
International Journal of Parallel Programming , Vol . 26, No. 6, 1998

Quantifying the Multi-Level Nature of
Tiling Interactions1

Nicholas Mitchell,2 Karin HoÈgstedt, Larry Carter, and
Jeanne Ferrante

Optimizations, including tiling, often target a single level of memory or parallel-
ism, such as cache. These optimizations usually operate on a level-by-level basis,
guided by a cost function parameterized by features of that single level. The
benefit of optimizations guided by these one-level cost functions decreases as
architectures tend towards a hierarchy of memory and of parallelism. We have
identified three common architectural scenarios where a single tiling choice
could be improved by using information from multiple levels in concert. For
each scenario, we derive multi-level cost functions which guide the optimal
choice of tile size and shape, and quantify the improvement gained. We give
both analysis and simulation results to support our points.
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1. INTRODUCTION

If computers had only a single level of memory or parallelism, relatively
simple cost functions could successfully guide optimization decisions. Such
one-level cost functions commonly increase locality( 1 { 4 ) and exploit parallel-
ism. (5 { 9 ) For instance, a one-level cost function for a tiling might reflect
only whether the tile fits in cache (perhaps by considering cache size, line
size, and cache associativity( 10) ) , but not the effect of the tiling on instruc-
tion level parallelism.

However, recent trends towards greater architectural complexity have
increased the amount of information available to an optimizing compiler.
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Many machines now have multiple levels of memory and of parallelism
arranged hierarchically. Memory appears as registers, several levels of
cache and a translation look-aside buffer. Parallelism may occur as multiple
functional units, multiple processors in a node sharing memory, multiple
nodes sharing distributed memory, and so forth.

The multi-level aspect of memory and parallelism complicates
optimizations. While a one-level cost function suffices to yield good perfor-
mance at a single level of the memory hierarchy, it may not be globally
optimal. In this paper, we strive to show that, as the amount of available
information increases, the cost functions which guide tiling optimization
choices must be similarly expanded.

Researchers have developed a number of solutions to this information
expansion problem. Many have simply ignored the multi-level information,
instead relying on one-level cost functions.( 1, 10, 11) Others rephrase program
optimization as a search problem and invent heuristics to prune the
search. ( 12, 13)

We explore a different solution which first formulates the system to be
optimized by quantifying both the effects of tiling choices and the interac-
tions between such choices in a single formula, and then proceeds to mini-
mize this formula. If the minimization is closed-form, this technique utilizes
all the information necessary to achieve good performance without the
nonoptimality of one-level cost functions or the expense of searches.
Whether or not the minimization is closed-form, when tiling for a hierarchy
of memory and parallelism this technique derives a multi-level cost function.

In this paper, we present evidence to support two claims about cost
functions:

· One-level cost functions may not globally optimize. We show that
tiling(1, 14) for a single level using a one-level cost function can lead
to a globally suboptimal choice. In Section 3.1, we show for an example
code that an optimal choice for cache leaves little instruction level
parallelism, and an optimal choice for instruction level parallelism
can cause poor cache usage. A globally optimal choice must consider
the tradeoffs, given the architectural parameters from both levels.
Section 3.3 reports a similar result with multiple levels of parallelism.

· Multi-level cost functions optimize more effectively. We show that
multi-level cost functions, even when tiling at one level, can lead to
a better overall choice. In Section 3.2 with matrix multiply, we
obtain optimal cache and TLB miss rates for a given machine using
a global, in-concert strategy that uses architectural parameters from
multiple levels.
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In Section 3, we consider several kernel codes and three different
architectural scenarios ( summarized in Fig. 1) involving multiple levels of
memory or parallelism. Using these, we quantify the difference between
using one-level and multi-level cost functions.

2. BACKGROUND

Given a loop nest, the Iteration Space Graph (ISG ) ( 15) is a directed
acyclic graph whose nodes represent the initial values and computations in
the loop body, and whose edges represent data dependences.( 16) [Note:
Since the ISG has a distinct node for each value produced, storage-related
dependences need not be represented.] Figure 4 shows the loop nest for the
tiled program. The loop nest gives an order for executing the nodes of the
ISG.

Tiling( 1, 6, 14, 15, 17 { 22 ) can improve both data locality and parallel execu-
tion time. A tiling redefines the order of execution of the points within an
ISG by specifying four pieces of information: the atomic units of execution,
how to span each unit ( in other words, a schedule for the points that com-
prise the unit), how these units are scheduled to span the iteration space,
and the mapping of units to processing elements. Each unit, or tile, is a
subset of the iteration space, typically of one size and shape (except tiles
that intersect ISG boundaries). We refer to the method of spanning a tile
as the internal schedule and the method of spanning the iteration space as
the external schedule. Increasing the depth of a program’s loop nest, with
proper indices and bounds, implements a tiling.

2.1. Notation

In this paper, we will only consider internal and external schedules
that are given by a total order of the iteration space axes. We represent
each schedule by an ordered list of the index variables indicating loop
order, from outermost to innermost. For example, Fig. 5 shows a scheduled
tiling for matrix multiplication with ( i, k ) internal schedule and (k, i, j)
external schedule.

A module is an architectural component, such as cache, registers, disk
or network interconnections. The memory in a module is organized in
blocks, the unit of transfer between a module and the next larger module.
We denote modules by their first letter ( r for register, c for cache, t for
TLB, m for main memory, etc.) . S k denotes the block size of module k. For
example, the block size S c is the size of a cache line. We express block size
in units of problem elements ( for example, elements of the matrices in
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matrix multiply), rather than bytes. The block count, Ck , is the number of
blocks contained in module k.

We assume that TLB and cache use least-recently used (LRU) replace-
ment policies.

2.2. Related Work

Related work falls into four categories: quantification of performance,
determining tile characteristics for a single level, unifying optimizations for
a single level and unifying optimization for multiple levels.

Quantifying performance : We employ similar counting argu-
ments( 10, 11, 20, 23, 24) to estimate the number of misses in a module. No pre-
vious work has applied these arguments to multiple levels of the memory
hierarchy.

Single-level tile characteristics: Certain works ( 10, 20, 24) give methods for
choosing tile size in a nested loop; (20) that used a `̀ fits-in’’ constraint based
only on memory capacity (not block size) , Coleman and McKinley ( 10) use
of `̀ fits-in’’ constraint does not fully utilize block size information, though
Agarwel et al. ( 24) limits block size to one. In contrast to these and other
approaches to tiling size selection, our multi-level approach uses the block
size at each level in a multi-level cost function.

Single-level unification: Unimodular transformations can guide loop
transformations for locality( 1) and parallelism.( 6) These works unify only
improvement-enabling transformations such as skewing, interchange, and
reversal, and do not consider locality and parallelism in concert. The
work (25) incorporates a larger set of transformations and unifies the trans-
formation legality checks. AI search techniques on a decision tree of
possible optimization may find a good sequence of transformations to
parallelize a given program. ( 12 ) None of these works seeks to unify
guidance for multiple levels of the memory hierarchy.

