
International Journal of Parallel Programming , Vol . 26, No. 1, 1998

Initial Results for Glacial
Variable Analysis

Tito Autrey1 and Michael Wolfe1

Runtime code generation that uses the values of one or more variables to
generate specialized code is called value-specific optimization. Typically, value-
specific optimization focuses on variables that are modified much less frequently
than they are referenced; we call these glacial variables. In current systems that
use runtime code generation, glacial variables are identified by programmer
directives. Next, we describe glacial variable analysis , the first data-flow analysis
for automatically identifying glacial variables. We introduce the term staging
analysis to describe analyses that divide a program into stages or use the stage
structure of a program. Glacial variable analysis is an interprocedural staging
analysis that identifies the relative modification and reference frequencies for
each variable and expression. Later, several experiments are given to charac-
terize a set of benchmark programs with respect to their stage structure, and we
show how often value-specific optimization might be applied. Finally, we
explain how staging analysis relates to runtime code generation, briefly describe
glacial variable analysis and present some initial results.

KEY WORDS: Glacial variable analysis; staging analysis; candidate
variables; value-specific optimization.

1. INTRODUCTION

Specialization is tailoring general-purpose procedures to a specific invoca-
tion or set of invocations. Specialization takes advantage of specific values
of parameters. For the same function, specialized code is frequently an
order of magnitude faster than general-purpose code. Functional language
compilers traditionally use partial evaluation to produce specialized versions

43

0885-7458/98/0200-0043$15.00/0 Ñ 1998 Plenum Publishing Corporation

1 Department of Computer Science and Engineering, Oregon Graduate Institute of Science
and Technology.

of functions.(1) Imperative language compilers traditionally use procedure
cloning to perform the same optimization.(2) Value-specific optimization
(VSO) uses runtime code generation (RTCG) to produce specialized code
at runtime instead of compile-time.(3)

By using the values of slowly changing variables, VSO ensures that the
number of invocations of each chunk of specialized code is high and there-
fore that the cost of the optimization is recovered. We refer to these
variables as glacial variables because they vary slowly. (Note: Keppel refers
to these variables as candidate variables). (4) Glacial variables are modified
infrequently compared to the frequency with which they are used. Current
approaches to compiler-controlled VSO require the programmer to insert
directives into the program source code to identify glacial variables.(5± 8)

A staging analysis is an analysis that partitions a program into chunks
larger than a basic block where the partitioning criterion is related to the
order in which computations happen in a program. The large, ordered
program chunks can be used to focus other analyses and optimizations
where they are most effective.

In our model, each loop defines a stage. We use loops to define stages
because historically they are considered good indicators of execution fre-
quency. Execution frequency translates directly into reuse of the code of a
stage and in many cases the reuse of values referenced within the stage
body as well. We label every basic block in the body of a loop with a stage-
level equal to the loop depth of the containing loop. A level i stage is
indicated by Stage-i. A level (i+ 1) stage is a sub-stage of a level i stage if
it is contained within that stage. Correspondingly, the level i stage is the
super-stage of that level (i+ 1) stage. Sub-stages execute more frequently
than their super-stages.

Glacial variable analysis (GVA) is a staging analysis that automatically
identifies glacial variables using two pieces of information. The first is an
estimate of the execution frequency of each block of code. The second is an
estimate of the modification frequency of each expression and subexpression.
The degree of glacialness of an expression (variable) is a measure of the
difference between its execution (use) and modification (def) frequencies.

Figure 1a shows the labeling of some example code. In our model,
RTCG can be applied at the boundary between a level i stage and a level
(i+ 1) stage. Value-specific optimization generates a specialized version of
the level (i+ 1) stage using the values of glacial variables available at that
point in the level i stage. By definition these variables aren’t modified
within the higher level stage; For example, if there is a subexpression in a
level (i+ 1) stage that uses values only from its superstage (Stage-i) then
the superstage is extended with a call to a runtime code generator. The
code generator evaluates the subexpression and generates code specialized

44 Autrey and Wolfe

with the resulting values of that evaluation. The code is a specialized
version of the sub-stage (Stage-(i+ 1)) .

