
International Journal of Parallel Programming , Vol . 26, No. 2, 1998

Evaluating the Effect of Coherence
Protocols on the Performance of
Parallel Programming Constructs1

Ricardo Bianchini,2 Enrique V. Carrera,2 and
Leonidas Kontothanassis3

The different implementations of parallel programming constructs interact
heavily with a multiprocessor’s coherence protocol and thus may have a signifi-
cant impact on performance. The form and extent of this interaction have not
been established so far however, particularly in the case of update-based
coherence protocols. In this paper we study the running time and communication
behavior of ticket and MCS spin locks; centralized, dissemination, and tree-based
barriers; parallel and sequential reductions; linear broadcasting and producer and
consumer-driven logarithmic broadcasting; and centralized and distributed task
queues, under pure and competitive update coherence protocols on a scalable
multiprocessor; results for a write invalidate protocol are presented mostly for
comparison purposes. Our experiments indicate that parallel programming
techniques that are well-established for write invalidate protocols, such as MCS
locks and task queues, are often inappropriate for update-based protocols. In
contrast, techniques such as dissemination and tree barriers achieve superior per-
formance under update-based protocols. Our results also show that update-based
protocols sometimes lead to different design decisions than write invalidate proto-
cols. Our main conclusion is that indeed the interaction of the parallel program-
ming constructs with the multiprocessor’s coherence protocol has a significant
impact on performance. The implementation of these constructs must be carefully
matched to the coherence protocol if ideal performance is to be achieved.

KEY WORDS: Parallel constructs; coherence protocols; scalable multipro-
cessors; performance evaluation.

143

0885-7458/98/0400-0143$15.00/0 Ñ 1998 Plenum Publishing Corporation

1 This research was supported by Brazilian National Research Council (CNPq).
2 COPPE Systems Engineering, Federal University of Rio de Janeiro, E-mail: {ricardo,

vinicio}@cos.ufrj.br.
3 Cambridge Research Laboratory, Digital EquipmentCorporation, E-mail: kthanasi@crl.dec.com.

1. INTRODUCTION

Some of the most common parallel programming idioms are locks,
barriers, task queues, and broadcast and reduction operations. The dif-
ferent implementations of these constructs interact heavily with a multipro-
cessor’s cache coherence protocol and thus may have a significant impact
on performance. The form and extent of this interaction have not been
established so far however, particularly in the case of update-based
coherence protocols.

Past studies of update-based protocols for cache-coherent multipro-
cessors (e.g., see Archibald and Baer, (1) and Dahlgren et al. (2)) have
ultimately focused on overall application performance in order to evaluate
these protocols. Studies of multiprocessor communication behavior (e.g.,
Gupta and Weber, (3) Dubois et al. (4) and Bianchini et al. (5)) also tend to
concentrate on the overall application behavior, without isolating the
behavior of the different parallel programming constructs and techniques
used by the applications.

While early studies focused on overall trends, in this work we isolate
the behavior of individual parallel constructs under different cache-
coherence protocols. Our main goals are to evaluate the performance and
communication traffic of implementation techniques that are well-estab-
lished for write invalidate (WI) protocols under update-based coherence
and to compare different implementation/protocol combinations on a
scalable multiprocessor.

In particular we seek to understand the performance of various
implementations of process synchronization, reduction and broadcasting
operations, and load balancing strategies under pure update (PU) and
competitive update (CU) coherence protocols; we also present WI results
mostly for comparison purposes. We use execution-driven simulation of a
32-node scalable multiprocessor to study the performance of ticket and
MCS spin locks; centralized, dissemination, and tree-based barriers;
parallel and sequential reduction operations; linear broadcasting and
producer and consumer-driven logarithmic broadcasting; and centralized
and distributed task queues. The execution time behavior of each combina-
tion of implementation and protocol is explained by the amount and use-
fulness of the communication generated by the combination.

We only consider software constructs in conjunction with invalidate
and update-based coherence protocols. It is possible to create more efficient
versions of some of our software constructs using additional hardware
features such as prefetching instructions (e.g., Mowry et al. (6)) , remote
writes (e.g., Abdel-Shafi et al. (7)) , or messages in multiprocessors with
protocol processors, but the study of such implementations is beyond the

144 Bianchini, Carrera, and Kontothanassis

scope of this paper. We have restricted our evaluation to the three domi-
nant coherence protocols and a host of parallel programming constructs
and implementation techniques that leverage those protocols.

Our most interesting results show that for scalable multiprocessors:

· the ticket lock under the update-based protocols outperforms all
other protocol/implementation combinations up to 4-processor
machine configurations, while the MCS lock under CU performs
best for larger numbers of processors;

· the standard MCS lock is inappropriate for a PU protocol, but a
slight modification of this lock can improve its performance;

· dissemination and tree barriers perform significantly better under
update-based protocols than under the WI protocol;

· the dissemination barrier under the update-based protocols is ideal
for all numbers of processors;

· when processes are tightly-synchronized, sequential reductions out-
perform parallel ones, independently of the protocol used;

· overall, update-based sequential reductions exhibit best performance
when processes are tightly synchronized;

· logarithmic broadcasting performs significantly better under update-
based protocols than under the WI protocol;

· consumer-driven broadcasting under PU is ideal for all numbers of
processors;

· consumer-driven broadcasting outperforms its producer-driven
counterpart for WI and PU, but not for CU;

· the PU protocol is inappropriate for dynamic load balancing, even
when it is implemented via distributed task queues;

· WI is the best protocol for both centralized and distributed task
queues.

In summary, our results show that parallel programming techniques
that are well-established for WI protocols, such as MCS locks, parallel
reductions, and task queues, can become performance bottlenecks under
update-based protocols. In contrast, techniques such as dissemination and
tree barriers and logarithmic broadcasting achieve superior performance
under update-based protocols. Our results also show that update-based
protocols sometimes lead to different design decisions than WI protocols,
as demonstrated by our broadcasting experiments. Given the charac-
teristics of the traffic generated by the different coherence protocols we

145Coherence Protocols on Parallel Programming Constructs

study, update-based approaches are ideal for scalable barrier synchroniza-
tion, sequential reductions, and logarithmic broadcasting, while WI is ideal
for scalable lock synchronization and task queues.