Multi-level unification: Unroll-and-jam can guide locality and instruc-
tion level parallelism in concert. ( 26) Loop fusion anal distribution affect
both parallelism and locality.( 27 ) These two works do not directly address
tiling or the multi-level nature of the interactions. For matrix multiply, ( 28)

tiles an arbitrary number of memory levels, one level at a time. It finds the
optimal execution time by searching the space of tiling choices. Rather than
use multi-level cost functions, ( 13) performs a pruned search on the space of
possible combinations of minimizations of one-level cost functions. It is not
clear whether this method of extending to multiple levels is equivalent to
a multi-level cost function. In order to prune the search, the authors
separate cache-level optimization (using a cache-specific cost function)
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from scheduling choices (using a processor-specific cost function). In
Section 3.1 we argue this separation is not always reasonable.

No previous work has studied the multi-level nature of program, and
specifically tiling, optimizations. Our aim is to provide a system whereby a
compiler (or human) may consider ( quantitatively) the combined effect of
memory hierarchy optimizations. In this sense, our work is similar to the
`̀ first-class’’ transformation representation of unimodular matrices and the
framework found in Ref. 25.

3. MULTI-LEVEL COST FUNCTIONS YIELD BETTER
PERFORMANCE

Figure 1 visualizes three architectural scenarios with multiple levels of
memory or parallelism. The first, ( a), represents any architecture where
multiple children share a single memory, such as a cache shared by multi-
ple processors. The second scenario, ( b), represents an occurrence of two
modules, where the module with the larger capacity has a smaller block
count. This is typical for machines with a Translation Lookaside Buffer
(TLB). Scenario (c) represents any architecture with multiple levels of
parallelism. For each architectural scenario, we illustrate with example
codes that multi-level cost functions yield improvements.

Each scenario involves multiple conflicting goals. To balance these
goals, we need a single objective function that incorporates the competing
costs; we choose total execution time. Unlike approaches that use cache
misses or processor utilization, total execution time encapsulates the multi-
level tradeoffs. However, constructing such a cost function requires more
architectural information.

Fig. 1. Three architectural scenarios with deleterious tiling interactions. Higher
modules represent larger, slower memory units; lower modules are smaller and faster
caches or processors. Bold elements highlight the important features in each architecture.
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3.1. Memory Shared Among Processors

To motivate multi-level cost functions, we start with a simple example.
This example shows that any optimization strategy must trade off data
locality against parallelism, and the best strategy depends on the program
and details of the target machine.

The general architectural scenario is that of Fig. 1a, where a parent
module allocates its limited memory capacity among multiple children; we
consider a particular instance in which a cache holds data for a superscalar
or superpipelined processor. A different but equally valid instance is an L2
cache shared by multiple processors. We assume the processor can exploit
instruction level parallelism ( ILP) if there are sufficiently many indepen-
dent operations.

Figure 2a shows our triply-nested example code, where f is an
unspecified function. Figure 2b depicts the ISG for this problem. The
dependences in any i-j plane sequentialize the computation in that plane. In
order for a tile to introduce reuse, it must execute more than one instance
of the full innermost loop. Having done so, there is no extra data move-
ment required to complete the entire plane. Thus, the only significant tiling
choice is how many such planes to include in the tile.

Note also there are no dependences between the i 2 j planes, and so the
computation is `̀ embarrassingly parallel’’ in the k dimension. If a tile
includes multiple planes, then standard transformations can create an

Fig. 2. Running sum code (a) and iteration space graph; (b) for Section 3.1: a set of
independent planes. The lightly shaded nodes represent the computation of av and the
black nodes represent inner loop computations. The choice of planes per tile affects both
cache behavior and instruction level parallelism.
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Fig. 3. The simple cache model used in Section 3.1 for a cache with Cc lines, line size S c , and
associativity a. ( a) illustrates our derivation of the model which is shown in (b). For a tile of
p planes, the data size (elements per cache tile) is pM, where M is the size of the input matrix
in the i dimension. In (a) overlap length is pM 2 Cc S c , cycle length is CcS c /a, and nonoverlap
length is Cc S c /a 2 ( pM 2 Cc S c )= Cc S c( 1+ 1/a) 2 pM.

innermost loop that executes points from several independent planes,
allowing better instruction level parallelism.

To guide the choice of planes per tile, we develop a simple perfor-
mance model. In this model, optimizations will be driven by information in
a table; Table I shows the example we use in this section. Table I describes
the effect of adding planes to a tile on both cache ( second column) and
processor utilization ( third column); hence, it encapsulates the cache miss
cost function, CacheMiss, and processor utilization cost function, ILPTime .
Table I can be generated either analytically, experimentally (such as in
Ref. 13), or by some combination of the two. For this paper, the processor

Table I. Tiling Choice Affects Cache Miss Penalty and Execution Time in
Opposite Waysa

(Cycles per point)

Cache miss penalty Execution time
Planes per tile (CacheMiss ) (ILPTime )

1 0 10.4
2 1 5.3
3 4 5.1

a The input to our in-concert optimization is a table such as this one. The optimizer needs to
know the effect of adding planes on cache and on instruction level parallelism. One can
generate this table in many ways. We derived cache miss penalty using the cache model
described in Fig. 3 and information about instruction level parallelism by running small
enough versions of the input loop to allow measurements of execution time in the absence
of cache misses. The benchmarks ran on an IBM POWER2 with Cc= 256, S c= 64, a= 4.
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utilization column, ILPTime , comes from actual executions of the loop nest
with M sufficiently small so that there are no cache misses. The cache
column, CacheMiss, comes from a static cache model, described next.

This cache model is shown in Fig. 3b and derived in Fig. 3a for a tile
of p planes. Assume that the A matrix is stored so that the innermost loop
accesses the data sequentially; to do so, the data from the p planes must
be interleaved. [Notice that for p= 1, this corresponds to row-major order
allocation of the A array.] Given that we have arranged the A array in this
way, if the data for a tile fits in cache ( pM< Cc S c ) , we get no conflict mis-
ses; every cache line will be temporally reused. However, if pM> Cc S c , the
data for a tile doesn’t entirely fit in cache. In an a-way set associative cache,
data that is stored sequentially `̀wraps around’’ cache after Cc S c /a items.
This wrapping causes conflict misses in those regions of the tile data that
wrap around more than a times, shown in the shaded portion of Fig. 3a.
The length of this problematic region, the `̀overlap length’’ in Fig. 3a, is the
length of data minus the capacity of cache, or pM 2 Cc S c .

