can
be partitioned equally across P processors. Since CODE allows the
dynamic creation of nodes, the number of processors can determine the
number of computation nodes at runtime.

5.3. Data Partitioning with Overlap Sections

It has been amply demonstrated by many parallel programming
experiments that data partitioning techniques play a significant role in
improving performance. While, currently, we have only implemented sim-
ple mechanisms for data partitioning, we show in this section that other
sophisticated mechanisms can be specified too.

In many applications such as the Laplace equation, the computations
are specified at a very fine granularity, say, at the scalar level. When the
compiler detects that the operations involved in the computations are over
scalar types or over small-sized data (the threshold size is fixed by a
parameter to the system) , it partitions the computed variables over a num-
ber of nodes. This is especially important if the computation is nested
within loops because the computation is executed repeatedly and the over-
head in executing scalar operations repeatedly can severely degrade perfor-
mance.

The form of the partition depends on the data accesses in the com-
putation. For any matrix, if the accesses are only in the north and/or south
directions the data is partitioned column-wise. If the accesses are only in
the east and/or west directions the data is partitioned row-wise. If there are
accesses in mixed directions, say north and east, the data is partitioned
such that there is minimum overlap between the partitioned slices. This
scheme minimizes the overhead in the synchronizations necessary when
data is shared across computation nodes. Each node gets approximately
N3 M/P+ overlap, where the matrix being partitioned is of size N3 M and
P is the number of nodes. The amount of overlap between partitioned slices
must be determined by the user or by the compiler by inspecting the terms

110 John and Browne

in the computation. The mechanism of partitioning data involved in scalar
computations has been used for the Laplace equation.

The user may specify the partitioning mechanism, instead of allowing
the compiler to select it, by indicating the actual regions in the data type
to be distributed across the nodes. (The user must specify the actual over-
lap between the partitions to determine the regions to be synchronized.)
This mechanism is yet to be implemented in our compiler.

5.4. Option of not Parallelizing a Module

A constraint module may have very fine-grained operations in the con-
straints for the constraint module body. Parallelizing such a module may
lead to degradation in performance due to the overheads involved. For this
reason, a user can denote that the dependence graph for a particular
module call should be mapped to a sequential procedure rather than a
parallel one. This feature has not yet been implemented in our compiler.
However, since CODE allows the generation of sequential programs, this
would be simple to incorporate.

5.5. Selecting Operations to be Executed in Parallel

Operations over structured data types are primitives in the type
system. But parallel execution can be selected for these primitive opera-
tions. The complexity of some of these operations may be larger than
others. An example is the matrix-matrix multiplication operation. In the
interests of performance, it would be beneficial to extract such operations
out of a computation to execute in parallel. For example, if there is a com-
putation (d1 n d2) , (d3 n d2) , where n and , are primitive operations,
to be executed and the operation n is very computation-intensive, the
specification can be split into two computations to be executed in parallel:
(d1 n d2) and (d3 n d2) . The results can then be merged and operator ,

can be applied on them. We use this technique in the BTS example where
multiple matrix± matrix multiply operators in a computation are executed
in parallel. The execution environment specification provides a platform for
the user to indicate that some operations be selected for extraction from a
computation for subsequent parallel execution.

5.6. Choices among Parallel Algorithms to Execute Some of
The Operations

A variety of choices exist among parallel algorithms to execute opera-
tions on data instances under a type system. The user should be able to select

111Noncyclic and Cyclic Dependencies to Procedural Parallel Programs

one among a number of implemented algorithms in the system to execute
an operation. We have not yet implemented this feature in our system.

6. PERFORMANCE RESULTS

A prototype of the constraint compiler has been implemented in
C++ using object-oriented techniques. A number of examples have also
been programmed and executed on the Cray J90, SPARCcenter 2000,
Enterprise 5000, Sequent Symmetry machine, (26) and the PVM system.
John and Browne (5) reported the performance results for the BTS program
on the Sequent Symmetry and Sparc machines and the BOER program on
a Sparc machine. In this section we present the performance results for the
Laplace Equation. The execution times reported in this section are wall
clock times. (Whenever possible, timings have been taken for executions
during either dedicated CPU access or when the loads on the machines
were low.)