Figure 1b shows an integer matrix± matrix multiply procedure; at exit
C is the matrix product of A and B. Inspection (or a simple data-flow
analysis) shows that A and B are referenced, but not modified, within the
loop nest and therefore have three degrees of glacialness in the k-loop. In
addition, portions of the array subscripting expressions are glacial.
A[i,1..n] has two degrees of glacialness and B[1..n,j] has one degree of
glacialness. Because A is not modified, there are no data-dependence
constraints on accesses to it, therefore we can generate code for the k-loop
specialized to the subscripting expression A[i,?]. The code is generated at
the point marked `̀*’’ so a new inner loop is generated each time around
the i-loop. The specialized code is the fully unrolled innermost loop, so the
loop overhead instructions have been eliminated. In many cases A may
have small enough values such that at code-generation time the load can
be eliminated in favor of instruction immediates. (Note: RISC ISAs tend to
support 16-bit immediates for arithmetic operations). The embedding
requires full loop-unrolling. If the arrays are laid out in column-major
order then the embedding can have a beneficial effect on cache utilization
by removing the large-stride accesses to A. Algebraic identities allow the
entire load B-multiply-add-store C sequence to be skipped when A[i,k]
is 0. For a sparse matrix this optimization is significant. All this work pays
off because the runtime generated code is used n2 times. (Note: When full
loop-unrolling is used, the code is only used n times) .

The rest of the paper is organized as follows: in Section 2 we present
related work; in Section 3 we discuss glacial variable analysis in more
detail; in Section 4 we present experimental results from applying glacial

Fig. 1. (a) Example of computation stages; and (b) Example of how to use VSO.

45Glacial Variable Analysis

variable analysis to a set of benchmark programs; and in Section 5 we
present conclusions and future work.

2. RELATED WORK

The most closely related work to glacial variable analysis is binding
time analysis (BTA) which is used by offline partial evaluation.(9) Binding
time analysis takes as input a partition of the program inputs labeled with
elements from a two-level binding-time lattice: Static and Dynamic . The
analysis labels every expression with Static or Dynamic . The labeled program
is then passed to a partial evaluator, along with a set of values for the static
inputs, which produces a residual program where all static expressions have
been evaluated and replaced with their value. Multi-level binding time
analysis extends the binding-time lattice in much the same way that we
have extended the constant propagation lattice to obtain our stage-level
lattice.(10) The differences are that BTA just labels expressions whereas
GVA labels code separately from expressions, and BTA works from an
initial partition of the inputs which limits the precision of the labeling
within a procedure, whereas GVA uses the control flow structure of the
procedure to deduce the most precise labeling possible.

In 1982, Ershov (11) distinguished between what was traditionally called
partial evaluation and what Jo/ rring and Scherlis call staging transforma-
tions.(12) Today `̀partial evaluation’’ is understood to encompass both
styles of transformation. Staging transformations are syntactic rules used to
move computation from the late stage of a program (runtime) into the
early one (compile-time) . Compile-time is viewed as having a cost of zero.
Thus extensive compile-time transformations may be performed even if the
resulting improvement in the late stage is uncertain. We wish to extend the
partitioning to more than two stages. In our model, most of the multiple
stages are specialized at runtime and incur a runtime cost. Thus we use
an analysis phase, staging analysis, to suggest where the transformations
may likely reduce program runtime rather than increase it through
unrecoverable RTCG overhead.

There are several compiler-supported RTCG systems: one based on
the Multiflow compiler at the University of Washington; (5) one based on
partial evaluation of C at INRIA, Tempo, (6) one based on extensions to C
at MIT, tick-C; (7) and one based on SML/NJ at Carnegie-Mellon University,
Fabius.(8) All of them rely on programmer annotations to identify candidate
variables for VSO. For example, in Leone and Lee’s Fabius system, the
programmer separates the arguments into an early-tuple and a late-tuple.
The compiler inserts runtime code generator calls that use the early-tuple
to generate a specialized version of the function which takes the late-tuple

46 Autrey and Wolfe

as its argument. With a staging analysis, such as GVA, the programmer
would not have to do the argument partitioning by hand. Programmer
annotations are prone to errors; both incorrect application and lack of
application can lead to suboptimal results.

SELF is a pure object-oriented programming language. The SELF-93
compiler and runtime system monitor method invocations for receiver
classes. Method invocations are specialized based on the receiver class in
order to improve performance.(13) This specialization is not strictly a VSO
(it is a type-based optimization), but it does use RTCG. The SELF-93
compiler does not use interprocedural type analysis as the SELF-91 com-
piler does; (14) however, it obtains better results by performing the analysis
at runtime. We expect that a glacial type analysis combined with GRLA
could determine at compile-time which method calls to apply receiver class
specialization to, instead of checking all method calls at run-time.