However, we are concerned with the number of elements which do not
overlap, the `̀ nonoverlap length.’’ The nonoverlap length is just wrap
length minus overlap length, or Cc S c /a 2 ( pM 2 Cc S c ) . We will get no
temporal reuse when the nonoverlap length is zero, or when pM=
Cc S c(1+ 1/a) . We have now defined three regions by two endpoints: per-
fect temporal reuse when pM< Cc S c , no temporal reuse when pM>
Cc S c(1+ 1/a) , and reduced temporal reuse inbetween. In the first region,
the number of conflict misses is zero; in the third region we endure one
conflict miss every line for pM accesses. In between the number of conflict
misses grows linearly with pM: inspecting Fig. 3a, we see that the number
of conflict misses ( the shaded region) is the overlap length times a+ 1
divided by S c ( because the code is scheduled for spatial reuse); more
precisely, ( pM 2 Cc S c )(a+ 1)/S c .

Fig. 4. Tiled code for matrix multiply.
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To make this section more concrete, we generate an example cost
function table. For this example, we assume a problem size that ensures an
entire i 2 j plane fits in cache, but two planes do not. For three planes and
higher, the maximum cache miss penalty has been reached. This table
further assumes the data for four iterations fit in one cache line and a cache
miss costs sixteen cycles. The ILPTime cost function is for the IBM Power2
with values taken from Carter et al. (29)

Using our example cost function table, this section considers choosing
the number of planes in three information domains: only considering cache
characteristics, only ILP characteristics, and both. This final domain must
balance the tradeoff between ILP and cache locality.

Cache alone : What tiling choice minimizes cache misses? Paying atten-
tion only to cache, we pick the row of Table I which minimizes the second
column. For our example, we would pick the first row, corresponding to a
tile of one plane. Unfortunately, this strategy, which minimizes cache mis-
ses, limits the instruction level parallelism to what is available in a single
plane. The opportunity to execute iterations from independent planes has
been lost.

Instruction Level Parallelism only: What tiling choice maximizes
instruction level parallelism? As the number of planes increases, the rate of
execution time improvement decreases and might even become negative.
A compiler that only considers ILP would choose the minimum number of
planes which realizes the minimum execution time, in this case p= 3.
However, this choice yields the maximum average cache miss penalty.

In concert: The in-concert strategy must consider the effects of both
ILP and cache misses. We use an execution time cost function of

E= min
p

(SNM(CacheMiss( p)+ ILPTime ( p) ) )

Note that it suffices to minimize CacheMiss( p)+ ILPTime ( p) over the
number of planes p.3 To do this, the compiler need simply check the sum
of the two entries for each p, line by line in both tables, and choose the p
with the minimum sum. In this case, the choice would be p= 2, which is
distinct from the cache-first strategy, p= 1, and the ILP-first strategy, p= 3.
In this simple case, using the cache-specific cost function or the ILP-specific
cost function did not yield the best solution, which is found by minimizing
the sum of the two cost level-specific functions.
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Table II. TLB and L1 Data Cache Characteristics for Various
Workstation Processors

TLB L1 Cache

entries kB/line entries bytes/line

Power2 512 4 1024 256
PA-8000 96 4+ 16384+ 16+
R10000 64 4+ 1024 32

UltraSPARC 64 8+ 512 32
Pentium II 64 4 512 32

21164 64 8 256 32

Others have proposed ( 13) a different solution to the ILP-cache trade-
off. They recognize the interdependence of optimization choices and use a
search procedure to take into account many of these interactions. However,
they prune the search procedure by making decisions for ILP before tiling
decisions for cache locality. While this bottom-up procedure may work
much of the time, our simple example illustrates that sometimes the best
choice requires considering information from both cache and processor
levels in concert.

3.2. Tall, Thin Modules

Our second architectural scenario consists of two modules, a and b,
where a has fewer blocks, Ca< Cb , but greater capacity, Ca S a > Cb S b . We
are particularly interested in the case that a is a tall, thin module ;4 i.e., when
Ca<< S a , as in Fig. 1b. Tall, thin modules occur in virtually every contem-
porary workstation in the form of a translation look-aside buffer, as shown
in Table II. For the remainder of this section, we will use the example of
TLB5 and cache.

In this section, we demonstrate the improvement seen by optimizing
for TLB and cache simultaneously . We first quantitatively derive the
optimal tiling for TLB, using a TLB-specific cost function and ignoring the
cache completely. This tiling will lead to cache thrashing, so we then per-
form an additional level of tiling for cache. Next we pursue the reverse
strategy: first tile for cache, show there is TLB thrashing, and then tile the
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cache-tiled code for TLB. Finally, we show that the best strategy balances
TLB miss rate and miss cost with those of cache.

We explore the benefit of multi-level optimization using matrix multiply.
We chose to look at matrix multiply for two reasons. First, much work has
been put into it’s optimization, ( 28) but none has explored optimizing both
cache and TLB simultaneously. Second, the relatively simple data access pat-
terns of matrix multiply allows straightforward locality analysis. However,
this latter aspect of matrix multiply implies that matrix multiply is a com-
pute-bound application. Being compute-bound, all tiling strategies which
remove TLB and cache thrashing will have similar execution times. However,
our goal is to provide an analytical framework for simultaneous optimiza-
tion, rather than optimize any one application. Therefore, we nonetheless
continue to analyze matrix multiply ( in this paper) due to its simplicity.

To focus on the interaction of TLB and cache tiling choices ( as
opposed to all the other choices affecting performance) , optimized versions
use the external schedule (k, i, j) and the internal schedule ( i, k ). Figure 4
gives the code and defines our naming convention: tiles stacked along the
j dimension are sticks and sticks stacked along the i dimension are slabs;
Fig. 5 illustrates the tiling. The only difference between optimized versions
will be the choice of the tile size, given by H and W .

Fig. 5. Our scheduled tiling for matrix multiply.
This tiling uses the ( i, k) internal schedule and
(k, i, j) external schedule. The intensity of the shad-
ing measures nesting depth; regions with the darkest
shadings correspond to inner loops. The picture
remains the same whether we are tiling for TLB or
cache, but the height and width (H and W ) change.
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To determine the optimal tile height and width, we use a somewhat
simplistic execution time cost function of miss cost times miss count. Let
ik be the idle time due to a miss at level k and M k be the miss count at
level k. Using these, we define two cost functions: a single-level cost func-
tion E single

k and a multi-level cost function E multi:

E single
k = ik Mk(H, W )

E multi= it M t(H, W )+ ic Mc(H, W )

Notice that minimizing the single-level cost function is equivalent to mini-
mizing the miss count. In contrast, minimizing the multi-level cost function
balances the relative costs of TLB and cache misses.