Our main conclusion is that the interaction of the parallel programming
constructs with the multiprocessor’s coherence protocol has a significant
impact on performance. The implementation of these constructs must be
carefully matched to the coherence protocol if ideal performance is to be
achieved. For multiprocessors with hard-wired coherence protocols (e.g.,
Lenoski et al.; (8) Kendall Square Research Corp.; (9) Agarwal et al. (10)) ,
these implementations must match the native protocol, while for multipro-
cessors that can support multiple coherence protocols (e.g., Kuskin et
al.; (11) and Reinhardt et al. (12)) , the best combination of implementation
and protocol must be chosen.

The remainder of this paper is organized as follows. Section 2 presents
the constructs and techniques we study and their implementations. Sec-
tion 3 describes our methodology and performance metrics. Experimental
results are presented in Section 4. Section 5 summarizes the related work.
Finally, Section 6 summarizes our findings and concludes the paper.

2. PARALLEL PROGRAMMING CONSTRUCTS AND
TECHNIQUES

Parallel programming for multiprocessors involves dealing with such
issues as lock and barrier synchronization and reduction operations. These
aspects of parallel applications can be implemented in various ways, the
most important of which we describe in this section.

2.1. Spin Locks

Spin locks are extremely common parallel programming constructs.
We will consider two types of spin locks: the ticket lock with proportional
backoff and the MCS list-based queuing lock.(13) We chose to study these
types of locks as previous studies of several lock implementations under WI
protocols have shown that the ticket lock is ideal for low-contention
scenarios, while the MCS lock performs best for highly-contended locks.

As seen in Fig. 1, the ticket lock employs a global counter that provides
`̀ tickets’’ determining when the processor will be allowed to enter the criti-
cal section. Another global counter determines which ticket is currently
being serviced. A processor is allowed to acquire the lock when its ticket
is the same as indicated by the service counter. Whenever this is not the
case, the processor pauses (spins locally) for a time proportional to the

146 Bianchini, Carrera, and Kontothanassis

Fig. 1. The ticket lock with proportional backoff.(13)

Fig. 2. The MCS lock.(13)

147Coherence Protocols on Parallel Programming Constructs

difference between its ticket and the counter, in order to reduce contention
for the counter.

The basic idea behind the MCS lock (Fig. 2) is that processors holding
or waiting for access to the lock are chained together in a list. Each pro-
cessor holds the address of the processor behind it in the list. Each waiting
processor spins on its own Boolean flag. The processor releasing a lock is
responsible for removing itself from the list and changing the flag of the
processor behind it.

Although MCS locks can be efficient under WI, they may generate a
large amount of traffic under update-based protocols as all processors
competing for a lock may end up caching all other processors’ I variables
and receiving an update for each modification of these variables. In order
to avoid this problem, we propose a modification to the MCS lock in
which a processor flushes the I’s of its predecessor and successor in the list.
The flush operation can be implemented using the user-level block flush
instruction common to modern microprocessors such as the PowerPC 604.
The blocks to be flushed in the modified MCS lock are indicated with com-
ments in Fig. 2.

2.2. Barriers

Just like spin locks, barriers are common parallel programming con-
structs. We study three different types of barriers: the sense-reversing cen-
tralized barrier, the dissemination barrier, and the tree-based barrier
proposed by Mellor-Crummey and Scott.(13) We chose to consider these
types of barriers as previous studies of synchronization under WI protocols
have suggested that centralized barriers are very good for small-scale multi-
processors, while dissemination and tree-based barriers are ideal for large-
scale multiprocessors.

In the sense-reversing centralized barrier (Fig. 3) each processor
decrements a variable counting the number of processors that have already
reached the barrier. The sense variable prevents a processor from completing
two consecutive barrier episodes without all processors having completed the
first one.

Several algorithms have been proposed to avoid the centralized nature
of this barrier. An efficient one, the dissemination barrier (Fig. 4), replaces
a single global synchronization event with s log2 P t rounds of synchroniza-
tions with a specific pattern; in round k , processor i signals processor
(i+ 2k) mod P, where P is the number of processors. Interference between
consecutive barrier episodes is avoided by using alternating sets of variables.

Another efficient distributed barrier algorithm is the tree-based barrier
proposed by Mellor-Crummey and Scott.(13) This algorithm uses an arrival

148 Bianchini, Carrera, and Kontothanassis

Fig. 3. The sense-reversing centralized barrier. (13)

Fig. 4. The dissemination barrier. (13)

149Coherence Protocols on Parallel Programming Constructs

Fig. 5. The tree-based barrier. (13)

tree where each group of 4 processors signals barrier arrival events to their
common parent, and a wake-up flag to notify the completion of a barrier
episode. Pseudo-code for this algorithm is presented in Fig. 5.

2.3. Reductions

Reduction operations are used in parallel programs in order to produce
a `̀ global’’ result out of `̀ local’’ arguments. Reductions usually apply a specific
operator, such as min or sum , to per processor arguments to produce a
machine-wide result. Sometimes these arguments are themselves produced by
several local applications of the operator.

Reductions can be performed in parallel or sequentially. In a sequen-
tial reduction, one processor is responsible for computing the global value
sequentially. An example sequential reduction operation to compute the
overall sum of each processor’s local sum is presented in Fig. 6. This type
of reduction is necessary for multiprocessors that lack a fetch± and± add
instruction. In a parallel reduction, all processors modify a global variable
themselves inside a critical section, as seen in Fig. 7. Note that the structure

150 Bianchini, Carrera, and Kontothanassis

Fig. 6. Sequential reduction operation.

Fig. 7. Parallel reduction operation.

151Coherence Protocols on Parallel Programming Constructs

of the implementation presented in Fig. 7 can frequently be found in
parallel programs, but is only appropriate for relatively small numbers of
processors. A tree-like implementation of a parallel reduction should
perform better than our implementation for large numbers of processors.

One might wonder why sequential reductions are even reasonable.
Two important aspects of parallel and sequential reductions may shed
some light into this issue: (1) when processors are tightly synchronized in
the parallel reduction, the critical path of the algorithm includes the sum
of the critical sections of all processors that queue up for the lock; and (2)
due to the manipulation of the lock variable, the sum of P critical sections
of the parallel reduction is much longer than the critical path of the
sequential reduction (according to our careful analysis of the code
generated by gcc with -O2 optimization level) .

Fig. 8. Linear broadcasting.

152 Bianchini, Carrera, and Kontothanassis

2.4. Broadcasting

Broadcast operations are required in parallel programs whenever data
produced by a processor must be accessed by all other processors. Broad-
casting can be performed in linear or logarithmic (tree-like) fashion. In
linear broadcasting, all consumers access the produced data directly, which
leads to the simple code in Fig. 8 but can generate excessive contention for

Fig. 9. Consumer-driven logarithmic broadcasting.