6.1. The Laplace Equation

Figure 38a presents speedups for the solution of the Laplace Equation
for an 8403 840 grid over a sequential implementation of the solver on a
CRAY J90. Figure 38 presents speedups for the solution of the Laplace
Equation for different sizes of the grid over a sequential implementation of
the solver on a Sparc (Enterprise 5000) with 8 processors. Both executions
used the Jacobi method of relaxation. As expected, the number of iterations
for convergence was very high. Consequently, the time taken for
experiments ran into several hours. The results presented here were
obtained for a fairly small degree of accuracy so that the number of itera-
tions were small. This is a reasonable setup for the experiments since each
iteration took approximately the same amount of time.

It can be seen that the speedups obtained for the CRAY are fairly
good considering the small size (approximately 8003 800) of the grid
which is partitioned across the nodes. The results on the Sparc show that
as the size of the problem increases, corresponding to an increase in the
amount of computation at each node, the speedups improve. Page faults
marred the results for grid sizes greater than 7500 and hence are not
reported.

7. RELATED WORK

Our research is related to work in two fields: parallel programming
and constraint programming. The goals in these areas have been quite

112 John and Browne

113Noncyclic and Cyclic Dependencies to Procedural Parallel Programs

F
ig

.3
8.

P
er

fo
rm

an
ce

re
su

lt
s

fo
r

L
ap

la
ce

eq
ua

ti
on

pr
og

ra
m

on
(a

)
a

C
R

A
Y

J9
0;

an
d

(b
)

an
E

nt
er

pr
is

e
50

00
.

different. Constraint programming research has focussed on providing
constraints as an attractive platform for sequential and concurrent
programming both for general and special purpose environments. Not
much emphasis has been placed on performance in concurrent constraint
systems. In contrast, the parallel programming community has mainly con-
cerned itself with performance, although many programming models have
been proposed over the years. We have attempted to bridge the motiva-
tions in the two areas through this research. Out of the many outstanding
research projects in the two fields, we have selected those most closely
related to this research for discussion.

7.1. Constraint Programming

The goal of Consul(13) resembles ours in that it is to extract parallelism
from constraints. But the approach is different in that interpretative local
propagation is used to find values satisfying the system of constraints.
This approach has little hope of extracting efficient programs and offers
performance only in the range of programs written in logic languages.
A noteworthy feature of the language is that it offers sets (with set opera-
tions) as a primitive data type.

Thinglab (3) transforms constraints to a compilable language rather
than to an interpretive execution environment. It is a constraint-oriented
graphic simulation laboratory where constraints are compiled to sequential
procedural code. The compilation of simple constraints is done by storing
all possible transformations for a single constraint. No compilation for
structures involving indexed sets or constraint modules is done. Also, the
system is not concerned with the extraction of parallel structures, which is
our major concern.

Kaleidoscope (4) integrates two different paradigms± ± constraint pro-
gramming and imperative programming± ± within the same programming
language. It could be basically seen `̀ either as adding constraints to
imperative programs, or as adding control flow to constraint programs’’. (13)

Programs in the language mix object-oriented constructs with constraints.
As in Thinglab, compilation to procedural code has been attempted.
However, Kaleidoscope does not target parallelism and the compiled con-
straint structures are simple (as defined in Section 2.3).