Thus, to determine the optimal tile height and width, we need two for-
mulas. The first, Mk predicts the number of mandatory misses on A, B, and
C in a module k . The second predicts the memory requirements of the tile;
the optimal tiling must satisfy the capacity requirements of TLB and cache.
As we assume a fully associative cache, we do not factor in self- and cross-
interference. [Note: In the future, we plan to model associativity.]

To derive these two formulas, we prove a lemma which closely bounds
the expected number Bk(H, W ) of blocks that must be brought into
module k to hold an H 3 W submatrix. We use this lemma to generate both
the miss count formula and the capacity requirements of a tile. First, a for-
mal definition:

Definition 1. Suppose A is an N 3 N matrix6 partitioned into
H 3 W submatrices, and k is a module. Let Bk(H, W ) be the expected num-
ber of distinct ( full or partial) blocks of module k included in a submatrix,
where the average is over all submatrices in the partitioning.

The exact value of Bk(H, W ) depends on the alignment of the matrix
columns in module k ; for instance, even if H= 2, the columns of A might
be allocated in a way that each column spans two blocks of k. Rather than
making assumptions about the alignment, we derive an upper bound on
Bk(H, W ) .

Lemma 1. Let k be a module and A be an N 3 N matrix stored,
without loss of generality, in column-major order; that is, each column of
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A is allocated in contiguous storage. Suppose that A is partitioned into
submatrices of size H 3 W Then,

Bk(H, W )<
N( s N/H t + s N/Sk t )

s N/H t s N/W t

Proof. Define a piece to be the set of memory addresses that repre-
sent the intersection of one of the submatrices with a single block of
module k. Also define a block address to be the address of the first element
of a block of k. We will first derive an upper bound on the total number
of pieces, from which the lemma will follow easily.

Each piece has a unique identifier, its smallest memory address. The
key insight is that each identifier is either a block address or the first
address in a submatrix column. Thus, the total number of pieces is boun-
ded by the number of submatrix columns, N s N/H t , plus the number of
block addresses contained in A. To bound this latter number, observe that
the column alignment that includes the maximum number of block
addresses has each matrix column start at a block address. In this case, the
number of block addresses per column is s N/Sk t .

Thus an upper bound on the total number of pieces is N( s N/H t +
s N/Sk t ) Dividing by the number of submatrices, s N/H t s N/W t yields the
desired bound on the average number of pieces per submatrix. z

We first apply this lemma to the problem of ensuring a tile remains
resident. For matrix multiply, the memory must contain W columns of
height H from A, one column of height W from B and one column of
height H from C. However, this memory bound is not sufficient to avoid
capacity thrashing, dale to the nature of LRU ( least-recently used policy)
caches. Because our external schedule runs along the j dimension, the very
next tile reuses the columns from A, but does not need the B and C
columns for a long time. However, either possible internal schedule, ( i, k )
or (k , i) , leaves the first columns of A the least recently used. Therefore, to
ensure no thrashing due to an LRU policy, we must leave room for two
columns from B and two columns from C. Therefore, for the tile to remain
resident, it is necessary that Bk(H, W ) + 2Bk(W , 1) + 2Bk(H, 1)< C k .

Next, we apply the lemma to determine the number of mandatory
misses. We denote this quantity for level k by Mk . The total number of
mandatory misses on A, B, and C, is the product of the number of sticks
with the misses incurred on B and C in a single stick, together with the cost
of bringing in the A matrix exactly once. Each H 3 W 3 N stick intersects
an average of Bk(H, W ) blocks of the A matrix, B k(W , N ) blocks of the B
matrix and Bk (H, N ) of the C matrix. Thus, executing the stick will incur
Bk(H, W ) + Bk(W , N ) + Bk(H, N ) misses; we refer to the number of misses
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for a stick of height H and width W as m(H, W ) . We must also count par-
tial sticks, in the event that W does not divide N or H does not divide N.
We now have a formula which counts an upper bound to Mk (We further
assume a sufficiently large N so that the lines of the B and C matrix used
in each stick do not remain resident in the TLB.):

Mk = u N/H v u N/W v m(H, W ) + u N/W v m(N mod H, W )

+ u N/H v m(H, N mod W ) m(N mod H, N mod W )

Yet, this miss count formula does not bound as tightly as it might.
When N 2 H< S , Mk needlessly overcounts cache misses. In this case, one
TLB7 line touches the tile in two or more columns. Our derivation of Bk

amortized two sources of line-tile intersections: the start of a tile column
and the start of a line. When N 2 H< S we need only amortize the second
source of intersections. Next observe that when N 2 H< S , the number of
misses is independent of tile height H. Thus, over the entice contiguously
allocated matrix, we get s N2/S k t line starts for u N/W v vertical tile swaths.
We now have a piece-wise defined, but more tightly bounding, Bk :

Bk(H, W ) = 5
N( s N/H t + s N/Sk t )

u N/H v u N/W v
s N2/S k t
u N/W v

N 2 H > S

otherwise

Now that we have a tightly-bounding miss count formula, we need to
simplify it to allow closed-form minimization (rather than integer program-
ming). We refer to former as the complex miss count formula and the latter
as the simple miss count formula. In the simple formula, we ignore misses
on the A matrix ( as they are only O(N2) compared to O(N 3 ) misses on
each of B and C). We also assume that s N/H t f N/H and likewise for
N/W ; in doing so, we ignore the effect of partial tiles. Next, we simplify the
residency requirements by only counting lines from A (and ignoring the
much smaller number of lines from B and C). The simple formula also
ignores the effect of an LRU policy. Finally, the simplified formula ignores
wrap-around. Though not a guaranteed upper bound on the number of
misses, this particular formula allows easy minimization. We could alter-
natively derive a continuous but more complicated upper bound. We could
also potentially refine the simple formula by making fewer assumptions but
still ensuring that it is continuous. These extensions would have only
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needlessly complicated matters: our simulation next results show that the
simple cost function predicts quite well. The resulting simple formulas are:

B simple
k = HW 1

1
H

+
1

S k
+

1
N 2

M simple
k =

N2

HW
(B t(W , N ) + B t(H, N ) )

= N3 1 1
1
H

+
1

W 2 1
1
N

+
1
S t 2 +

2
HW 2

When using this simple miss count formula, we must scale back the
size of TLB and cache. The simple miss count only counts lines from A
towards capacity ( and ignores many other issues, as well) . Therefore,
similar to Sarkar et al. ( 11) and the effective cache size, ( 13) we modify the
`̀ fits in’’ constraint with a `̀ fudge factor’’ of 75 %: Bk(H, W ) < 0.75Ck .
Again, we need only use this fudge factor when using M simple

k , as this for-
mula ignores many architecture-code interactions.

Minimizing the M simple
k subject to a `̀ fits-in’’ constraint of Bk(H, W ) =

0.75Ck produces the following equations for the optimal TLB tile size.
These equations apply when optimizing for any level in isolation.