153Coherence Protocols on Parallel Programming Constructs

Fig. 10. Producer-driven logarithmic broadcasting.

154 Bianchini, Carrera, and Kontothanassis

large machine configurations. Several buffers may be used to allow for
varying production and consumption rates and thus permitting different
broadcasts to overlap.

Logarithmic broadcasting can be used to prevent significant conten-
tion on large numbers of processors. A logarithmic broadcast operation
can be implemented in a producer or consumer-driven fashion. In its
producer-driven version, the producer copies the data to its children in the
tree, which in turn copy the data to their children and so on. In its con-
sumer-driven version, when data are produced by the producer, the
producer’s children copy the data initially, which prompts their children to
copy data from parents and so on. The consumer and producer-driven
logarithmic broadcast operations we study are shown in Figs. 9 and 10,
respectively. Note that all the broadcasting codes require fences to ensure
correct execution under the memory consistency model we assume, release
consistency.

2.5. Task Queues

Task queues are frequently used in parallel programs for dynamic load
balancing, as in the Cholesky application from the Splash2 suite.(14)

Dynamic load balancing is necessary when the amount of load assigned to

Fig. 11. Centralized task queue-based computation.

155Coherence Protocols on Parallel Programming Constructs

each processor is a function of the application’s input or when new and
unpredictable work is created during runtime.

The basic idea behind the task queue is to collect descriptors of work
that is yet to be done. Processors dequeue descriptors whenever they
become idle and enqueue descriptors when they produce new work. Task
queues can be implemented in either centralized or distributed form.

Fig. 12. Distributed task queue-based computation.

156 Bianchini, Carrera, and Kontothanassis

Figure 11 presents the pseudo-code of the centralized task queue example
kernel we study. The kernel uses a global counter to represent the task
queue. Processors dequeue (fetch ± and± increment the counter) when they
need work; there is no need for enqueueing work descriptors, since each
value of the counter describes the piece of work to be performed. In order
to avoid an excessive number of accesses to the global counter, several
tasks are associated with each work descriptor. All tasks are executed
TOT± ROUNDS times.

Figure 12 presents the pseudo-code of the distributed task queue example
kernel we study. The kernel uses per processor counters containing all the
work to be performed in each round. Each processor initially dequeues work
from its local counter and, when all its local tasks have been exhausted,
searches for work in other counters. A processor only takes work away from
a remote processor if it detects that the remote processor is far behind in its
computation. In order to avoid an excessive number of accesses to remote
counters, an idle processor will only search for work on 1/4 of the remote
processors. Again, all tasks are executed TOT ± ROUNDS times.

3. METHODOLOGY

We are interested in assessing and categorizing the communication
behavior of our construct implementations under different multiprocessor
coherence protocols and, therefore, we use simulation for our studies.

3.1. Multiprocessor Simulation

We use a detailed execution-driven simulator (based on the MINT
front-end(15)) of a 32-node, DASH-like, (8) mesh-connected multiprocessor.
Each node of the simulated machine contains a single processor, a 4-entry
write buffer, a 64-KB direct-mapped data cache with 64-byte cache blocks,
local memory, a full-map directory, and a network interface. Shared data
are interleaved across the memories at the block level. All instructions and
read hits are assumed to take 1 cycle. Read misses stall the processor until
the read request is satisfied. Writes go into the write buffer and take 1
cycle, unless the write buffer is full, in which case the processor stalls until
an entry becomes free. Reads are allowed to bypass writes that are queued
in the write buffers. A memory module can provide the first word 20
processor cycles after the request is issued. Other words are delivered at a
rate of 1 word per processor cycle. Memory contention is fully modeled.
The interconnection network is a bi-directional wormhole-routed mesh,
with dimension-ordered routing. The network clock speed is the same as
the processor clock speed. Switch nodes introduce a 2-cycle delay to the

157Coherence Protocols on Parallel Programming Constructs

header of each message. The network datapath is 16-bit wide. Network
contention is only modeled at the source and destination of messages.

Our WI protocol keeps caches coherent using the DASH protocol
with release consistency. (16) In our update-based implementations, a pro-
cessor writes through its cache to the home node. The home node sends
updates to the other processors sharing the cache block, and a message to
the writing processor containing the number of acknowledgments to
expect. Sharing processors update their caches and send an acknowledg-
ment to the writing processor. The writing processor only stalls waiting for
acks at a lock release point.

Our PU implementation includes two optimizations. First, when the
home node receives an update for a block that is only cached by the updating
processor, the ack of the update instructs the processor to retain future
updates since the data is effectively private. Second, when a parallel process
is created by fork , we flush the cache of the parent’s processor, which
eliminates useless updates of data written by the child but not subsequently
needed by the parent.

In our CU implementation, each node makes a local decision to
invalidate or update a cache block when it sees an update transaction. We
associate a counter with each cache block and invalidate the block when
the counter reaches a threshold. At that point, the node sends a message
to the block’s home node asking it not to send any more updates to the
node. References to a cache block reset the counter to zero. We use coun-
ters with a threshold of 4 updates.

Our simulator implements three atomic instructions: fetch± and± add,
fetch± and± store, and compare± and± swap. The coherence protocol used for
the atomically-accessed data is always the same as the protocol used for all
the rest of the shared data. The computational power of the atomic instruc-
tions is placed in the cache controllers when the coherence protocol is WI
and in the memory when using an update-based protocol. So, for instance,
the fetch± and± add instruction under the WI protocol obtains an exclusive
copy of the referenced block and performs the addition locally. Fetch ± and±
add under an update-based protocol sends an addition message to the
home memory, which actually performs the addition and sends update
messages with the new value to all processors sharing the block. The
atomic instructions we implement force all previous locally-issued read and
write operations to have globally performed before taking action.

3.2. Performance Metrics

The focus of this paper is on running times and our categorization of
the communication traffic in invalidate and update-based protocols. We

158 Bianchini, Carrera, and Kontothanassis

consider the communication generated by cache misses (and block upgrade
operations) under both types of protocol and the update messages under
update-based protocols. The miss rate is computed solely with respect to
shared references.

In order to categorize cache misses we use the algorithm described by
Dubois et al., (17) as extended by Bianchini and Kontothanassis.(18) The
algorithm classifies cache misses as cold start, true sharing, false sharing,
eviction, and drop misses. We assume cold start and true sharing misses to
be useful and the other types of misses to be useless. More specifically, the
different classes of cache misses in our algorithm are:

· Cold start misses . A cold start miss happens on the first reference to
a cache block by a processor.