Fig. 2. (a) GRLA applied to example code; and (b) Stage-level lattice.

47Glacial Variable Analysis

3. GLACIAL VARIABLE ANALYSIS

Glacial variable analysis is a staging analysis composed of two parts.
The first, global recursion-level analysis (GRLA) [pronounced `̀gorilla’’]
identifies the stages inherent in the program and labels each stage with an
element from the stage-level lattice shown in Fig. 2b. [The Constant ele-
ment of the lattice is not applied by GRLA, but we want to use the same
lattice for both GRLA and GVP]. The second, glacial variable propagation
(GVP) uses the GRLA results to label variable definitions and expressions,
also with elements from the stage-level lattice. The labels generated by
GRLA are called code stage-levels (CSLs) and those by GVP are called
variant stage-levels (VSLs).

3.1. Global Recursion-Level Analysis

The purpose of GRLA is to label each block of code with a CSL. The
CSL is a measure of the block’s estimated frequency of execution. A higher
CSL indicates code that is more frequently executed and therefore more
important to optimize. A higher frequency of execution indicates a greater
level of temporal reuse, of the code. Global recursion-level analysis is a
flow-insensitive interprocedural data-flow analysis. [We acknowledge that
the use of `̀ global’’ usually suggests that an analysis is applied to all basic
blocks in a procedure.] It uses the program’s call graph and the control-
flow graph of each procedure.

Global recursion-level analysis partitions the program’s computations
into stages. A stage is defined as a single or multi-entry loop and its
contained body. Note that by definition, any two loops are either nested
(one fully contained within the other) or disjoint (having no basic blocks
in common). The collection of stages forms a tree where each stage is com-
posed of a sequence of basic blocks interspersed with sub-stages.

The CSL is composed of two parts, a Block-CSL and a Procedure-
CSL, which correspond to the two phases of GRLA, the intraprocedural
and interprocedural. This separation also supports future work on proce-
dure cloning and inlining. The intraprocedural phase of the labeling is
described in Step 1 of the full description GRLA. Here, is a summary of the
full interprocedural GRLA:

1. Within each procedure, find all loops and compute loop nest
depths. The Block-CSL of a basic block is the loop-depth of the
immediately enclosing loop.

2. Compute the complete call graph. We use Hall and Kennedy’s
algorithm.(15)

48 Autrey and Wolfe

3. Assign CSLs to each procedure.

(a) For the top-level procedure, the Procedure-CSL is zero.

(b) Otherwise, the Procedure-CSL is the stage-level lattice meet of
the CSLs of the call sites that may call that procedure. Each
call site CSL is the Procedure-CSL plus the Block-CSL of
the block containing the call site. Since the benchmark set is
written in Fortran, without recursion, we skip the details of
handling recursion in this paper.2

Global recursion-level analysis is a forward data-flow problem on a
reduced call graph. When there are no cycles in the call graph, all proce-
dures are labeled in a single topological-order pass over the graph. We use
MAX as our meet-function. This choice ensures that the deepest possible
nesting of stages in the program is labeled with the largest CSL.

The Procedure-CSL is ambiguous if calls to a procedure are at dif-
ferent stage-levels. In Fig. 2a, the main program has a CSL of zero. Calls
to sum appear at stages one and two within main. We assign procedure
sum a Procedure-CSL of MAX(1, 2) = 2. With this choice, the i-loop in
sum is predicted to execute more frequently than the while-loop in main,
which matches our intuition.

The time complexity of GRLA, in the absence of cycles in the call
graph, is O (|C |) for the interprocedural phase, where C is the set of edges
in the call graph. The intraprocedural phase is loop-finding. The cost of the
multi-entry loop finding algorithm when all loops are natural (single-entry)
loops is O(|N |+ |E |) where E is the set of edges and N the set of nodes
in the control flow graph. This case is by far the most common. If the worst
traversal order is used for a graph where the number of multi-entry loops
is O (N) , then the cost is O (N2 * E 2) , but it is difficult to imagine what the
code would look like in this cause.

3.2. Glacial Variable Propagation

The purpose of GVP is to label each variable definition and expression
with a VSL. The VSL is a measure of how frequently the value of the
variable or expression changes.