N ¢k= 1+ S k /N

H = N ¢k H= Ï 0.75C k S k N ¢k + 2S 2
k

W =
0.75Ck S k

S k+ H

TLB decisions first: Our first tiling strategy optimizes for TLB first. As
an example, consider the MIPS R10000 where C t= 64 and S t= 1024, the
standard Unix page size measured in words. For 1200 3 12000 matrices,
a tile of size H= 800 and W = 20 minimizes TLB misses. Interestingly
enough, the optimal tile is quite far from square.

Unfortunately, this optimal TLB tile leads to poor cache performance.
The tile needs HW , or about 16,000, words from the A matrix, but the
R10000 L1 cache holds only Cc S c= 1024 3 8 = 8192 words. Therefore, the
tile’s submatrix of A must be reloaded into cache for each TLB tile. The
other systems in Table II suffer the same problem. (See Table III.)

Cache next: To overcome the cache problem, the `̀TLB first, cache
next’’ optimization order considers the entire stick of TLB tiles as an itera-
tion space, and optimizes it for cache performance. It turns out that cache
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Table III. Tile Height and Width Picked by the Three
Strategies Using the R10000 and UltraSPARC Cache

and TLB Parameters Given in Table II

R10000 UltraSPARC
strategy H 3 W H 3 W

TLB-first 297 3 20 145 3 20
cache-first 79 3 42 56 3 45
in-concert 177 3 33 77 3 36

misses can be minimized by splitting the stick lengthwise. This is equivalent
to simply using a shorter tile in the original five-loop program of Fig. 4.

The optimal cache tile size, given that the TLB considerations have
already chosen the tile width to be W = 20, is obtained by choosing the
largest value of H that satisfies the `̀ fits-in’’ constraint for cache, Bc(H, W )
= 0.75Cc . In our R10000 example, this gives H= 297.

Cache first: Now we apply the reverse strategy, considering cache first,
instead of TLB. Using the method described in the `̀TLB first’’ section, but
using the cache parameters, gives H= 79 and W = 70 using R10000
parameters. But now, TLB degrades performance. Since the TLB has only
64 entries and each column of an A-submatrix uses distinct TLB blocks,
there will be TLB misses on many or all ( depending on the TLB’s
associativity) columns of each cache tile.

TLB next: To remedy the problem with TLB, we subtile each stick,
this time for TLB by reducing the width of the cache tiles in the five-loop
program to satisfy the `̀ fits-in’’ constraint, B t(H, W )= 0.75C t . For the
R10000, this gives H= 79 and W = 42.

In-concert: Can we do better by taking advantage of the interactions
between TLB and cache? To find out, we minimize E multi subject to the two
constraints B t(H, W ) < 0.75Ct and Bc(H, W ) < 0.75Cc . It turns out that
the former suffices to constrain width while the latter suffices to constrain
height. Solving this minimization problem yields the following equations.
These formulas apply to any level for which we have considered the charac-
teristics of two consecutive levels.

H ¢ = N ¢c H ¢ = 1 S t+ ! 0.75C t S t N ¢ t+ 2S 2
t

1+ m t / c

S c / t N ¢c / t+ m t / c 2 Cc / t 2 S t

W ¢ =
0.75Cc S c

S c+ H ¢
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Table IV. Simulated and Predicted Misses for the Three Tiling Strategies
Using Both (a) R10000; and (b) UltraSPARC Hardware Parameters a

(A) R100000 (B) UltraSPARC

simulated predicted (% error) simulated predicted (% error)

strategy misses/106 simple complex misses/106 simple complex

TLB TLB-first 0.781 2 4.10 +1.79 0.762 +12.2 +0.92

cache-first 1.182 2 1.02 +10.4 0.838 +12.9 +1.91

in-concert 0.688 +2.32 +5.23 0.768 +12.8 +1.43

Cache TLB-first 12.89 2 5.51 +3.41 14.04 2 3.42 +6.05

cache-first 9.713 2 7.64 +4.40 10.86 2 7.09 +3.68

in-concert 9.178 2 8.38 +11.14 10.62 2 4.80 +7.16

a The simple formula allows analytical minimization while the complex formula is a discon-
tinuous upper bound.

Using the same TLB and cache parameters as before and assuming a
TLB miss is three times as costly as a cache miss yields H= 177 and
W = 33.

Which is best? To verify the analytical formulas for misses, we counted
cache and TLB misses on the SimpleScalar 2.0 ( 30) cache simulator, sim-

cache. The simulation is parametrized by characteristics of the target
architecture: Ck , S k and associativity for each module k. As our formulas
do not yet account for associativity, we ran the simulations on fully
associative caches.

We simulated the three tiling strategies using the characteristics of the
R10000 and the UltraSPARC given in Table II. The simulations demonstrate
the complex formula accurately overestimates both TLB and cache misses.
Relative to the predicted figures, the complex cost function8 overestimates
TLB miss counts by 1± 10% and overestimates cache miss counts by 4± 11%.
The simple cost function, as expected, sometimes underestimates miss counts;
it also overestimates TLB misses for the UltraSPARC as it does not factor in
wrap-around. Table IV presents these comparative figures.

Figure 6 compares the simulated data access times of the three
optimization strategies. This chart assumes a TLB miss is three times more
expensive than a cache miss. The simulation results indicate that, using
R10000 parameters, the cache-first and TLB-first optimization strategies
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Fig. 6. Simulated data access times for the three tiling strategies using R10000 parameters
and UltraSPARC parameter. Tiling for TLB and cache in concert does best.

have 17.9% and 35.5% higher data access times than an in-concert
strategy (3.48% and 26.3% for the UltraSPARC). The cache-first tiling
produces many TLB misses while the TLB-first tiling has many cache
misses. The in-concert strategy actually does at least as well for TLB than
a TLB-first strategy (and likewise for cache) because the `̀ first’’ strategies
are handicapped by the need to subtile to avoid thrashing. The cache-first
optimization ran into problems by making tiles too wide for TLB; the
TLB-first approach ran into cache problems by making tiles too high for
cache.

We have also performed preliminary full-processor simulation studies
using sim-outorder from SimpleScalar 2.0. The simulations indicate, not
surprisingly for matrix multiply, that the three tiling strategies perform
similarly. Each strategy ensured no thrashing in TLB and cache. Therefore,
other factors, before negligible, now dominate cache and TLB effects:
branch mispredictions, number of loads and stores and number of
branches. This does not imply that in-concert TLB and cache tuning
is always unnecessary. Rather, it may be unimportant for applications
like matrix multiplication that are compute-bound in the absence of
thrashing.
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Fig. 7. Model of a sixteen-node message passing computer,
where each node has eight processors, each with a 32 kilobyte
cache, that share a common memory of 256 megabytes.