· True sharing misses . A true sharing miss happens when a processor
references a word belonging in a block it had previously cached, but
that has been invalidated due to a write to the same word by some
other processor.

· False sharing misses . A false sharing miss occurs in roughly the same
circumstances as a true sharing miss, except that the word written
by the other processor is not referenced by the missing processor.

· Eviction misses . An eviction (replacement) miss happens when a pro-
cessor replaces one of its cache blocks with another one mapping to
the same cache line and later needs to reload the block replaced.

· Drop misses . A drop miss happens when a processor references a
word belonging in a block it had previously cached, but that has
been self-invalidated under the competitive update protocol.

Our miss categorization algorithm includes a sixth category, exclusive
request transactions. An exclusive request operation (caused by a write to
a read-shared block already cached by the writing processor under the WI
protocol) is not strictly a cache miss, but does cause communication traffic.

We classify update messages according to the algorithm described by
Bianchini and Kontothanassis.(18) The algorithm classifies update messages
at the end of an update’s lifetime, which happens when it is overwritten by
another update to the same word, when the cache block containing the
updated word is replaced, or when the program ends. We also classify
updates as useful and useless. Intuitively, useful updates are those updates
required for correct execution of the program, while useless updates could
be eliminated entirely without affecting the correctness of the execution.
More specifically, the different classes of updates in our algorithm are:

159Coherence Protocols on Parallel Programming Constructs

· True sharing updates. The receiving processor references the word
modified by the update message before another update message to
the same word is received. This type of update transaction is termed
useful, since it is necessary for the correctness of the program.

· False sharing updates. The receiving processor does not reference the
word modified by the update message before it is overwritten by a
subsequent update, but references some other word in the same
cache block.

· Proliferation updates. The receiving processor does not reference the
word modified by the update message before it is overwritten, and
it does not reference any other word in that cache block either.

· Replacement updates. The receiving processor does not reference the
updated word until the block is replaced in its cache.

· Termination updates. A termination update is a proliferation update
happening at the end of the program.

· Drop updates. A drop update is the update that causes a block to be
invalidated in the cache.

This categorization is fairly straightforward, except for our false
update class. Successive (useless) updates to the same word in a block are
classified as proliferation instead of false sharing updates, if the receiving
processor is not concurrently accessing other words in the block. Thus, our
algorithm classifies useless updates as proliferation updates, unless active
false sharing is detected or the application terminates execution.

3.3. Experiments

Section 4 presents running time and communication performance
results of several implementations of each programming construct we study
running on our simulator. All our experiments focus on synthetic rather
than real programs. Synthetic programs allow us to isolate the behavior of
each implementation under the different coherence protocols when there is
an actual difference between the protocols, i.e., when the shared data used
by our implementations remain in the processors’ caches. Real programs
would provide for more realistic results but could interfere with our com-
parison by causing the eviction of important shared variables from the
caches. An unfortunate side effect of our experimental methodology is
however that it may overstate both the effectiveness of update-based
protocols in reducing the number of cache misses and the performance
degradation resulting from useless update messages.

160 Bianchini, Carrera, and Kontothanassis

4. EXPERIMENTAL RESULTS

In this section we evaluate the performance of the different implemen-
tations of locks, barriers, reductions, broadcasts, and task queues under the
three coherence protocols we consider. In all implementations, shared data
are mapped to the processors that use them most frequently.

4.1. Spin Locks

In order to assess the performance of each combination of spin lock
implementation and coherence protocol under varying levels of lock con-
tention, we developed a synthetic program where each processor acquires
a lock, spends 50 processor cycles holding it, and then releases the lock.
All of this in a tight loop executed 32000/P times, where P is the number
of processors.

Figure 13 presents the average latency of an acquire-release pair (in
processor cycles) for each machine configuration. This average latency is

Fig. 13. Performance of spin locks in synthetic program.

161Coherence Protocols on Parallel Programming Constructs

computed by taking the execution time of the synthetic program, dividing
it by 32000, and later subtracting 50 from the result. Figure 14 presents the
number and distribution of cache misses involved in each of the lockË -
protocol combinations on 32 processors, while Fig. 15 presents the number
and distribution of update messages in the lock implementations using the
update-based protocols again on 32 processors. [The bars in Fig. 15 do not
include the replacement updates category since this type of updates was
only observed in our broadcasting and task queue experiments.] The labels
in these figures represent the specific algorithm/protocol combinations:
`̀ tk,’’ `̀MCS,’’ and `̀uc’’ stand for ticket, MCS, and update-conscious MCS
locks respectively, while `̀ i,’’ `̀ u,’’ and `̀ c’’ stand for WI, PU, and CU
respectively. Note that we placed the absolute numbers of cache misses on
top of the bars that are not tall enough to be noticeable.

For ticket locks, Fig. 13 shows that CU performs slightly better than
PU for 32 processors, while both protocols perform significantly better
than WI for all machine configurations. As seen in Figs. 14 and 15, the
reason for this result is that the update-based protocols exchange the
expensive cache misses necessary to constantly re-load the ticket and

Fig. 14. Miss traffic of spin locks in synthetic program.

162 Bianchini, Carrera, and Kontothanassis

Fig. 15. Update traffic of spin locks in synthetic program.

now counters in WI, for corresponding update messages that only lead to
performance degradation if they end up causing resource contention.

For the MCS lock, the CU protocol outperforms all other combina-
tions for 16 and 32 processors; trends indicate that for larger numbers of
processors the WI protocol should become best. The MCS lock exhibits
terrible performance under PU; the implementation using this protocol is
worse than the ones with WI and CU by a factor of 2 for 32 processors.
The main problem with the MCS lock under PU protocols is that it
increases the amount of sharing (by sharing the global pointer to the end
of the list and pointers to list predecessors and successors) with respect to
a ticket lock, without reducing the frequency of write operations on the
shared data. This increased sharing causes intense messaging activity
(proliferation updates mostly) that degrades performance, as seen in
Fig. 15.

Our modification to the MCS lock significantly alleviates the sharing
problem of the standard MCS lock under PU protocols, as seen by the
39% reduction in update messages the modification produces. However,
much of the effect of this reduction is counter-balanced by an increase in

163Coherence Protocols on Parallel Programming Constructs

cache miss activity from 1089 to 31588 misses. The outcome of this tradeoff
is 18% and 11% performance improvements for 16 and 32 processors,
respectively. Note that the extent to which the reductions in traffic
provided by our update-conscious MCS lock lead to performance improve-
ments depends on the architectural characteristics of the multiprocessor:
performance improvements are inversely proportional to communication
bandwidth and latency.