49Glacial Variable Analysis

2 Briefly, we discover cycles in the call graph very similarly to the way that multi-entry loop
finding(16, 19) discovers cycles in the CFG, except that we use a top-down rather than
bottom-up traversal of the graph. The key difference is that during the algorithm execution
we choose which DFST edges become back-edges. We want to compute the highest CSLs
possible for each procedure.

Glacial variable propagation is a flow-sensitive interprocedural data-
flow analysis. We use a static single-assignment (SSA) graph in our com-
piler intermediate representation. The VSL of a SSA-name is determined
by the assignment or pseudo-assignment to that name. The LHS name of
an assignment or pseudo-assignment is labeled with the meet of the stage-
level lattice elements of the RHS expression after operator folding. For
assignments, the operator folding is important for allowing constants to
propagate as far as possible. Nonconstant w- functions are labeled with the
VSL corresponding to the CSL of their containing block. A w-function
represents the dynamic selection of one of several values of a variable based
upon the flow of control followed to reach it. This selection happens as
frequently as the code is executed, so the VSL should match the CSL. If,
due to conditional expression resolution or constant propagation, all defined
inputs to a w-function are the same constant, then we want to propagate
the most precise information possible, which is that constant. Our SSA
form is extended with m- and g-functions in the manner of gated single
assignment. (18, 19) m-functions are w-functions at loop headers. Thus the
VSL of a m-function is labeled equivalently to a w-function. The m-function
captures the stage-level for variables with definitions that come from before
the loop and around the loop back-edge. g-functions capture the final value
of variables modified within a loop. They are placed at the target of each
loop exit edge. The g-function is labeled with the VSL corresponding to the
CSL of the block it is contained in, except in the case where induction
variable analysis determines that it is a constant. Since the g-function is in
the super-stage of the loop just exited, it has a lower stage-level than a
corresponding m-function. [GOTO statements in or out of loops may
require constructing code blocks at particular stage-levels for g-functions or
the analysis may be abandoned for such procedures or programs.]

Glacial variable propagation is a modification of Wegman and Zadeck’s
intraprocedural sparse conditional constant propagation algorithm
(WZ). (20) We use a taller lattice, shown in Fig. 2b. The standard constant
propagation lattice has one element for never defined , (Á), one element for
each constant, and one for runtime values, (’) . We extend this lattice with

Table I. Equations for Variable Definitions in Glacial Variable Propagation

SSA-node Glacial variable propagation equation

a= f (ai Î 1 . . . n) wVSL (ai) , or Constant

w(bi Î 1 . . . n) Stage-x | x= CSL (w(bi)) , or Constant

m(ci Î 1 . . . n) Stage-x | x= CSL (m(ci)), or Constant

g(d) Stage-(x 2 1) | x= CSL (m(d)), or Constant

50 Autrey and Wolfe

Table II. Glacial Variable Propagation Meet-Function

Meet Result

[=] Constant (v1) y Constant(v2) Constant (v3) where v3= v1 op v2

via operator folding (meet does not happen)
[w/ m] Constant (v1) y Constant(v2) Constant (v1) if v1= v2 ,

CSL(block containing the w/ m) otherwise
Constant y X X
Stage-i y Stage-j Stage-MAX(i, j)
Á y X X
’ y X ’

Fig. 3. GVP applied to example code.

51Glacial Variable Analysis

Stage-i elements to represent computation stages. The equations for
variable definitions are in Table I. The meet function is shown in Table II.
We label arrays as well as scalars. Arrays are treated as whole units,
individual elements are not labeled independently. Otherwise the structure
of WZ is preserved.

We extend an interprocedural constant propagation algorithm to use
the stage-level lattice.(21) Global recursion-level analysis already uses the
call graph, so using an interprocedural propagator increases the precision
of GVP without increasing the total space requirements for compilation.

In Fig. 3, we show the same code shown in Fig. 2 with VSL labels as
bold superscripts. Only the VSLs of definitions are marked. The VSL of a
use comes from its reaching definition. The out parameter to sum is set to
VSL-2 at the end of sum. In the while-loop, outvec is set to VSL-1 because
it can’t be modified more frequently than the function invocation is
executed.