Vijay Saraswat described a family of concurrent constraint logic
programming languages, the cc languages.(2) The logic and constraint por-
tions are explicitly separated with the constraint part acting as an active
data store for the logic part. The logic communicates with the constraint
part only through constraints either by a `̀ tell’ ’ operation (a new constraint
is added to the store) or an `̀ ask’’ operation (to check if a constraint is

114 John and Browne

consistent with the store). A number of systems based on the cc model were
developed. The most notable among them is Oz which is a concurrent
programming language based on an extension of the basic concurrent con-
straint model provided in Ref. 30. The performance reported for the system
is comparable with commercial Prolog. (15)

7.2. Parallel Programming

Attempt to parallelize Fortran with additional specifications have not
been broadly successful.(16, 17) There have also been attempts to parallelize
languages such as Scheme and other dialects of Lisp. (18, 19)

There are many extensions of sequential languages with directives for
parallelism. We consider only two of them here. Declarative extensions
have been added as part of High-Performance Fortran(HPF). (20) This is a
dataparallel programming language designed for portability and an
implicitly parallel programming style with some optimization directives.
In these respects, it is similar to our system. But, the difference lies in the
program specification styles: procedural versus declarative. Also, HPF does
not address task parallelism. CC++ (21) is a parallel programming
language designed by providing extensions to the object-oriented language
C++. It incorporates the fundamental ideas from compositional program-
ming: synchronization variables and parallel composition.

PCN, (22) and Strand(23) are two parallel programming representations
with a strong component of logic specification. Both require the programmer
to provide explicit operators for specification of parallelism and the depen-
dence graph structures which could be generated were restricted to trees.

Functional languages are unidirectional (a single variable is com-
puted) as opposed to constraint languages which are multi-directional (any
variable in a constraint can be computed). A number of parallel systems
have emerged from the functional programming area. Most prominent
among them are SISAL, EPL, Id, Crystal, and the PTRAN system.
A description of these systems can be found in Ref. 10. While SISAL and
Id are pure implicitly parallel languages, EPL provides mechanisms for
expressing mapping and scheduling constraints. PTRAN provides explicitly
parallel control structures.

Equational specifications of computations(24) are a restriction of con-
straint specifications. Unity(25) is an equational programming representa-
tion around which Chandy and Misra have built a powerful paradigm for
the design of parallel programs. Unity requires addition of explicit
specifications for parallelism.

Other related work includes technical computing environments like
MATLAB (26) which integrate numerical analysis and matrix computation.

115Noncyclic and Cyclic Dependencies to Procedural Parallel Programs

We, of course, use the methods of parallel compilation(27) to derive
procedural programs from constraint systems. The approach of Pandey
and Browne (28) expresses parallel computation as constraints on the order
of execution of units of computations. We derive this ordering from the
constraints and an input set of variables. Collins(29) expresses matrix com-
putations as hierarchical type declarations and translates to implementa-
tions which maximizes use of type information. We use hierarchical
matrices as a tool for controlling granularity.

Some reasons why our approach has greater potential for obtaining
efficient parallel programs than parallel logic languages, compilation of
functional languages to parallel execution and/or concurrent constraint
logic programming languages include (i) A constraint specification system
can provide a richer set of primitives than is given in current logic
languages. (ii) Functional languages restrict dataflow to be unidirectional
whereas constraint systems impose no constraints on dataflow. (iii) Data
parallelism is more readily expressed in constraint specifications than in
pure functional languages. (iv) Concurrent constraint satisfaction systems
currently rely on interpretive methods for evaluation of constraint satisfac-
tion whereas we compile to direct procedural code. (v) Narrowing the
target domain and direct use of semantic domain knowledge enable the
compiler to choose efficient algorithms for the derived computations.

8. CONCLUSIONS

In this paper we enhance the capability of our primary constraint
compiler to target constraint systems which can be solved iteratively. This
capability allows our programming system to encompass many parallel
iterative numerical applications like the Laplace Equation and the Partial
Differential Equation solvers. Our primary compiler generates single
assignment variables which pose a large memory requirement for iterative
solutions. We discuss techniques to overcome this requirement for different
relaxation methods used for the iterative solutions. Simple data partitioning
techniques have been incorporated. A prototype compiler for the system
has been developed. We present performance results for several examples
including the Laplace Equation.