Overall, we find that within the range of machine sizes we consider
ticket locks with update-based protocols achieve best performance up to
4 processors, while MCS locks under CU are ideal for larger numbers of
processors. Our update-conscious implementation of MCS locks improve
the performance of this lock algorithm, but not enough to justify its use
when a choice is available. Finally, we also find that, independently of the
lock implementation, the vast majority of updates under an update-based
protocol is useless.

These experiments were purposedly made similar to the ones perfor-
med by Mellor-Crummey and Scott(13) for comparison purposes. We also

Fig. 16. Performance of barriers in synthetic program.

164 Bianchini, Carrera, and Kontothanassis

performed experiments with a slightly modified synthetic program where,
instead of releasing the lock and immediately trying to grab it again, pro-
cessors waste a pseudo-random (but bounded) amount of time after the
release. This modified synthetic program provides for reduced lock conten-
tion. The results of these modified experiments are qualitatively the same as
the ones presented in this section. In a more controlled experiment, we
made the ratio of work outside and inside the critical section be equal to
the number of processors (+ 2 10%). Again, the results of this modified
experiment are qualitatively similar to the ones discussed in this section.

4.2. Barriers

In order to assess the performance of each combination of barrier
implementation and coherence protocol, we developed a synthetic program
where processors go through a barrier in a tight loop executed 5000 times.

Figure 16 presents the execution time (in processor cycles) of the syn-
thetic program running on different numbers of processors divided by 5000.

Fig. 17. Miss traffic of barriers in synthetic program.

165Coherence Protocols on Parallel Programming Constructs

This time is thus the average latency of a barrier episode for each machine
configuration. Figure 17 presents the cache miss behavior of each of the
barrier/protocol combinations on 32 processors, while Fig. 18 presents the
update behavior of the barrier implementations using the update-based
protocols again on 32 processors. The labels in these figures represent the
specific algorithm/protocol combinations: `̀ cb,’’ `̀ db,’’ and `̀ tb’’ stand for
centralized, dissemination, and tree-based barriers respectively.

Figure 16 shows that for centralized barriers the WI protocol outper-
forms its update-based counterparts, but only for large machine configura-
tions, as one would expect. Figures 17 and 18 show that even though the
number of misses of the centralized barriers under the update-based
protocols is negligible, the amount of update traffic these protocols
generate is substantial and mostly useless. The vast majority of this useless
traffic corresponds to changes in the centralized counter of barrier arrivals.

Before moving on to the scalable barriers, it is interesting to note
that there is not a significant difference between the amount of update
traffic generated by PU and CU for the centralized barrier. The number of

Fig. 18. Update traffic of barriers in synthetic program.

166 Bianchini, Carrera, and Kontothanassis

update messages under PU is exactly what one would expect: O (P2) , where
P is the number of processors. However, the update traffic under CU
should be much less intense than shown in Fig. 16; there should only be
O (P) updates. The only reason why our results do not match this intuition
is that processors are somewhat tightly synchronized in our synthetic
program and, as a consequence, the messages requesting elimination from
the sharing set of the block that contains the counter end up queued
behind the fetch and decrement messages at the block’s home node.

For the dissemination barrier CU and PU perform equally well,
significantly outperforming WI for all numbers of processors. The reason
for this result is that WI causes a relatively large number of cache misses
on accesses to the myflags array, while the update behavior of the dis-
semination barrier under CU and PU is very good (as demonstrated by
their lack of useless update messages). In essence, these protocols behave
well as a result of the fixed, low-degree, and write-once sharing pattern
exhibited by the dissemination barrier.

For the tree-based barrier PU and CU again (and for the same reasons)
perform equally well and much better than WI for all numbers of processors.

Fig. 19. Performance of reductions in synthetic program.

167Coherence Protocols on Parallel Programming Constructs

These results indicate that the dissemination barrier under either PU
or CU is the combination of choice for all numbers of processors. In addi-
tion, our barrier results demonstrate that update-based protocols perform
extremely well for scalable barriers, as shown by the absence of useless
update messages in these barriers.

4.3. Reductions

In order to assess the performance of each combination of reduction
implementation and coherence protocol, we developed a synthetic program
where each processor executes 5000 reductions in a tight loop. To avoid
disturbing the results of our reduction experiments, we simulated (fake or
idealized) lock and barrier operations that generate the appropriate
network traffic, provide the correct synchronization behavior, but that do
not execute real synchronization algorithms, i.e. processor instructions.

Figure 19 presents the execution time (in processor cycles) of the syn-
thetic program running on different numbers of processors divided by 5000.
This time is thus the average latency of a whole reduction operation for

Fig. 20. Miss traffic of reductions in synthetic program.

168 Bianchini, Carrera, and Kontothanassis

each machine configuration. Figure 20 presents the cache miss behavior
of each of the reduction/protocol combinations on 32 processors, while
Fig. 21 presents the update behavior of the reduction implementations
using the update-based protocols again on 32 processors. The labels in
these figures represent the specific algorithm/protocol combinations: `̀ sr’’
and `̀pr’’ stand for sequential and parallel reductions respectively.

Figure 19 shows that the sequential reduction outperforms its parallel
counterpart for all protocols and numbers of processors. One effect that
contributes to this result is that for our tightly-synchronized synthetic
program, the critical path of the parallel reduction is longer (as explained
in Section 2.3). This is the overriding effect for WI, where sequential and
parallel reductions exhibit the same number and type of cache misses as
shown in Fig. 20. For the update-based protocols other factors contribute
to the superiority of sequential reductions: for CU parallel reductions
entail an excessive number of cache misses (drop misses on accesses to
sum) , while for both PU and CU parallel reductions lead to a large
amount of useless update traffic. Figure 21 shows that sequential reductions
exhibit a large percentage of useful updates, indicating that update-based

Fig. 21. Update traffic of reductions in synthetic program.

169Coherence Protocols on Parallel Programming Constructs

protocols are appropriate for this type of operation, just as they are for
scalable barriers.

A comparison between update-based and invalidate-based reductions
is also interesting. Overall, update-based sequential reductions always
exhibit better performance than sequential reductions under WI. The
reason for this result is that the critical path of a sequential reduction
under WI is significantly longer than the critical path of a sequential reduc-
tion under the update-based protocols due to the cache misses involved in
the former algorithm/protocol combination. Note that up to 16 processors
even parallel reductions under PU perform better than sequential reduc-
tions under WI.