Glacial variable propagation retains the time-complexity of WZ,
O(|E |+ |S |) , where E is the set of edges in the control flow graph and S
is the set of edges in the SSA graph. Although the maximum size of an SSA
graph is quadratic in the size of the input program, empirical evidence
shows that is linear in practice.(22) Interprocedural constant propagation
has complexity O(|C | * (|E |+ |S |)) where C is the set of edges in the call
graph. In practice, there are so few interprocedural constants that the time
required is much less than for intraprocedural constant propagation. Since
the two main algorithms of glacial variable analysis are linear-time algo-
rithms in practice, it is efficient.

4. INITIAL RESULTS

We describe a series of experiments that use glacial variable analysis
to discover the opportunities for applying RTCG. The experiments described
here are applied to four programs that have been used as scientific computing
benchmarks, BARO (shallow water atmospheric model using finite difference
approximation), MHD2D (2-D magnetohydrodynamics using FFTs),
SHEAR (hydrodynamics model using FFTs) and VORTEX (vortex sheet
model) . They have all been written to vectorize easily on a Cray-1. These
are some whole programs which our compiler, Nascent, can handle in their
entirety. We do not claim that the programs are particularly representative,
but they are complete applications that are not known to be favorable for
RTCG.

A few details about the Nascent compiler: it builds a complete call
graph of the program and it assumes that code for all routines is present.
Calls to builtin functions are allowed within a leaf procedure. Typically the

52 Autrey and Wolfe

compiler won’t have access to the source of a builtin function, but it knows
what side-effects, if any, the builtin function has. We distinguish between
leaf and nonleaf procedures because we want to show bow widely inter-
procedural optimization is applicable.

The key result of this paper is that there are many glacial variables in
programs such as our benchmarks. The statistics for the benchmarks
appear in Section 4.4.

4.1. Call Graph Characterization

Procedures are used to introduce modularity and abstraction into a
program. In order to understand how GRLA is affected by the modularity
introduced by the programmer, we perform the following experiments:

· Count the number of calls to procedures and correlate with leaf vs.
nonleaf procedures. The number of calls indicates whether proce-
dures are used for abstraction or modularity. If a procedure is called
from only one place, then it is a modular use (at least in this
program). Leaf procedures, by their nature, seem more likely to be
abstractions. Analysis of leaf procedures is more precise due to the
fact that information is not lost within them due to call sites.

· Count the different CSLs from which a procedure is called and
correlate with leaf vs. nonleaf procedures. The number of distinct
CSLs indicates how much information is lost by GRLA for computing
CSLs in this procedure and its descendants in the call graph.

In Table III, for columns two, four and five, the number on the left is
the percentage of all procedures that are leaves with that property and the
one on the right is for nonleaves. For column three, the number on the left
is one percentage of all calls that are to leaf procedures and the one on the
right is for calls to nonleaf procedures. For column six, the numbers are
averages and the left and right correspond to leaf and nonleaf procedures

Table III. Percentage of Procedures or Call Sites with a Given Property

Program Procs Calls to With 1 call to With 1 CLS Avg No. CSLs

BARO 57/43 50/50 50/0 57/14 1.00/1.67
MHD2D 50/50 60/40 10/7 36/36 1.43/1.29
SHEAR 29/71 33/67 9/3 21/71 1.25/1.00
VORTEX 84/16 89/11 79/11 79/16 1.06/1.00

53Glacial Variable Analysis

as do the other columns. For example, the fourth column shows that 79%
of all procedures in VORTEX are leaf procedures that are called from only
one place. The second column shows that, with the exception of SHEAR,
a bit more than half of procedures are leaves. The third column shows that
there are more static calls to leaf than nonleaf procedures and that the dis-
tribution of call sites matches the distribution of procedures. The fourth
column shows that only VORTEX uses procedures mostly for modularity
(1 call to a procedure) and that leaf procedures are used rather than non-
leaves. We expected more nonleaf procedures to be used for modularity.
The fifth column shows that about three-quarters of the procedures are
called from one CSL, indicating only a little loss of precision in our Proce-
dure-CSLs. The sixth column shows that on average a given procedure is
called from only one or two CSLs, so the loss of precision is not too great.

4.2. Definition Variant Stage-Level Characterization

Glacial variable propagation labels all expressions with their VSL. We
would like to understand how many values are produced at each stage-
level. This gives us some insight into which program stage-levels are large
in terms of the static values generated. The programmer may have broken
down large expressions into assignments to temporaries, which makes a
stage appear to generate more values than have upward exposed uses
beyond the stage. We distinguish between scalars and arrays because
scalars are simpler to embed in specialized code than arrays, but arrays
contain more values so the potential payoff is larger when they can be used
effectively. We perform the following experiment:

· Count the number of definitions and pseudo-definitions (w- , m- and
g-functions) at each stage-level. Distinguish between scalars and
arrays.