3.3. Multiple Levels of Parallelism

Finally, we consider optimizing for two levels of parallelism. Our
example shows that optimizations driven by single-level cost functions can
result in 50% slower execution than in-concert optimization.

We use a computer similar to a SGI Power Challenge Array for our
example of a machine with multiple levels of parallelism. This system has
sixteen nodes connected with a high-speed network. Each node contains
eight processors ( each with a 32 kilobyte cache) and a 256 megabyte
shared memory. Figure 7 depicts this architecture.

For this target architecture, we explore various tiling strategies of a
common four-point stencil problem. Figure 8 shows the code and a portion
of its iteration space. Iteration ( i, j) is dependent on values from the two
earlier iterations ( i 2 1, j) and ( i, j 2 1).

We consider a restricted set of possible tilings as shown in Fig. 9. In
particular, we consider tilings that correspond to a block distribution of the
columns of array A to the processors. The iteration space is divided into

Fig. 8. (a) Code; and (b) a portion of its iteration space. The stencil of the loop is
highlighted.
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Fig. 9. Tiling for multilevel parallelism. The itera-
tion space is partitioned into 16 stacks of node tiles,
and each node tile is further partitioned into 8
stacks of cache tiles.

sixteen vertical swaths, one corresponding to each node of the computer.
Each swath is partitioned into potentially non-rectangular node tiles of
height H n . Parallelogram-shaped tiles correspond to rectangular tilings
after a unimodular transformation(6) of the iteration space. After the itera-
tions in a given node tile are executed, a message containing the values on
the right-land boundary is sent to the next node. This allows the receiving
node to begin executing the tile that needs these values.

Each node tile is further partitioned into eight vertical swaths, one for
each processor, and these are partitioned into cache tiles of height Hc .

We now develop a performance model to guide tiling choices. We
begin by considering a simple loop. If each iteration of the loop takes time
E0 then our model of the execution time E1 for the entire loop is

E1= N1 E0+ O 1

where N1 is the number of iterations and O 1 is the overhead of initializing
and terminating the loop. The body of the loop might be a single step of
the computation, or it might be a tile. We make the assumption that the
execution time of a partial tile is proportional to its area, so if the loop
executes a stack of two-dimensional tiles, the number of tiles in the stack
is the area of the stack divided by the area of a full tile.

The execution for a doubly-nested loop E2 executed sequentially by a
single processor is given by applying this formula twice:

E2= N2 E1+ O 2= N2 N1E0+ N2 O 1+ O 2 (3.1)

Now consider instead a parallel outer loop, where a set of processors
each execute a stack of tiles. If there are no dependences between the tiles
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and all stacks take the same time, then the total execution time E2 is the
time of any one stack plus the parallel loop overhead:

E2= E1+ O ¢2= N1 E0+ O 1+ O ¢2= N1E0+ O 2

Now consider the case where there are tile dependences. It has been
shown by HoÈ gstedt et al. that this can be done by including another term,
the idle time I2 , which is the time that last processor spends waiting for
data from other processors. [In Ref. 31, idle time is actually defined for any
processor as the time it spends idle waiting for data from other processors
plus the time it is idle after it has completed its work, before the last-com-
pleting processor has finished. In our case, the idle times for all processors
are the same. The formula used here also assumes that communication
cannot be overlapped by computation. The paper by HoÈ gstedt et al. ( 31)

handles the general case as well.] The formula for idle time is:

I2= (N2 2 1)( 1+ r2 ) E0

where there are N2 processors and r2 is the rise, which reflects the amount
of skewing of the tiles. Specifically, r2= W 0 /H0( s2 2 s1) , where s2 is the
slope of the iteration space, s1 is the slope of the tile, and H 0 and W 0 are
the tile dimensions.( 31) [Note: The formula for I2 is valid when r2 > 2 1; we
won’t consider r2< 2 1 since idle time cannot be negative.] When we
incorporate the idle time into our formula for the parallel execution time
of a set of stacks of tiles, we have:

E2= N1 E0+ O 2+ (N2 2 1) (1+ r2 ) E0 (3.2)

This discussion presents our model for execution time for a single-level
tiling, where a two-dimensional iteration space is partitioned into a set of
stacks of tiles. We now apply the formulas iteratively to the multiple levels
of tiling for our example. We will use the subscripts i, n, and c to refer to
features of the tilings of the entire iteration space, the node tiles, and the
cache tiles, respectively. The formula are:

E i= Ni En+ O i+ (P i 2 1)( 1+ r i) En (3.3)

En= Nn Ec+ O n+ (Pn 2 1)(1+ rn) Ec (3.4)

where Ni is the number of node tiles in a stack (corresponding to N1 in
formula Eq. (3.2) ) , P i , is the number of nodes (corresponding to N2 in for-
mula Eq. ( 3.2) ) , Nn is the number of cache tiles in a stack ( corresponding
to N1 in formula Eq. ( 3.2) ) , and Pn is the number of processors per node
[ corresponding to N2 in formula Eq. (3.2) ].
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Fig. 10. Two tilings of the iteration space which differ in their choices of rise. In (a)
rn = r i= 0; and (b) rn < 0 and ri> 0. (31) defines rise as a relationship between the shape of the
iteration space and the shape of the tiles. Notice that decreasing the rise at a particular level
of parallelism reduces the idle time due to a shorter critical path of dependent tiles at that
level. The highlighted tiles in each tiling corresponds to these critical paths.

Figure 10 illustrates the multi-level tilings and the significance of rise.
Note that the critical path of the tiling of the node tile by cache tiles in
Fig. 10a (where the rise rn = 0) is longer than the corresponding critical
path in Fig. 10b (where rn= 2 1 ). Intuitively, the idle time is the time
required to execute the critical path minus the execution time for the last
stack of tiles. Thus, the parallelogram-shaped node tile has less idle time.
There is an interesting tradeoff between idle times at the two levels of
parallelism. The tiling of the iteration space into node tiles in Fig. 10a has
a smaller idle time than the corresponding tiling in Fig. 10b, whereas the
tilings of node tiles into cache tiles have the reverse relationship.

A single-level tiling is determined by three parameters, the height of
the individual tiles, their width, and the rise. For the two-level tiling of our
example, there are the six parameters, H n , W n , r i , Hc , W c , and rn .