Although interesting, these experiments only model the case where
processes are tightly synchronized and most processors end up contending
for lock access. We also performed experiments with a slightly modified
synthetic program to generate some load imbalance and consequently
reduce lock contention. The results of these experiments show that parallel
reductions become more efficient than their sequential counterparts, but

Fig. 22. Performance of broadcasting in synthetic program.

170 Bianchini, Carrera, and Kontothanassis

still parallel reductions with PU and CU perform better than parallel
reductions with WI.

4.4. Broadcasting

In order to assess the performance of each combination of broadcast-
ing implementation and coherence protocol, we developed a synthetic
program where 64 bytes of data are broadcast 5000 times in a tight loop.
Eight buffers are used to permit the overlap of different broadcast opera-
tions. The degree of the broadcast tree is 2 in our logarithmic broadcasting
experiments. In general, wider trees would generate higher memory and
network contention in the consumer-driven broadcast and higher serializa-
tion in the producer-driven broadcast. Narrower trees alleviate these
problems, but increase the time it takes a produced item to reach the last
of its consumers.

Figure 22 presents the execution time (in processor cycles) of the syn-
thetic program running on different numbers of processors divided by 5000.
This time is thus the average latency of a whole broadcast operation for

Fig. 23. Miss traffic of broadcasting in synthetic program.

171Coherence Protocols on Parallel Programming Constructs

each machine configuration. Figure 23 presents the cache miss behavior of
each of the broadcasting/protocol combinations on 32 processors, while
Fig. 24 presents the update behavior of the broadcasting implementations
using the update-based protocols again on 32 processors. The labels in
these figures represent the specific algorithm/protocol combinations: `̀ ln,’’
`̀ cs,’’ and `̀pd’’ stand for linear, consumer and producer-driven logarithmic
broadcasting respectively.

The results in Fig. 22 show that except for very small machine configu-
rations (up to 4 processors) , the linear broadcast technique suffers severely
from contention effects. These effects are particularly harmful to perfor-
mance for the update-based protocols, where a tremendous number of
update messages generated by the producer (when it writes to data buffers
and to indices) and consumers (when they fetch± and± decrement the coun-
ters) congest the network.

The figure also shows that PU and CU perform exactly the same for
the producer-driven broadcast. The reason is that the number of con-
secutive writes without intervening local references (1) to each piece of
shared data is always smaller than our competitive threshold (4). The

Fig. 24. Update traffic of broadcasting in synthetic program.

172 Bianchini, Carrera, and Kontothanassis

update-based protocols significantly outperform WI for the producer-
driven broadcast on all numbers of processors (except 1 of course). The
main reason for this result is that, during the broadcast phase, most
accesses to the broad array cause cache misses. Figure 23 demonstrates
that the miss rate of the producer-driven broadcast under WI is more than
a factor of 10 higher than under the update-based protocols. Furthermore,
as seen in Fig. 24, the update traffic generated by the producer-driven
broadcast is 100% useful.

The update-based protocols also outperform WI for the consumer-
driven broadcast, again mostly as a result of the poor WI cache behavior
in accesses to the broad array, during the broadcast phase. In contrast
with the producer-driven broadcast however, the performance of the con-
sumer-driven broadcast is worse under CU than PU, since the number of
consecutive writes without local references to counter variables often
exceeds our competitive threshold.

Comparing the two implementations of logarithmic broadcasting, we
find that the consumer-driven broadcast under PU represents the best
implementation/protocol combination overall, for all numbers of pro-
cessors, even though its update traffic behavior is significantly worse than
for the producer-driven/PU combination. The reason for this result is the
longer critical path of the producer-driven broadcast, which includes the
sequential copies of data from each parent to its children.

It is also interesting to observe that the consumer-driven broadcast is
more efficient than its producer-driven counterpart under WI and PU, but
not under the CU protocol. For CU the higher miss rate and update traffic
of the consumer-driven broadcast lengthen the critical path of the algo-
rithm beyond that of the producer-driven broadcast.

4.5. Task Queues

In order to assess the performance of each combination of our task
queue-based computation and coherence protocol, we developed a syn-
thetic program where a 2563 256 matrix is completely re-written in parallel
50 times. Each work descriptor (counter value) is associated with the
modification of 256/P/2 rows of the matrix in the centralized implemen-
tation and 1 row of the matrix in the distributed implementation, where P

is the number of processors. Note that in contrast with the centralized task
queue implementation, the distributed queue kernel does not perform any
chunking of tasks, i.e., it associates a single task with each work descriptor.
The reason for this difference is that chunking is not as important when
there is little contention for task queues. Thus, avoiding chunking in the

173Coherence Protocols on Parallel Programming Constructs

distributed task queue kernel allows us to control the load balancing finely,
without incurring significant overhead.

In order to generate some load imbalance in the synthetic program,
the work associated with a descriptor is only performed with 50% prob-
ability. The value of the BEHIND parameter of the distributed queue
implementation was picked to be 3 based on the ratio of the costs of per-
forming a task with local data and performing the task with remote data:
roughly 5300 cycles/roughly 9000 cycles, i.e., it is about 70% more expen-
sive to perform the task with remote data.

Figure 25 presents the execution time (in processor cycles) of the syn-
thetic program running on different numbers of processors divided by 50.
This time is thus the average latency of a whole parallel modification of
the matrix for each machine configuration. Figure 26 presents the cache
miss behavior of each of the task queue/protocol combinations on 32 pro-
cessors, while Fig. 27 presents the update behavior of the task queue
implementations using the update-based protocols again on 32 processors.
The labels in these figures represent the specific implementation/protocol

Fig. 25. Performance of task queue in synthetic program.

174 Bianchini, Carrera, and Kontothanassis

Fig. 26. Miss traffic of task queue in synthetic program.

combinations: `̀ cent’’ stands for centralized and `̀dist’’ stands for dis-
tributed task queues. To avoid disturbing the results of our task queue
experiments, we simulated idealized synchronization operations that
generate the appropriate network traffic, provide the correct synchroniza-
tion behavior, but that do not execute real synchronization algorithms, i.e.,
processor instructions.

As one would expect, Fig. 25 shows that the distributed task queue
implementation outperforms its centralized counterpart for the three
coherence protocols we study. For all protocols the performance difference
between the two implementations decreases with machine size. For
instance, we find that under WI centralized task queues are only 30%
worse than distributed task queues for 32 processors. The decreasing per-
formance difference is a consequence of the fact that, in the distributed task
queue experiments, the number of tasks in the local pools becomes an ever
smaller fraction of the total number of tasks as we increase the number of
processors.