9. FUTURE WORK

Our research has established the feasibility of expressing computations
for parallel execution as constraints. It also paves the way for a number of
future research endeavors. In this final section, we present a few of the
possible future directions for research.

116 John and Browne

Constraint specifications do not explicitly specify algorithms.
However, algorithms can be extracted from them by supplying appropriate
input sets of variables. Our system opens up the possibility of extracting
algorithms for applications where algorithms are difficult to specify. One
such application is a Partial Differential Equation Solver using domain
decomposition methods where it is far easier to specify the constraints that
must be maintained within a particular domain and across the boundaries
of domains than to specify how to maintain these constraints. A number of
issues such as the factors determining the optimality of the extracted algo-
rithms require research.

An issue that has been raised is `̀how to write ’good’ constraint
specifications.’’ One could write a specification in which a large number of
function calls and very few constraints are used. Take, for example, the
Barnes Hut problem in parallel programming. One could express the
building of the quad-tree as a call to a procedural function or a constraint
module. Of course, the decision to choose one representation over the
other might be based on whether or not to parallelize the particular com-
putation. On the other hand, we can provide the capability (through the
execution environment specification) of not parallelizing a particular con-
straint module. So, this decision might be based on other factors such as
expressibility.

In Section 3.3.6, we explained how effective programs (programs with
a single solution) can be extracted by the compiler through choosing only
a single path in the dependence graph for execution. The choice of a path
among a number of paths is based on factors such as maximal output
(computed) set of variables. This needs further investigation.

Other application areas such as boundary matching for decomposed
domains, data mediation, and back tracing in circuits each offer oppor-
tunities for constraint specification systems.

The current representation and compilation system are a solid feasi-
bility demonstration. But much more could be done in the domain of matrix
computations. Complete implementation of the execution environment
specification and the full feature set for the hierarchical type system need to
be done. Additionally, further steps in this research are to define the seman-
tics of recursion in constraint module calls, to relax the requirement that all
of the bounds in indexed sets of constraints be statically found, and to incor-
porate higher-order solvers for unknowns in computations.

ACKNOWLEDGMENTS

This work was supported in part through grants from the Advanced
Research Projects Office/CSTO (subcontract to Syracuse University

117Noncyclic and Cyclic Dependencies to Procedural Parallel Programs

[3531427) and DARPA (grant [DABT63-92-0042). The experiments
were run on E5000 UltraSPARC machines which were a donation from
SUN Microsystems.

REFERENCES

1. William Leler, Constraint Programming Language , Addison-Wesley (1988) .
2. Vijay A. Saraswat, Concurrent Constraint Programming Languages, Ph.D. Thesis,

Carnegie Mellon, School of Computer Science, Pittsburgh (1989) .
3. Bjorn N. Freeman-Benson, A module compiler for Thinglab II, Proc. 1989 ACM Conf . on

Object-Oriented Prog. Syst . Lang . Appl. (October 1989) .
4. B. Freeman-Benson and Alan Borning, The design and implementation of Kaleidoscope

’90, a constraint imperative programming language, Computer Languages , IEEE Com-
puter Society, pp. 174± 180, (April 1992).

5. Ajita John and J. C. Browne, Compilation of constraint systems to procedural parallel
programs. In D. Sehr, U. Banerjee, D. Gelernter, A. Nicolau, and D. Padua, (eds.),
Workshop on Languages and Compilers for Parallel Computers , Vol. 1239, Springer-
Verlag, Lecture Notes in Computer Science, pp. 501± 518 (1996).

6. Ajita John and J. C. Browne, Extraction of parallelism from constraint specifications,
Proc. Intl. Conf . Parallel and Distribut . Proc. Techniques and Appl., Vol. III, pp. 1501± 1512
(August 1996).

7. S. Lakshmivarahan and Sudarshan K. Dhall, Analysis and Design of Parallel Algorithms :
Arithmetic and Matrix problems , Supercomputing and Parallel Processing, McGraw± Hill
(1990).