Given T and S , the height and width of the full iteration space, and
our architectural parameters Pn= 16 and Pc= 8, we know that W n= S/16,
W c= S/( 16 3 8 ), Ni= T/H n , and Nn= Hn /Hc . To model the execution time
of a cache tile, Ec , we somewhat arbitrarily assume that executing an itera-
tion takes 5 cycles. This cost is intended to model both the computation
time and the amortized cost of cache misses. [ In this model, we don’t count
the number of cache misses, but instead adopt the rule that a cache tile
must be small enough to fit comfortably in cache. We interpret `̀ comfor-
tably’’ to mean that the portion of the A matrix corresponding to a cache
tile may be only 85% of the cache capacity, and assume the data values are
4 bytes each.] Using Formula (3.1) we get:

Ec= 5W c Hc+ W c O c+ O ¢c

where, O c is the per-column loop overhead of the cache tile, and O ¢c is the
additional (nonloop) overhead of the cache tile.
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Summarizing and rewriting all of our formulas in terms of the
unknown tile parameters ( r i , Hn , rn , and Hc ) yields:

E i= T/H n En + O i+ 15(1+ r i) En

En= (H n /Hc) Ec+ O n+ 7(1+ rn) Ec

Ec= 5(S/128) Hc+ (S/128) O c+ O ¢c

We henceforth ignore the top-level overhead O i since it is a ( typically
small) constant added to all execution times independent of the tiling
choice.

Given this discussion, there are four unspecified parameters, r i , Hn , rn ,
and Hc . We will only consider rectangular cache tiles ( i.e., not parallelo-
grams), since using a positive slope for a tile would violate the dependences
of the iteration space, and there is no advantage in using a negatively-
sloped cache tile. [Note: If we were concerned with instruction-level paral-
lelism in this example, then there might be an advantage to nonrectangular
cache tiles. ( 32)] With the slope of the cache tile fixed, once r i is chosen the
value of rn is completely determined (and vice versa) . Thus, a multi-level
tiling is given by a choice of values for three tiling parameters .

We consider four tiling strategies for the loop shown in Fig. 8. The
first three strategies make single-level tiling choices in a level-by-level man-
ner. These strategies choose the tiling parameters H, W , and r at one level
at a time, making estimates of execution times that depend on tiling choices
that haven’t yet been made. We describe the three single-level strategies,
bottom-up, top-down and the flattened, later. The fourth strategy In-concert
uses a multi-level cost function to determine the three tiling parameters.

Bottom-up: The bottom-up strategy begins by minimizing En /Hn W n .
We minimize execution time per iteration point, instead of En , to avoid
the trivial optimal value of Hn= 0. The only tiling parameters that affect
En /Hn W n are Hc and rn . We then choose the remaining node tile param-
eter Hn to minimize the formula for E i , subject to the `̀ fits-in’’ constraints
Hc W c < 0.85C c and H n > Hc .

Top-down : In the top-down strategy, we start by first choosing the til-
ing of the iteration space into node tiles. To do so in a single-level manner,
we estimate En and choose the optimal values of H n and r i . The estimate
we use assumes a node tiles takes 5 cycles per iteration point per processor,
plus node tile overhead and an estimate of the processor idle time based on
the largest tile that fits comfortably in cache. [The actual formula we used
is En= 5H n S/128+ O n+ 8 3 0.85 Cc .] Having chosen Hn and r i , we then
choose the remaining cache tile parameter Hc , subject to the same fits-in
constraints, to minimize formula in Eq. (3.4).
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Fig. 11. The model for the architecture of the flattened
approach.

Flattened: In this strategy we flatten the two levels of parallelism of
our computer model into one. We choose the optimal one-level tiling of the
iteration space for the flattened model, use the resulting tile height for both
Hn and Hc of the original model. Finally, we choose the optimal values of
the rises r i and rc to minimize formula in Eq. (3.3).

The flattened model has 128 caches sharing a large memory as in
Fig. 11. We model the overhead in the flattened model by the weighted
average of the cache-tile and node-tile overheads. This gives the formula for
E f , the execution time in the flattened model:

E f = T/H c Ec+ O i+ 127(1+ rf ) Ec

Ec= 5(S/128) Hc+ (S/128) O c+ O ¢c+ O n /8

The rise r f must be zero since the cache tiles and iteration space are both
rectangular. We choose the optimal value for Hc subject to the fits-in con-
straint to minimize E f . Proceeding according to strategy described earlier,
we then set Hn= H c , and find the optimal rises.

In-concert: The in-concert strategy makes the optimal simultaneous
choice of the three tiling parameters to minimize the total execution time E i .

Which is best? We evaluated the four tiling strategies using the perfor-
mance model described earlier. As the in-concert strategy optimized this
performance model, it is guaranteed to be the best in these evaluations.

We compare the predicted execution times of the four tiling strategies
in two ways: fixed overheads with varying problem size and fixed problem
size with varying overheads. Table V and Fig. 12a show the results for the
former; Table VI and Fig. 12b show the results for the latter. The tables
also include the tiling parameter choices for each of the strategies. In both
figures, the y-axis shows the predicted total execution time relative to the
in-concert strategy, which is represented by the line y= 0. In Fig. 12a the
x-axis represents varying problem sizes using fixed values of O c , O ¢c and
O n . In Fig. 12b the problem size is fixed at S = T = 8192 ( the smallest
problem size represented in Fig. 12a) for varying values of O n . The dashed
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Table V. Choices of the Tiling Parameters Hn , H c , r i and rn when Tiling Fig. 8
with O n = 1000, O c = 10 and O ¢c = 225

T 3 S Strategy Hn Hc r i rn Predicted exec. time

8192 3 8192 top-down 300 11 0.00 0.00 6.39 Mcycles
bottom-up 101 101 8.00 2 1.00 7.39
flattened 40 40 8.00 2 1.00 4.98
in-concert 41 14 2.73 2 1.00 4.26

4096 3 16384 top-down 144 7 0.00 0.00 7.20
bottom-up 46 46 8.00 2 1.00 7.16
flattened 26 26 8.00 2 1.00 5.60
in-concert 21 9 3.43 2 1.00 4.69

16384 3 8192 top-down 424 13 0.00 0.00 10.7
bottom-up 101 101 8.00 2 1.00 10.2
flattened 57 57 8.00 2 1.00 8.49
in-concert 58 19 2.62 2 1.00 7.48

8192 3 16384 top-down 203 8 0.00 0.00 11.9
bottom-up 46 46 8.00 2 1.00 10.0
flattened 36 36 8.00 2 1.00 9.26
in-concert 29 13 3.59 2 1.00 8.05

16384 3 16384 top-down 288 10 0.00 0.00 20.4
bottom-up 47 46 9.95 2 1.00 15.7
flattened 46 46 8.00 2 1.00 15.7
in-concert 41 18 3.51 2 1.00 14.3

8192 3 32768 top-down 131 6 0.00 0.00 23.5
bottom-up 22 19 6.91 2 1.00 15.9
flattened 19 19 8.00 2 1.00 15.9
in-concert 21 12 4.57 2 1.00 15.5

32768 3 16384 top-down 407 12 0.00 0.00 36.0
bottom-up 62 46 5.94 2 1.00 27.0
flattened 46 46 8.00 2 1.00 27.1
in-concert 58 25 3.45 2 1.00 26.3