Figure 25 also shows that PU achieves terrible performance for both
centralized and distributed task queues. For centralized task queues, PU

175Coherence Protocols on Parallel Programming Constructs

Fig. 27. Update traffic of task queue in synthetic program.

does not perform well due to the fact that there is no affinity between a
row of the matrix and the processor where it was last modified, i.e., data
sharing becomes more widespread with each new round of computation. For
distributed task queues, PU exhibits poor performance for two reasons:
(a) the data associated with descriptors that are effectively migrated leave
their footprint in the caches they visit, i.e., subsequent modifications to
these data are sent to all these caches; and (b) the data migrated is only
useful once in most cases, since the amount and distribution of the load
changes from one round of computation to the next. The CU protocol per-
forms significantly better than PU for the two task queue implementations
as a result of its better sharing behavior, as demonstrated in Fig. 27. In
fact, CU and WI perform equally well for distributed task queues, outper-
forming all other implementation/protocol combinations. Note that WI
only entails a factor of 4 more `̀ real’’ cache misses than PU and slightly
more real misses than CU for distributed task queues, as shown in Fig. 26.
[Recall that exclusive requests do not really stall the processor, unless the
write buffer is full.] This miss rate comparison shows that WI is closer to

176 Bianchini, Carrera, and Kontothanassis

the update-based protocols for distributed task queues than for any other
programming construct we study in this paper.

5. RELATED WORK

As far as we are aware, this study is the first to isolate the performance
of important parallel programming constructs and techniques under PU
and CU protocols. This analysis led to a number of interesting observa-
tions that challenge previously-established results. In addition, our study is
the first to relate these constructs and techniques to their communication
behavior under invalidate, update, or competitive protocols. Some related
pieces of work are listed next.

The impact of coherence protocols on application performance is an
active area of research. Early work by Eggers and Katz (19) studied the
relative performance of invalidate and update protocols on small bus-based
cache-coherent multiprocessors. More recent work by Daghlren et al., (2)

and Veenstra and Fowler, (20) has looked at the impact of update-based
protocols on overall program performance on larger machines.

Other researchers have taken an applications-centric view and have
focused on the communication patterns induced by applications, mostly in
the context of WI protocols. Gupta and Weber (3) looked at the cache
invalidation patterns in shared-memory multiprocessors and determined
that for most applications the degree of sharing is small. Holt et al. (21) also
looked at the communication behavior of applications in the context of
large-scale shared-memory multiprocessors and identified architectural and
algorithmic bottlenecks. Dubois et al., (17) Torrellas et al., (22) and Eggers
et al. (33) have looked at the usefulness of communication traffic generated
by real applications in the context of WI protocols. Bianchini et al. (5) and
Dubois et al. (4) have looked at the usefulness of communication traffic
under both invalidate and update-based protocols.

Parallel programming constructs and in particular synchronization
algorithms have also received a lot of attention, however almost always in
the context of either noncoherent multiprocessors or machines based on
WI protocols. Mellor-Crummey and Scott, (13) for instance, have presented
the set of synchronization algorithms that we have used in our evaluation
of synchronization primitives. They evaluated these algorithms on top
of a noncoherent multiprocessor and a bus-based multiprocessor with WI
coherence. Among other interesting results, they showed that the com-
munication architecture of the multiprocessor may significantly affect the
comparison of different construct implementations. For example, they
found that dissemination barriers are outperformed by tree-based barriers
on bus-based machines, which is in contrast with their (and our) scalable

177Coherence Protocols on Parallel Programming Constructs

multiprocessor results. Abdel-Shafi et al. (7) have studied MCS locks and
tree-based barriers under WI but in the presence of remote writes. Their
study shows that remote writes improve the performance of these syn-
chronization algorithms significantly.

Finally, Michael and Scott(24) have studied the performance impact of
different implementations of atomic instructions in scalable multipro-
cessors. However, their study focuses on the atomic primitives rather than
on the algorithms that use them.

6. CONCLUSIONS

In this paper we have studied the running time and communication
behavior of several lock, barrier, reduction, broadcasting, and task queue
implementations on top of invalidate and update-based protocols on a
scalable multiprocessor. Our analysis indicates that locks can profit from
update-based protocols, especially for small to medium contention levels.
In addition, our results show that scalable barriers and logarithmic broad-
casting strategies can benefit greatly from these protocols, independently of
the number of processors. Our reduction experiments demonstrate that
sequential reductions also benefit from protocols based on updates, but
their performance is only competitive under heavy contention. Finally, our
results show that update-based protocols achieve poor performance for
task queues, even when distributed queues are utilized.

Our experience and findings have several implications for parallel
programming and scalable multiprocessor design:

· Implementations that exhibit a low degree of sharing and short write
runs achieve excellent performance under update-based protocols
regardless of the number of processors. Multiprocessors with a hard-
wired update-based protocol must then be programmed carefully, so
that the implementation of each programming construct approxi-
mates this sharing behavior as much as possible. Our update-con-
scious MCS lock, for instance, was designed to reduce the degree of
sharing of the MCS lock.

· For constructs that do not admit implementations with such a well-
behaved sharing pattern, the update-based protocols are not always
the best choice, especially for large numbers of processors. Thus, none
of the coherence protocols we studied is ideal for all constructs/
implementations. This means that multiprocessors that support a
single coherence protocol are bound to be inefficient in certain cases.
In contrast, multiprocessors with programmable protocol processors

178 Bianchini, Carrera, and Kontothanassis

should achieve good performance consistently, provided that the
best combination of implementation and protocol is chosen for each
construct.

· Most of our construct implementations could be improved by selec-
tively using producer-initiated communication. This type of com-
munication is well-suited to producer-consumer data or migratory
data that migrate to predictable destinations. However, producer-
initiated communication requires the support of the underlying
system (which we did not assume in this work), either through
hardware primitives such as remote write(7) or through fast user-
level access to the messaging hardware as in Alewife. (10) Remote
writes can improve performance by allowing the writing processor to
update another processor’s cache or the memory, possibly dropping
the copy of the written block from the writer’s cache. When
applicable, this achieves the goal of update-based protocols, namely
to avoid sharing misses, without generating any useless traffic.
Regular messages can be used for the same types of data as remote
writes, but usually require coarser-grain sharing to amortize their
cost. Thus, the availability of either fine or coarse-grain producer-
initiated communication mechanisms in current and future multipro-
cessors is certainly justified, at least in terms of the implementation
of parallel programming constructs.