These experiments show the distribution of modification frequencies.
Figure 4 shows the distribution by type of scalar modification and stage
level at which they occur of true assignment vs. the several pseudo-assign-
ments. Figure 5 shows the same information, but for arrays. The shaded
area in each graph is 100%, except where some of the taller bars are clipped
at 50 %. As one would expect from the definition of m- and g-functions, the
shapes of their graphs correlate well.

It is important to remember that the stage-level is on a log-scale and
that this graph contains static percentages. The tiny percentages in the
higher stage-level columns become huge dynamic counts when they are

54 Autrey and Wolfe

Fig. 4. Histogram of percent of scalar definitions of each type at each level (values W > 50%
are clipped).

55Glacial Variable Analysis

Fig. 5. Histogram of percent of array definitions of each type at each level (values >50 %
are clipped).

56 Autrey and Wolfe

converted to their corresponding count and multiplied by 10stage-level (from
the old rule-of-thumb that loops execute ten times).

Various optimizations change the stage-level distributions. Copy
propagation replaces variable (pseudo-)definitions with additional uses of
the variables of the RHS expression. Common subexpression elimination
creates definitions for new temporaries. Dead store elimination removes
unused definitions. Loop-invariant code motion pulls expressions up to
lower stage-levels.

The VSLs of uses are shown in Section 4.4.

4.3. Validation of GRLA Estimates

The stage-level labels of GRLA are static estimates of dynamic execution
frequency. We wish to know how good the estimates are, so we perform the
following experiment:

· Measure the dynamic execution frequency of procedures, call sites
and loops, and compared the results with the assigned stage-levels.

Figures 6 and 7 show the dynamic execution frequency for procedures,
call sites and loops compared to their CSLs. Points are for individual items
and the solid (dotted for call sites) line connects the geometric means of the
samples for each stage-level. For the loop graphs, several stages have sam-
ples which vary by many orders of magnitude. We chose the geometric
mean because it captures the mean of order of magnitude. The geometric
mean is the n th root of the product of n samples. The dashed line is a
reference line showing (stage-level , 10stage-level).

The graphs show that the CSL is a good predictor both for absolute
and relative execution frequency. There are a few anomalies, such as the
estimates for Stage-4 loops in BARO and Stage-5 loops in MHD2D. We
will look into heuristics to try to compensate for these minor deviances.

A good static predictor for execution frequency is an aid to selecting
code to be generated at runtime. It is important to ensure that the code
reuse is high enough so that the expense of code generation is a small
enough fraction of the runtime that the overall computation time is
reduced.

4.4. RTCG Opportunity Characterization

Glacial variable analysis labels variables with useful properties to aid
selection of cost-effective value-specific optimization. It estimates the
modification frequency of variables and the execution frequency of code.

57Glacial Variable Analysis

Fig. 6. Dynamic frequency vs. stage-level with geometric mean and 10stage-level

reference line.

. .

58 Autrey and Wolfe

Fig. 7. Dynamic frequency vs. stage-level with geometric mean and 10stage-level

reference line.

. .

59Glacial Variable Analysis

Fig. 8. Degrees of glacialness (Z-axis) by stage level (X-axis) for SHEAR
(scalars).

We wish to know the number of glacial variables that VSO might be able
to use. We perform the following experiment:

· Compare the difference between the CSLs and VSLs of scalar
expressions. A larger difference indicates more potential invocations
to specialized code.

· Do the same for arrays. As noted earlier, scalars are easier to
optimize than arrays, but arrays may produce bigger payoffs.

This experiment shows the potential for VSO based on glacial
variables. Figures 8 and 9 show the glacial scalars and arrays, respectively,
for SHEAR. The CSL of the use goes from low (left) to high (right) along

Fig. 9. Degrees of glacialness (Z-axis) by stage level (X-axis) for SHEAR
(arrays) .