16384 3 32768 top-down 185 8 0.00 0.00 40.8
bottom-up 30 19 5.07 2 1.00 27.9
flattened 19 19 8.00 2 1.00 28.0
in-concert 29 17 4.69 2 1.00 27.9

49152 3 16384 top-down 498 13 0.00 0.00 50.8
bottom-up 74 46 4.97 2 1.00 38.3
flattened 46 46 8.00 2 1.00 38.4
in-concert 72 31 3.44 2 1.00 37.9

16384 3 49152 top-down 135 6 0.00 0.00 62.9
bottom-up 22 10 3.64 2 1.00 42.5
flattened 10 10 8.00 2 1.00 43.0
in-concert 22 10 3.64 2 1.00 42.5

65536 3 16384 top-down 575 14 0.00 0.00 65.0
bottom-up 84 46 4.42 2 1.00 49.5
flattened 46 46 8.00 2 1.00 49.8
in-concert 83 36 3.47 2 1.00 49.3

32768 3 32768 top-down 262 9 0.00 0.00 72.6
bottom-up 41 19 3.71 2 1.00 51.7
flattened 19 19 8.00 2 1.00 52.3
in-concert 41 19 3.71 2 1.00 51.7

16384 3 65536 top-down 101 5 0.00 0.00 87.7
bottom-up 18 6 2.67 2 1.00 60.9
flattened 6 6 8.00 2 1.00 62.2
in-concert 18 6 2.67 2 1.00 60.9
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Table VI. Choices of the Tiling Parameters Hn , H c , r i and rn when Tiling Fig. 8
with S= T= 8192, O c = 10 and O ¢c = 225

Predicted exec.
O n Strategy H Hc r i rn time (Mcycles)

1000 top-down 300 11 0.00 0.00 6.39
bottom-up 101 101 8.00 2 1.00 7.39
flattened 40 40 8.00 2 1.00 4.98
in-concert 41 14 2.73 2 1.00 4.26

3000 top-down 305 11 0.00 0.00 6.42
bottom-up 111 101 7.28 2 1.00 7.81
flattened 45 45 8.00 2 1.00 5.79
in-concert 72 14 1.56 2 1.00 4.64

5000 top-down 311 11 0.00 0.00 6.43
bottom-up 143 101 5.65 2 1.00 8.16
flattened 49 49 8.00 2 1.00 6.51
in-concert 92 14 1.22 2 1.00 4.91

7000 top-down 316 11 0.00 0.00 6.45
bottom-up 170 101 4.75 2 1.00 8.45
flattened 53 53 8.00 2 1.00 7.19
in-concert 109 14 1.03 2 1.00 5.13

9000 top-down 322 11 0.00 0.00 6.47
bottom-up 192 101 4.21 2 1.00 8.71
flattened 57 57 8.00 2 1.00 7.83
in-concert 124 14 0.90 2 1.00 5.33

12000 top-down 329 11 0.00 0.00 6.51
bottom-up 192 101 3.64 2 1.00 9.05
flattened 62 62 8.00 2 1.00 8.74
in-concert 143 14 0.78 2 1.00 5.60

15000 top-down 337 11 0.00 0.00 6.53
bottom-up 248 101 3.26 2 1.00 9.35
flattened 66 66 8.00 2 1.00 9.58
in-concert 160 14 0.70 2 1.00 5.84

lines in Fig. 12b use cache tile overheads O c and O ¢c twice as large as in the
solid lines.

The second best strategy varies with the problem size and the size of
the overheads, O c , O ¢c and O n . As shown in Fig. 12a, the bottom-up

strategy does very well for large problems, but as the problem size
decreases it can be over 70 % slower than in-concert. Top-down is 30± 50%
slower, and only improves slightly with larger problems. The flattened

approach appears to be closest to in-concert for the overhead values used
in Fig. 12a. As shown in Fig. 12b the bottom-up and flattened approaches
degrade with increased values of O c and O ¢c . The flattened approach is also
the only strategy that degrades with increased values of O n .
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Table VII. Choices of Tiling Parameters Hn , H c , r i and rn when Tiling Fig. 8
with S= T= 8192, O c = 20 and O ¢c = 450

Predicted exec.
O n Strategy Hn Hc r i rn time (Mcycles)

1000 top-down 300 15 0.00 0.00 7.49
bottom-up 101 101 8.00 2 1.00 7.57
flattened 55 55 8.00 2 1.00 5.77
in-concert 41 19 3.71 2 1.00 4.83

3000 top-down 305 15 0.00 0.00 7.52
bottom-up 110 101 7.35 2 1.00 8.00
flattened 58 58 8.00 2 1.00 6.43
in-concert 72 19 2.11 2 1.00 5.23

5000 top-down 311 15 0.00 0.00 7.52
bottom-up 142 101 5.69 2 1.00 8.36
flattened 62 62 8.00 2 1.00 7.10
in-concert 92 19 1.65 2 1.00 5.52

7000 top-down 316 16 0.00 0.00 7.54
bottom-up 168 101 4.81 2 1.00 8.65
flattened 65 65 8.00 2 1.00 7.71
in-concert 109 19 1.39 2 1.00 5.75

9000 top-down 322 16 0.00 0.00 7.55
bottom-up 190 101 4.25 2 1.00 8.91
flattened 68 68 8.00 2 1.00 8.30
in-concert 124 19 1.23 2 1.00 5.96

12000 top-down 329 16 0.00 0.00 7.58
bottom-up 219 101 3.69 2 1.00 9.25
flattened 72 72 8.00 2 1.00 9.15
in-concert 143 19 1.06 2 1.00 6.25

15000 top-down 337 16 0.00 0.00 7.60
bottom-up 245 101 3.30 2 1.00 9.56
flattened 76 76 8.00 2 1.00 9.97
in-concert 160 19 0.95 2 1.00 6.50

These numbers only take parallelism into account; there is also a com-
plicated interaction between parallelism, locality and other overheads. For
instance, the worst performing cache tile for parallelism is rectangular, but
this shape might have the least loop overhead.

4. CONCLUSIONS

Simple cost functions guide simple situations. As the architectural
landscape grows increasingly complex, simple cost functions will no longer
suffice to guide program optimizations.
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We have shown that single-level cost functions may not optimally
guide tiling decisions. Instead, an optimizing compiler should have a more
global perspective; an optimization with a seemingly single-level goal may
in fact be better regarded as multi-level.

We conjecture that one-level techniques suffice in the presence of a
chained nest of caches ( that is, ignoring parallelism and TLBs). Prior work
concentrating on this scenario should optimize well. We further conjecture
that, in the presence of two or more of the architectural features presented
here, independent optimizations for the features (even using multi-level cost
functions) is not the best strategy.
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