In summary, this study shows that the implementation of parallel
programming idioms for scalable multiprocessors must take the coherence
protocol into account, since invalidate and update-based protocols some-
times lead to different design decisions. Programmers of update-based
multiprocessors and machines with protocol processors should then care-
fully implement their constructs if applications are to avoid unnecessary
overheads.

REFERENCES

1. J. Archibald and J.-L. Baer, Cache coherence protocols: evaluation using a multiprocessor
simulation model, ACM Trans . Computer Systems 4(4):273± 298 (November 1986).

2. F. Dahlgren, M. Dubois, and P. StenstroÈ m, Combined performance gains of simple cache
protocol extensions, Proc. 21st Int’ l. Symp . Computer Architecture, pp. 187± 197 (April
1994).

3. A. Gupta and W.-D. Weber, Cache invalidation patterns in shared-memory multipro-
cessors, IEEE Trans . Computers 41(7):794± 810 (July 1992) .

4. M. Dubois, J. Skeppstedt, and P. StenstroÈ m, Essential misses and data traffic in coherence
protocols, J. Parallel and Distributed Computing 29(2):108± 125 (September 1995).

179Coherence Protocols on Parallel Programming Constructs

5. R. Bianchini, T. J. LeBlanc, and J. E. Veenstra, Categorizing network traffic in update-
based protocols on scalable multiprocessors, Proc . Int’ l. Parallel Processing Symp .,
pp. 142± 151 (April 1996).

6. T. C. Mowry, M. S. Lam, and A. Gupta, Design and evaluation of a compiler algorithm
for prefetching, Proc. Fifth Int’l. Conf . Architectural Support for Programming Languages
and Operating Systems , pp. 62± 75 (October 1992).

7. H. Abdel-Shafi, J. Hall, S. V. Adve, and V. S. Adve, An evaluation of fine-grained
producer-initiated communication in cache-coherent multiprocessors, Proc . Third Int’ l.
Symp . on High-Performance Computer Architecture, pp. 204± 215 (February 1997).

8. D. Lenoski, J. Laudon, T. Joe, D. Nakahira, L. Stevens, A. Gupta, and J. Hennessy, The
DASH prototype: Logic overhead and performance, IEEE Trans . Parallel and Distributed
Systems 4(1):41± 61 (January 1993).

9. Kendall Square Research Corporation, KSR1 Principles of Operation , Kendall Square
Research Corporation (1992).

10. A. Agarwal, R. Bianchini, D. Chaiken, K. Johnson, D. Kranz, J. Kubiatowicz, B.-H. Lim,
K. Mackenzie, and D. Yeung, The MIT Alewife machine: Architecture and performance,
Proc. 22nd Int’ l. Symp . Computer Architecture, pp. 2± 13 (June 1995).

11. J. Kuskin, D. Ofelt, M. Heinrich, J. Heinlein, R. Simoni, K. Gharachorloo, J. Chapin,
D. Nakahira, J. Baxter, M. Horowitz, A. Gupta, M. Rosenblum, and J. Hennessy, The
Stanford FLASH multiprocessor, Proc. 21st Ann. Int’ l. Symp . Computer Architecture,
pp. 302± 313 (April 1994).

12. S. K. Reinhardt, J. R. Larus, and D. A. Wood, Tempest and typhoon: User-level shared
memory, Proc. 21st Ann. Int’ l. Symp . Computer Architecture (April 1994).

13. J. M. Mellor-Crummey and M. L. Scott, Algorithms for scalable synchronization on
shared-memory multiprocessors, ACM Trans . Computer Systems 9(1):21± 65 (February
1991).

14. S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, The SPLASH-2 programs:
characterization and methodological considerations, Proc . 22nd Int’ l. Symp . Computer
Architecture, pp. 24± 36 (May 1995).

15. J. E. Veenstra and R. J. Fowler, MINT: A front end for efficient simulation of shared-
memory multiprocessor, Proc. Second Int’l. Workshop on Modeling, Analysis and Simula-
tion of Computer and Telecommunication Systems , pp. 201± 207 (January 1994).

16. D. Lenoski, J. Laudon, K. Gharachorloo, A. Gupta, and J. Hennessy, The directory-based
cache coherence protocol for the DASH multiprocessor, Proc. 17th Int’ l. Symp . Computer
Architecture, pp. 148± 159 (May 1990) .

17. M. Dubois, J. Skeppstedt, L. Ricciulli, K. Ramamurthy, and P. StenstroÈ m, The detection
and elimination of useless misses in multiprocessors, Proc . 20th Int’ l. Symp . Computer
Architecture, pp. 88± 97 (May 1993).

18. R. Bianchini and L. I. Kontothanassis, Algorithms for categorizing multiprocessor com-
munication under invalidate and update-based coherence protocols, Proc. 28th Ann.
Simulation Symp ., pp. 115± 124 (April 1995).

19. S. J. Eggers and R. H. Katz, A characterization of sharing in parallel programs and its
application to coherency protocol evaluation, Proc. 15th Int’ l. Symp . on Computer
Architecture, pp. 373± 383 (May 1988) .

20. J. E. Veenstra and R. J. Fowler, A performance evaluation of optimal hybrid cache
coherency protocols, Proc. Fifth Int’ l. Conf . Architectural Support for Progr . Lang . Oper.
Syst., pp. 149± 157 (October 1992) .

21. C. Holt, J. P. Singh, and J. Hennessy, Application and architectural bottlenecks in large
scale distributed shared memory machines, Proc. 23rd Int’ l. Symp . Computer Architecture,
pp. 134± 145 (May 1996).

180 Bianchini, Carrera, and Kontothanassis

22. J. Torrellas, M. S. Lam, and J. L. Hennessy, False sharing and spatial locality in multipro-
cessor caches, IEEE Trans . Computers 43(6):651± 663 (June 1994) .

23. S. J. Eggers and T. E. Jeremiassen, Eliminating false sharing, Proc. Int’ l. Conf . Parallel
Processing , pp. 377± 381 (August 1991).

24. M. M. Michael and M. L. Scott, Implementation of general-purpose atomic primitives for
distributed shared-memory multiprocessors, Proc First Int’ l. Symp . on High-Performance
Computer Architecture, pp. 222± 231 (January 1995).

181Coherence Protocols on Parallel Programming Constructs