60 Autrey and Wolfe

Fig. 10. Degrees of glacialness (Z-axis) by stage level (X-axis) for
benchmark set (scalars).

the X-axis. A higher number means the use executes more frequently. The
Z-axis is the difference between the VSL of the reaching definition and the
CSL. The difference goes from low (back) to high (front). A higher number
means the definition is more glacial with respect to the use. The row for
values with a difference of zero has been left off to make the graph more
distinct, but the number of such values is accounted for in the percentages.
The left graphs show the absolute count and the right graphs show the per-
centages of uses with the indicated degree of glacialness. The percentages
sum to 100 along the Z-axis if uses with zero degrees of glacialness are
included. In Fig. 8 notice that about 23 % of all scalar uses at CSL-4 have
four degrees of glacialness and another 23% have three degrees. This
implies that some variable definitions with VSL-0 (1) , are reaching the

Fig. 11. Degrees of glacialness (Z-axis) by stage level (X-axis) for
benchmark set (scalars).

61Glacial Variable Analysis

loops unmodified. And in Fig. 9, notice that about 15% of all array uses
at CSL-4 have two degrees of glacialness.

Figure 10 shows the results of the same analysis for scalars averaged
over the four programs from the benchmark set. To prevent larger applica-
tions from dominating the results, the percentages were normalized for
each application and then averaged together. The percentage for variable
uses with 2 degrees of glacialness are particularly promising. Figure 11
shows the results for arrays. Figures 4 and 5 can be examined to see the
total percentages of all static definitions that occur at each stage-level.

All uses with nonzero degrees of glacialness are glacial variables.
Those with two or more degrees of glacialness are likely to be worth using
with VSO. More work is needed to analyze how much code and how many
values are control-dependent on a given fork in the control-flow graph.

5. CONCLUSIONS

Our glacial variable analysis is the first fully automatic analysis to
discover glacial variables for value-specific optimization. The analysis is
fully interprocedural and no programmer assistance is required.

We presented the results of our analysis on four complete benchmark
programs. The initial results are quite promising: many glacial variables
were found, often with several degrees of glacialness. Value-specific opti-
mization is well-understood for integer values and scalars, but not so well
for floating-point values and arrays. We are investigating optimizations to
make full use of the glacialness of these more difficult types.

One optimization of arrays is to use VSO to generate specialized
inspector/executor pairs.(23) In current techniques, the compiler specializes
a generic inspector for each loop nest where an index array is used. With
GVA, when an index array becomes glacial VSO can be applied to further
specialize the inspectors at runt time. When the last index array becomes
glacial the runtime code generator can execute the final inspector to
generate the executor. The executor is an interpreter of a little program
output by the inspector that indicates in what order to perform the loop
iterations. The executor, the little program and the loop body can be `̀ com-
piled,’’ using VSO/RTCG to produce a machine-code version of the loop
that honors the data-dependence requirements and is as parallel as
possible.

Our future work will include experimenting with modifications to
GRLA for procedures called at several levels and for recursive procedures.
We will also integrate our glacial variable analysis with a RTCG system to
experiment with cost/benefit heuristics, as well as to study opportunities for
new optimizations based on VSO and data specialization.(24)

62 Autrey and Wolfe

ACKNOWLEDGMENTS

We would like to acknowledge Robert Prouty and Sally McKee for
their thoughtful reviews that greatly aided the comprehension of the paper
and the anonymous reviewers for their suggested improvements.

REFERENCES

1. C. Consel and O. Danvy, Tutorial notes on partial evaluation, Conf . Record of the 20th
Ann. ACM SIGPLAN-SIGACT Symp . on Principles of Progr. Lang ., Charleston, South
Carolina, pp. 493± 501 (January 1993) .

2. M. W. Hall, Managing Interprocedural Optimization, Ph.D.Thesis, Department of Com-
puter Science, Rice University (1991).

3. D. Keppel, S. J. Eggers, and R. R. Henry, Evaluating runtime-compiled value-specific
optimizations, Technical Report UWCSE 93-11-02, Department of Computer Science and
Engineering, University of Washington (November 1993) .

4. D. Keppel, Runtime Code Generation, Ph.D. Thesis, Department of Computer Science
and Engineering, University of Washington (1996).

5. J. Auslander, M. Philipose, C. Chambers, S. J. Eggers, and B. N. Bershad, Fast, effective
dynamic compilation, Proc. ACM SIGPLAN ’96 Conf . Progr . Lang . Design and Implemen-
tation, pp. 149± 159 (see Ref. 25.)