8. P. Newton and J. C. Browne, The CODE 2.0 graphical parallel programming environ-
ment, Proc. of the Int’ l. Conf . on Supercomputing , pp. 167± 177 (July 1992).

9. J. J. Dongarra and D. C. Sorenson, SCHEDULE: Tools for developing and anylyzing
parallel fortran programs, Technical Report 86, Argonne National Laboratory (Novem-
ber 1986).

10. B. K. Szymanski, Parallel Functional Languages and Compilers , ACM Press (1991).
11. G. Fox, M. Johnson, G. Lyzenga, S. Otto, J. Salmon, and D. Walker, Solving Problems

on Concurrent Processors , Vol. I, Prentice Hall (1988).
12. A. Osterhaug, Guide to Parallel Programming on Sequent Computer Systems , Prentice

Hall, Englewood Cliffs, New Jersey (1989).
13. Doug Baldwin, A status report on CONSUL. In Nicolau Gelernter and David A. Padua,

(eds., Languages and Compilers for Parallel Computing . MIT Press, (1990).
14. B. N. Freeman-Benson, Constraint imperative programming, Technical Report 91-07-02,

Department of Computer Science and Engineering, University of Washington (August
1991).

15. Michael Mehl, Ralf Scheidhauer, and Christian Schulte. An Abstract machine for Oz,
Progr . Lang . Implementations , Logics and Programs , Seventh Intl. Symposium , LNCS ,
Vol. 982, Springer-Verlag (September 1995).

16. R. Eigenmann and W. Blume, An effectiveness study of parallelizing compiler techniques,
Proc. Int. Conf . Parallel Processing, Vol. II, pp. 17± 25 (1991).

17. D. A. Padua and M. Wolfe, Advanced compiler optimizations for supercomputers, Comm .
ACM 12(29):1184± 1201 (December 1986).

18. James R. Larus and Paul N. Hilfinger, Restructuring Lisp programs for concurrent execu-
tion. Proc . SIGPLAN ’89 Conf . Progr. Lang . Design and Implementation , pp. 81± 90 (1989).

118 John and Browne

19. Luddy Harrison and David A. Padua, Parcel: Project for the automatic restructuring and
concurrent evaluation of Lisp, Proc. Int’l. Conf . Supercomputing , pp. 527± 538 (1988).

20. Harvey Richardson, High Performance Fortrain: History, overview and current develop-
ments, Technical Report TMC 261, Thinking Machines Corporation.

21. Utpal Banerjee, Loop Parallelization, A book series on loop transformations for restruc-
turing compilers, Kluwer, 1994.

22. K. M. Chandy and S. Taylor, An Introduction to Parallel Programming , Jones and Bartlett
(1992).

23. I. Foster and S. Taylor, Strand: New Concepts in Parallel Programming , Prentice Hall
(1990).

24. Michael J. O’Donnell, Equational Logic as a Programming Language , MIT Press (1985).
25. K. M. Chandy and J. Misra, Parallel Program Design: A Foundation, Addison-Wesley

(1989).
26. The Mathlab Group, Laboratory for Computer Science, MIT, Cambridge, Massachusetts,

MACSYMA Reference Manual (January 1983).
27. K. M. Chandy and Carl Kesselman, CC++: A declarative concurrent object oriented

programming notation. Technical Report CS-TR-92-01, California Institute of Technol-
ogy (1992).

28. Raju Pandey and J. C. Browne, Event-based composition of concurrent programs,
Workshop on Languages and Compilers for Parallel Computation (August 1993).

29. T. S. Collins and J. C. Browne, Matrix++: An object-oriented environment for parallel
high-performance matrix computations, Proc. of the Hawaii Intl. Conf . on Systems and
Software (1995).

Printed in Belgium

119Noncyclic and Cyclic Dependencies to Procedural Parallel Programs