6. C. Consel and F. NoeÈ l, A general approach to runtime specialization and its application
to C, Conf . Record of POPL ’96: 23rd ACM SIGPLAN-SIGACT Symp . on Principles of
Progr . Lang ., St. Petersburg, Florida, pp. 145± 156 (January 1996).

7. D. R. Engler, Vcode: A retargetable, extensible, very fast dynamic code generation system,
Proc. ACM SIGPLAN ’96 Conf . on Progr . Lang . Design and Implementation, pp. 160± 170
(see Ref. 25).

8. P. Lee and M. Leone, Optimizing ML with runtime code generation, Proc. ACM
SIGPLAN ’96 Conf . Progr . Lang . Design and Implementation, pp. 137± 148 (see Ref. 25) .

9. N. D. Jones, C. K. Comard, and P. Sestoft, Partial Evaluation and Automatic Program
Generation, Englewood Cliffs, New Jersey, Prentice-Hall (1993).

10. R. GluÈ ck and J. Jo/rgensen, Efficcient multi-level generating extensions for program spe-
cialization, Technical Report D-229, DIKU, Department of Computer Science, University
of Copenhagen (1995).

11. A. P. Ershov, Mixed computation: The potential applications and problems for study,
Theoret . Comput . Sci. 18:41± 67 (1982).

12. U. Jo/ rring and W. L. Scherlis, Compilers and staging transformations, Conf . Record of the
Thirteenth Ann. ACM Symp . on Principles of Progr . Lang ., St. Petersburg Beach, Florida,
pp. 86± 96 (January 1986).

13. U. HoÈ lzle and D. Ungar, Optimizing dynamically-dispatched calls with runtime type feed-
back, Proc. ACM SIGPLAN ’94 Conf . Progr. Lang . Design and Implementation,
pp. 326± 336 (June 1994).

14. C. Chambers, The design and implementation of the SELF compiler, an optimizing com-
piler for object-oriented programming languages, Ph. D. Thesis, Department of Computer
Science, Stanford University, 1992.

15. M. W. Hall and K. Kennedy, Efficient call graph analysis, ACM Letters on Progr . Lang .
Syst. 1(3):227± 242 (September 1992).

16. P. Havlak, Nesting of reducible and irreducible loops, ACM Trans . Progr . Lang . Syst .
19(4):557± 567 (July 1997).

63Glacial Variable Analysis

17. M. Wolfe, High-Performance Compilers for Parallel Computing , Reading, Massachusetts:
Addison-Wesley (1996).

18. R. A. Ballance, A. B. Maccabe, and K. J. Ottenstein, The program dependence web:
A representation supporting control, data, and demand-driven interpretation of imperative
languages, Proc. ACM SIGPLAN ’90 Conf . Progr . Lang . Design and Implementation,
pp. 257± 271 (June 1990).

19. P. Havlak, Construction of thinned gated single-assignment form. In U. Banerjee,
D. Gelernter, A. Nicolau, and D. A. Padua, (eds.), Languages and Compilers for Parallel
Computing Proc . sixth Int’ l. Workshop , Berlin, Germany: Springer-Verlag, Portmand,
Oregon, pp. 477± 499 (August 1993).

20. M. N. Wegman and F. Z. Zadeck, Constant propagation with conditional branches, ACM
Trans . Progr. Lang . Syst . 13(2):181± 210 (April 1991) .

21. T. Autrey, Demand-driven interprocedural constant propagation: Implementation and
evaluation. Technical Report OGI-CSE-96-008, Department of Computer Science and
Engineering, Oregon Graduate Institute (1996).

22. R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. F. Zadeck, Efficiently com-
puting static single assignment form and the control dependence graph, ACM Trans .
Progr . Lang . Syst . 13(4):451± 490 (October 1991).

23. L. Rauchweger, N. M. Amato, and D. A. Padua, Runtime methods for parallelizing
partially parallel loops, Proc. ACM Conf . Supercomputing , pp. 137± 146, Barcelona, Spain
(July 1995) . ACM SIGARCH.

24. T. B. Knoblock and E. Ruf, Data specialization, Proc. ACM SIGPLAN ’96 Conf . Progr .
Lang . Design and Implementation , pp. 215± 225.

25. ACM Sigplan, Proc. ACM SIGPLAN ’96 Conf . Progr. Lang . Design and Implementation,
Philadelphia, Pennsylvania (May 1996).

64 Autrey and Wolfe

